v8/test/unittests/interpreter/bytecode-array-writer-unittest.cc
Santiago Aboy Solanes c7c8472ddc [cleanup] Clean up SYNCHRONIZED_ACCESSORS macro naming and its uses
We can use tag dispatching to distinguish between the synchronized and
non-synchronized accessors. Also eliminated the need of adding explicit
"synchronized" in the name when using the macros.

As a note, we currently have one case of using both relaxed and
synchronized accessors (Map::instance_descriptors).

Cleaned up:
 * BytecodeArray::source_position_table
 * Code::code_data_container
 * Code::source_position_table
 * FunctionTemplateInfo::call_code
 * Map::instance_descriptors
 * Map::layout_descriptor
 * SharedFunctionInfo::function_data

Bug: v8:7790
Change-Id: I5a502f4b2df6addb6c45056e77061271012c7d90
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2424130
Commit-Queue: Santiago Aboy Solanes <solanes@chromium.org>
Reviewed-by: Georg Neis <neis@chromium.org>
Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
Reviewed-by: Leszek Swirski <leszeks@chromium.org>
Reviewed-by: Ross McIlroy <rmcilroy@chromium.org>
Cr-Commit-Position: refs/heads/master@{#70306}
2020-10-05 11:01:22 +00:00

371 lines
14 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/init/v8.h"
#include "src/api/api.h"
#include "src/codegen/source-position-table.h"
#include "src/execution/isolate.h"
#include "src/heap/factory.h"
#include "src/interpreter/bytecode-array-writer.h"
#include "src/interpreter/bytecode-label.h"
#include "src/interpreter/bytecode-node.h"
#include "src/interpreter/bytecode-register.h"
#include "src/interpreter/bytecode-source-info.h"
#include "src/interpreter/constant-array-builder.h"
#include "src/utils/utils.h"
#include "src/objects/objects-inl.h"
#include "test/unittests/interpreter/bytecode-utils.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace interpreter {
namespace bytecode_array_writer_unittest {
#define B(Name) static_cast<uint8_t>(Bytecode::k##Name)
#define R(i) static_cast<uint32_t>(Register(i).ToOperand())
class BytecodeArrayWriterUnittest : public TestWithIsolateAndZone {
public:
BytecodeArrayWriterUnittest()
: constant_array_builder_(zone()),
bytecode_array_writer_(
zone(), &constant_array_builder_,
SourcePositionTableBuilder::RECORD_SOURCE_POSITIONS) {}
~BytecodeArrayWriterUnittest() override = default;
void Write(Bytecode bytecode, BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0,
BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0, uint32_t operand1,
BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0, uint32_t operand1,
uint32_t operand2, BytecodeSourceInfo info = BytecodeSourceInfo());
void Write(Bytecode bytecode, uint32_t operand0, uint32_t operand1,
uint32_t operand2, uint32_t operand3,
BytecodeSourceInfo info = BytecodeSourceInfo());
void WriteJump(Bytecode bytecode, BytecodeLabel* label,
BytecodeSourceInfo info = BytecodeSourceInfo());
void WriteJumpLoop(Bytecode bytecode, BytecodeLoopHeader* loop_header,
int depth, BytecodeSourceInfo info = BytecodeSourceInfo());
BytecodeArrayWriter* writer() { return &bytecode_array_writer_; }
ZoneVector<unsigned char>* bytecodes() { return writer()->bytecodes(); }
SourcePositionTableBuilder* source_position_table_builder() {
return writer()->source_position_table_builder();
}
private:
ConstantArrayBuilder constant_array_builder_;
BytecodeArrayWriter bytecode_array_writer_;
};
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
uint32_t operand1,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, operand1, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
uint32_t operand1, uint32_t operand2,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, operand1, operand2, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::Write(Bytecode bytecode, uint32_t operand0,
uint32_t operand1, uint32_t operand2,
uint32_t operand3,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, operand0, operand1, operand2, operand3, info);
writer()->Write(&node);
}
void BytecodeArrayWriterUnittest::WriteJump(Bytecode bytecode,
BytecodeLabel* label,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, 0, info);
writer()->WriteJump(&node, label);
}
void BytecodeArrayWriterUnittest::WriteJumpLoop(Bytecode bytecode,
BytecodeLoopHeader* loop_header,
int depth,
BytecodeSourceInfo info) {
BytecodeNode node(bytecode, 0, depth, info);
writer()->WriteJumpLoop(&node, loop_header);
}
TEST_F(BytecodeArrayWriterUnittest, SimpleExample) {
CHECK_EQ(bytecodes()->size(), 0u);
Write(Bytecode::kLdaSmi, 127, {55, true});
CHECK_EQ(bytecodes()->size(), 2u);
Write(Bytecode::kStar, Register(20).ToOperand());
CHECK_EQ(bytecodes()->size(), 4u);
Write(Bytecode::kLdar, Register(200).ToOperand());
CHECK_EQ(bytecodes()->size(), 8u);
Write(Bytecode::kReturn, {70, true});
CHECK_EQ(bytecodes()->size(), 9u);
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 55 S> */ B(LdaSmi), U8(127),
/* 2 */ B(Star), R8(20),
/* 4 */ B(Wide), B(Ldar), R16(200),
/* 8 70 S> */ B(Return),
// clang-format on
};
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(bytecodes()->at(i), expected_bytes[i]);
}
Handle<BytecodeArray> bytecode_array =
writer()->ToBytecodeArray(isolate(), 0, 0, factory()->empty_byte_array());
bytecode_array->set_source_position_table(
*writer()->ToSourcePositionTable(isolate()), kReleaseStore);
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
PositionTableEntry expected_positions[] = {{0, 55, true}, {8, 70, true}};
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
TEST_F(BytecodeArrayWriterUnittest, ComplexExample) {
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 42 S> */ B(LdaConstant), U8(0),
/* 2 42 E> */ B(Add), R8(1), U8(1),
/* 4 68 S> */ B(JumpIfUndefined), U8(38),
/* 6 */ B(JumpIfNull), U8(36),
/* 8 */ B(ToObject), R8(3),
/* 10 */ B(ForInPrepare), R8(3), U8(4),
/* 13 */ B(LdaZero),
/* 14 */ B(Star), R8(7),
/* 16 63 S> */ B(ForInContinue), R8(7), R8(6),
/* 19 */ B(JumpIfFalse), U8(23),
/* 21 */ B(ForInNext), R8(3), R8(7), R8(4), U8(1),
/* 26 */ B(JumpIfUndefined), U8(9),
/* 28 */ B(Star), R8(0),
/* 30 */ B(Ldar), R8(0),
/* 32 */ B(Star), R8(2),
/* 34 85 S> */ B(Return),
/* 35 */ B(ForInStep), R8(7),
/* 37 */ B(Star), R8(7),
/* 39 */ B(JumpLoop), U8(23), U8(0),
/* 42 */ B(LdaUndefined),
/* 43 85 S> */ B(Return),
// clang-format on
};
static const PositionTableEntry expected_positions[] = {
{0, 42, true}, {2, 42, false}, {5, 68, true},
{17, 63, true}, {35, 85, true}, {44, 85, true}};
BytecodeLoopHeader loop_header;
BytecodeLabel jump_for_in, jump_end_1, jump_end_2, jump_end_3;
Write(Bytecode::kLdaConstant, U8(0), {42, true});
Write(Bytecode::kAdd, R(1), U8(1), {42, false});
WriteJump(Bytecode::kJumpIfUndefined, &jump_end_1, {68, true});
WriteJump(Bytecode::kJumpIfNull, &jump_end_2);
Write(Bytecode::kToObject, R(3));
Write(Bytecode::kForInPrepare, R(3), U8(4));
Write(Bytecode::kLdaZero);
Write(Bytecode::kStar, R(7));
writer()->BindLoopHeader(&loop_header);
Write(Bytecode::kForInContinue, R(7), R(6), {63, true});
WriteJump(Bytecode::kJumpIfFalse, &jump_end_3);
Write(Bytecode::kForInNext, R(3), R(7), R(4), U8(1));
WriteJump(Bytecode::kJumpIfUndefined, &jump_for_in);
Write(Bytecode::kStar, R(0));
Write(Bytecode::kLdar, R(0));
Write(Bytecode::kStar, R(2));
Write(Bytecode::kReturn, {85, true});
writer()->BindLabel(&jump_for_in);
Write(Bytecode::kForInStep, R(7));
Write(Bytecode::kStar, R(7));
WriteJumpLoop(Bytecode::kJumpLoop, &loop_header, 0);
writer()->BindLabel(&jump_end_1);
writer()->BindLabel(&jump_end_2);
writer()->BindLabel(&jump_end_3);
Write(Bytecode::kLdaUndefined);
Write(Bytecode::kReturn, {85, true});
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(static_cast<int>(bytecodes()->at(i)),
static_cast<int>(expected_bytes[i]));
}
Handle<BytecodeArray> bytecode_array =
writer()->ToBytecodeArray(isolate(), 0, 0, factory()->empty_byte_array());
bytecode_array->set_source_position_table(
*writer()->ToSourcePositionTable(isolate()), kReleaseStore);
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
TEST_F(BytecodeArrayWriterUnittest, ElideNoneffectfulBytecodes) {
if (!i::FLAG_ignition_elide_noneffectful_bytecodes) return;
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 55 S> */ B(Ldar), R8(20),
/* 2 */ B(Star), R8(20),
/* 4 */ B(CreateMappedArguments),
/* 5 60 S> */ B(LdaSmi), U8(127),
/* 7 70 S> */ B(Ldar), R8(20),
/* 9 75 S> */ B(Return),
// clang-format on
};
static const PositionTableEntry expected_positions[] = {
{0, 55, true}, {5, 60, false}, {7, 70, true}, {9, 75, true}};
Write(Bytecode::kLdaSmi, 127, {55, true}); // Should be elided.
Write(Bytecode::kLdar, Register(20).ToOperand());
Write(Bytecode::kStar, Register(20).ToOperand());
Write(Bytecode::kLdar, Register(20).ToOperand()); // Should be elided.
Write(Bytecode::kCreateMappedArguments);
Write(Bytecode::kLdaSmi, 127, {60, false}); // Not elided due to source info.
Write(Bytecode::kLdar, Register(20).ToOperand(), {70, true});
Write(Bytecode::kReturn, {75, true});
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(static_cast<int>(bytecodes()->at(i)),
static_cast<int>(expected_bytes[i]));
}
Handle<BytecodeArray> bytecode_array =
writer()->ToBytecodeArray(isolate(), 0, 0, factory()->empty_byte_array());
bytecode_array->set_source_position_table(
*writer()->ToSourcePositionTable(isolate()), kReleaseStore);
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
TEST_F(BytecodeArrayWriterUnittest, DeadcodeElimination) {
static const uint8_t expected_bytes[] = {
// clang-format off
/* 0 55 S> */ B(LdaSmi), U8(127),
/* 2 */ B(Jump), U8(2),
/* 4 65 S> */ B(LdaSmi), U8(127),
/* 6 */ B(JumpIfFalse), U8(3),
/* 8 75 S> */ B(Return),
/* 9 */ B(JumpIfFalse), U8(3),
/* 11 */ B(Throw),
/* 12 */ B(JumpIfFalse), U8(3),
/* 14 */ B(ReThrow),
/* 15 */ B(Return),
// clang-format on
};
static const PositionTableEntry expected_positions[] = {
{0, 55, true}, {4, 65, true}, {8, 75, true}};
BytecodeLabel after_jump, after_conditional_jump, after_return, after_throw,
after_rethrow;
Write(Bytecode::kLdaSmi, 127, {55, true});
WriteJump(Bytecode::kJump, &after_jump);
Write(Bytecode::kLdaSmi, 127); // Dead code.
WriteJump(Bytecode::kJumpIfFalse, &after_conditional_jump); // Dead code.
writer()->BindLabel(&after_jump);
// We would bind the after_conditional_jump label here, but the jump to it is
// dead.
CHECK(!after_conditional_jump.has_referrer_jump());
Write(Bytecode::kLdaSmi, 127, {65, true});
WriteJump(Bytecode::kJumpIfFalse, &after_return);
Write(Bytecode::kReturn, {75, true});
Write(Bytecode::kLdaSmi, 127, {100, true}); // Dead code.
writer()->BindLabel(&after_return);
WriteJump(Bytecode::kJumpIfFalse, &after_throw);
Write(Bytecode::kThrow);
Write(Bytecode::kLdaSmi, 127); // Dead code.
writer()->BindLabel(&after_throw);
WriteJump(Bytecode::kJumpIfFalse, &after_rethrow);
Write(Bytecode::kReThrow);
Write(Bytecode::kLdaSmi, 127); // Dead code.
writer()->BindLabel(&after_rethrow);
Write(Bytecode::kReturn);
CHECK_EQ(bytecodes()->size(), arraysize(expected_bytes));
for (size_t i = 0; i < arraysize(expected_bytes); ++i) {
CHECK_EQ(static_cast<int>(bytecodes()->at(i)),
static_cast<int>(expected_bytes[i]));
}
Handle<BytecodeArray> bytecode_array =
writer()->ToBytecodeArray(isolate(), 0, 0, factory()->empty_byte_array());
bytecode_array->set_source_position_table(
*writer()->ToSourcePositionTable(isolate()), kReleaseStore);
SourcePositionTableIterator source_iterator(
bytecode_array->SourcePositionTable());
for (size_t i = 0; i < arraysize(expected_positions); ++i) {
const PositionTableEntry& expected = expected_positions[i];
CHECK_EQ(source_iterator.code_offset(), expected.code_offset);
CHECK_EQ(source_iterator.source_position().ScriptOffset(),
expected.source_position);
CHECK_EQ(source_iterator.is_statement(), expected.is_statement);
source_iterator.Advance();
}
CHECK(source_iterator.done());
}
#undef B
#undef R
} // namespace bytecode_array_writer_unittest
} // namespace interpreter
} // namespace internal
} // namespace v8