v8/test/unittests/heap/heap-unittest.cc
Omer Katz 177eb46e5f Reland "[heap] Iterate promoted pages during sweeping"
This is a reland of commit 1e3dd39d09
and commit e5dbd05dcf

The fix is in https://chromium-review.googlesource.com/c/v8/v8/+/4094755/3..6

Original change's description:
> [heap] Iterate promoted pages during sweeping
>
> Promoted pages are iterated to record slots containing old to new and
> old to shared references. This takes a significant amount of time during
> the atomic pause.
> Instead we offload this task to the concurrent sweepers, record slots to
> a local cache, and merge it when finalizing sweeping.
>
> Array buffer sweeping depends on iteration of promoted pages, so it is
> frozen until iteration is done.
>
> See design doc at https://docs.google.com/document/d/1JzXZHguAnNAZUfS7kLeaPVXFfCYbf5bGCtyKgyiMDH4/edit?usp=sharing
>
> Bug: v8:12612
> Change-Id: Icdc79a7a70c53352e3a1b3961cfe369e8563b65b
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/4062041
> Commit-Queue: Michael Lippautz <mlippautz@chromium.org>
> Auto-Submit: Omer Katz <omerkatz@chromium.org>
> Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
> Cr-Commit-Position: refs/heads/main@{#84706}

Bug: v8:12612
Change-Id: I67bbf4753e9fa8b9194367996797aa103e58c16f
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/4094755
Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
Commit-Queue: Omer Katz <omerkatz@chromium.org>
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Cr-Commit-Position: refs/heads/main@{#85250}
2023-01-12 12:35:19 +00:00

449 lines
15 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/heap/heap.h"
#include <cmath>
#include <iostream>
#include <limits>
#include "include/v8-isolate.h"
#include "include/v8-object.h"
#include "src/flags/flags.h"
#include "src/handles/handles-inl.h"
#include "src/heap/gc-tracer.h"
#include "src/heap/marking-state-inl.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/remembered-set.h"
#include "src/heap/safepoint.h"
#include "src/heap/spaces-inl.h"
#include "src/objects/objects-inl.h"
#include "test/unittests/heap/heap-utils.h"
#include "test/unittests/test-utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace internal {
using HeapTest = TestWithHeapInternalsAndContext;
TEST(Heap, YoungGenerationSizeFromOldGenerationSize) {
const size_t pm = i::Heap::kPointerMultiplier;
const size_t hlm = i::Heap::kHeapLimitMultiplier;
ASSERT_EQ(3 * 512u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(128u * hlm * MB));
ASSERT_EQ(3 * 2048u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(256u * hlm * MB));
ASSERT_EQ(3 * 4096u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(512u * hlm * MB));
ASSERT_EQ(
3 * 8192u * pm * KB,
i::Heap::YoungGenerationSizeFromOldGenerationSize(1024u * hlm * MB));
}
TEST(Heap, GenerationSizesFromHeapSize) {
const size_t pm = i::Heap::kPointerMultiplier;
const size_t hlm = i::Heap::kHeapLimitMultiplier;
size_t old, young;
i::Heap::GenerationSizesFromHeapSize(1 * KB, &young, &old);
ASSERT_EQ(0u, old);
ASSERT_EQ(0u, young);
i::Heap::GenerationSizesFromHeapSize(1 * KB + 3 * 512u * pm * KB, &young,
&old);
ASSERT_EQ(1u * KB, old);
ASSERT_EQ(3 * 512u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(128 * hlm * MB + 3 * 512 * pm * KB,
&young, &old);
ASSERT_EQ(128u * hlm * MB, old);
ASSERT_EQ(3 * 512u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(256u * hlm * MB + 3 * 2048 * pm * KB,
&young, &old);
ASSERT_EQ(256u * hlm * MB, old);
ASSERT_EQ(3 * 2048u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(512u * hlm * MB + 3 * 4096 * pm * KB,
&young, &old);
ASSERT_EQ(512u * hlm * MB, old);
ASSERT_EQ(3 * 4096u * pm * KB, young);
i::Heap::GenerationSizesFromHeapSize(1024u * hlm * MB + 3 * 8192 * pm * KB,
&young, &old);
ASSERT_EQ(1024u * hlm * MB, old);
ASSERT_EQ(3 * 8192u * pm * KB, young);
}
TEST(Heap, HeapSizeFromPhysicalMemory) {
const size_t pm = i::Heap::kPointerMultiplier;
const size_t hlm = i::Heap::kHeapLimitMultiplier;
// The expected value is old_generation_size + 3 * semi_space_size.
ASSERT_EQ(128 * hlm * MB + 3 * 512 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(0u));
ASSERT_EQ(128 * hlm * MB + 3 * 512 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(512u * MB));
ASSERT_EQ(256 * hlm * MB + 3 * 2048 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(1024u * MB));
ASSERT_EQ(512 * hlm * MB + 3 * 4096 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(2048u * MB));
ASSERT_EQ(
1024 * hlm * MB + 3 * 8192 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(static_cast<uint64_t>(4096u) * MB));
ASSERT_EQ(
1024 * hlm * MB + 3 * 8192 * pm * KB,
i::Heap::HeapSizeFromPhysicalMemory(static_cast<uint64_t>(8192u) * MB));
}
TEST_F(HeapTest, ASLR) {
#if V8_TARGET_ARCH_X64
#if V8_OS_DARWIN
Heap* heap = i_isolate()->heap();
std::set<void*> hints;
for (int i = 0; i < 1000; i++) {
hints.insert(heap->GetRandomMmapAddr());
}
if (hints.size() == 1) {
EXPECT_TRUE((*hints.begin()) == nullptr);
EXPECT_TRUE(i::GetRandomMmapAddr() == nullptr);
} else {
// It is unlikely that 1000 random samples will collide to less then 500
// values.
EXPECT_GT(hints.size(), 500u);
const uintptr_t kRegionMask = 0xFFFFFFFFu;
void* first = *hints.begin();
for (void* hint : hints) {
uintptr_t diff = reinterpret_cast<uintptr_t>(first) ^
reinterpret_cast<uintptr_t>(hint);
EXPECT_LE(diff, kRegionMask);
}
}
#endif // V8_OS_DARWIN
#endif // V8_TARGET_ARCH_X64
}
TEST_F(HeapTest, ExternalLimitDefault) {
Heap* heap = i_isolate()->heap();
EXPECT_EQ(kExternalAllocationSoftLimit, heap->external_memory_limit());
}
TEST_F(HeapTest, ExternalLimitStaysAboveDefaultForExplicitHandling) {
v8_isolate()->AdjustAmountOfExternalAllocatedMemory(+10 * MB);
v8_isolate()->AdjustAmountOfExternalAllocatedMemory(-10 * MB);
Heap* heap = i_isolate()->heap();
EXPECT_GE(heap->external_memory_limit(), kExternalAllocationSoftLimit);
}
#ifdef V8_COMPRESS_POINTERS
TEST_F(HeapTest, HeapLayout) {
// Produce some garbage.
RunJS(
"let ar = [];"
"for (let i = 0; i < 100; i++) {"
" ar.push(Array(i));"
"}"
"ar.push(Array(32 * 1024 * 1024));");
Address cage_base = i_isolate()->cage_base();
EXPECT_TRUE(IsAligned(cage_base, size_t{4} * GB));
Address code_cage_base = i_isolate()->code_cage_base();
if (V8_EXTERNAL_CODE_SPACE_BOOL) {
EXPECT_TRUE(IsAligned(code_cage_base, kMinExpectedOSPageSize));
} else {
EXPECT_TRUE(IsAligned(code_cage_base, size_t{4} * GB));
}
#ifdef V8_COMPRESS_POINTERS_IN_ISOLATE_CAGE
Address isolate_root = i_isolate()->isolate_root();
EXPECT_EQ(cage_base, isolate_root);
#endif
// Check that all memory chunks belong this region.
base::AddressRegion heap_reservation(cage_base, size_t{4} * GB);
base::AddressRegion code_reservation(code_cage_base, size_t{4} * GB);
IsolateSafepointScope scope(i_isolate()->heap());
OldGenerationMemoryChunkIterator iter(i_isolate()->heap());
for (;;) {
MemoryChunk* chunk = iter.next();
if (chunk == nullptr) break;
Address address = chunk->address();
size_t size = chunk->area_end() - address;
AllocationSpace owner_id = chunk->owner_identity();
if (V8_EXTERNAL_CODE_SPACE_BOOL &&
(owner_id == CODE_SPACE || owner_id == CODE_LO_SPACE)) {
EXPECT_TRUE(code_reservation.contains(address, size));
} else {
EXPECT_TRUE(heap_reservation.contains(address, size));
}
}
}
#endif // V8_COMPRESS_POINTERS
namespace {
void ShrinkNewSpace(NewSpace* new_space) {
if (!v8_flags.minor_mc) {
new_space->Shrink();
return;
}
// MinorMC shrinks the space as part of sweeping.
PagedNewSpace* paged_new_space = PagedNewSpace::From(new_space);
Heap* heap = paged_new_space->heap();
heap->EnsureSweepingCompleted(Heap::SweepingForcedFinalizationMode::kV8Only);
GCTracer* tracer = heap->tracer();
tracer->StartObservablePause();
tracer->StartCycle(GarbageCollector::MARK_COMPACTOR,
GarbageCollectionReason::kTesting, "heap unittest",
GCTracer::MarkingType::kAtomic);
tracer->StartAtomicPause();
paged_new_space->StartShrinking();
for (Page* page = paged_new_space->first_page();
page != paged_new_space->last_page() &&
(paged_new_space->ShouldReleasePage());) {
Page* current_page = page;
page = page->next_page();
if (current_page->allocated_bytes() == 0) {
paged_new_space->ReleasePage(current_page);
}
}
paged_new_space->FinishShrinking();
tracer->StopAtomicPause();
tracer->StopObservablePause();
tracer->NotifyFullSweepingCompleted();
}
} // namespace
TEST_F(HeapTest, GrowAndShrinkNewSpace) {
if (v8_flags.single_generation) return;
{
ManualGCScope manual_gc_scope(i_isolate());
// Avoid shrinking new space in GC epilogue. This can happen if allocation
// throughput samples have been taken while executing the benchmark.
v8_flags.predictable = true;
v8_flags.stress_concurrent_allocation = false; // For SimulateFullSpace.
}
NewSpace* new_space = heap()->new_space();
if (heap()->MaxSemiSpaceSize() == heap()->InitialSemiSpaceSize()) {
return;
}
// Make sure we're in a consistent state to start out.
CollectAllGarbage();
CollectAllGarbage();
ShrinkNewSpace(new_space);
// Explicitly growing should double the space capacity.
size_t old_capacity, new_capacity;
old_capacity = new_space->TotalCapacity();
GrowNewSpace();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(2 * old_capacity, new_capacity);
old_capacity = new_space->TotalCapacity();
{
v8::HandleScope temporary_scope(reinterpret_cast<v8::Isolate*>(isolate()));
SimulateFullSpace(new_space);
}
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
// Explicitly shrinking should not affect space capacity.
old_capacity = new_space->TotalCapacity();
ShrinkNewSpace(new_space);
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
// Let the scavenger empty the new space.
CollectGarbage(NEW_SPACE);
CHECK_LE(new_space->Size(), old_capacity);
// Explicitly shrinking should halve the space capacity.
old_capacity = new_space->TotalCapacity();
ShrinkNewSpace(new_space);
new_capacity = new_space->TotalCapacity();
if (v8_flags.minor_mc) {
// Shrinking may not be able to remove any pages if all contain live
// objects.
CHECK_GE(old_capacity, new_capacity);
} else {
CHECK_EQ(old_capacity, 2 * new_capacity);
}
// Consecutive shrinking should not affect space capacity.
old_capacity = new_space->TotalCapacity();
ShrinkNewSpace(new_space);
ShrinkNewSpace(new_space);
ShrinkNewSpace(new_space);
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
}
TEST_F(HeapTest, CollectingAllAvailableGarbageShrinksNewSpace) {
if (v8_flags.single_generation) return;
v8_flags.stress_concurrent_allocation = false; // For SimulateFullSpace.
if (heap()->MaxSemiSpaceSize() == heap()->InitialSemiSpaceSize()) {
return;
}
v8::Isolate* iso = reinterpret_cast<v8::Isolate*>(isolate());
v8::HandleScope scope(iso);
NewSpace* new_space = heap()->new_space();
size_t old_capacity, new_capacity;
old_capacity = new_space->TotalCapacity();
GrowNewSpace();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(2 * old_capacity, new_capacity);
{
v8::HandleScope temporary_scope(iso);
SimulateFullSpace(new_space);
}
CollectAllAvailableGarbage();
new_capacity = new_space->TotalCapacity();
CHECK_EQ(old_capacity, new_capacity);
}
// Test that HAllocateObject will always return an object in new-space.
TEST_F(HeapTest, OptimizedAllocationAlwaysInNewSpace) {
if (v8_flags.single_generation) return;
v8_flags.allow_natives_syntax = true;
v8_flags.stress_concurrent_allocation = false; // For SimulateFullSpace.
if (!isolate()->use_optimizer() || v8_flags.always_turbofan) return;
if (v8_flags.gc_global || v8_flags.stress_compaction ||
v8_flags.stress_incremental_marking)
return;
v8::Isolate* iso = reinterpret_cast<v8::Isolate*>(isolate());
v8::HandleScope scope(iso);
v8::Local<v8::Context> ctx = iso->GetCurrentContext();
SimulateFullSpace(heap()->new_space());
AlwaysAllocateScopeForTesting always_allocate(heap());
v8::Local<v8::Value> res = WithIsolateScopeMixin::RunJS(
"function c(x) {"
" this.x = x;"
" for (var i = 0; i < 32; i++) {"
" this['x' + i] = x;"
" }"
"}"
"function f(x) { return new c(x); };"
"%PrepareFunctionForOptimization(f);"
"f(1); f(2); f(3);"
"%OptimizeFunctionOnNextCall(f);"
"f(4);");
CHECK_EQ(4, res.As<v8::Object>()
->GetRealNamedProperty(ctx, NewString("x"))
.ToLocalChecked()
->Int32Value(ctx)
.FromJust());
i::Handle<JSReceiver> o =
v8::Utils::OpenHandle(*v8::Local<v8::Object>::Cast(res));
CHECK(Heap::InYoungGeneration(*o));
}
namespace {
template <RememberedSetType direction>
static size_t GetRememberedSetSize(HeapObject obj) {
size_t count = 0;
auto chunk = MemoryChunk::FromHeapObject(obj);
RememberedSet<direction>::Iterate(
chunk,
[&count](MaybeObjectSlot slot) {
count++;
return KEEP_SLOT;
},
SlotSet::KEEP_EMPTY_BUCKETS);
return count;
}
} // namespace
TEST_F(HeapTest, RememberedSet_InsertOnPromotingObjectToOld) {
if (v8_flags.single_generation || v8_flags.stress_incremental_marking) return;
v8_flags.stress_concurrent_allocation = false; // For SealCurrentObjects.
Factory* factory = isolate()->factory();
Heap* heap = isolate()->heap();
SealCurrentObjects();
HandleScope scope(isolate());
// Create a young object and age it one generation inside the new space.
Handle<FixedArray> arr = factory->NewFixedArray(1);
std::vector<Handle<FixedArray>> handles;
if (v8_flags.minor_mc) {
NewSpace* new_space = heap->new_space();
CHECK(!new_space->IsAtMaximumCapacity());
// Fill current pages to force MinorMC to promote them.
SimulateFullSpace(new_space, &handles);
IsolateSafepointScope scope(heap);
// New empty pages should remain in new space.
new_space->Grow();
CHECK(new_space->EnsureCurrentCapacity());
} else {
CollectGarbage(i::NEW_SPACE);
}
CHECK(Heap::InYoungGeneration(*arr));
// Add into 'arr' a reference to an object one generation younger.
{
HandleScope scope_inner(isolate());
Handle<Object> number = factory->NewHeapNumber(42);
arr->set(0, *number);
}
// Promote 'arr' into old, its element is still in new, the old to new
// refs are inserted into the remembered sets during GC.
CollectGarbage(i::NEW_SPACE);
heap->EnsureSweepingCompleted(Heap::SweepingForcedFinalizationMode::kV8Only);
CHECK(heap->InOldSpace(*arr));
CHECK(heap->InYoungGeneration(arr->get(0)));
CHECK_EQ(1, GetRememberedSetSize<OLD_TO_NEW>(*arr));
}
TEST_F(HeapTest, Regress978156) {
if (!v8_flags.incremental_marking) return;
if (v8_flags.single_generation) return;
ManualGCScope manual_gc_scope(isolate());
HandleScope handle_scope(isolate());
Heap* heap = isolate()->heap();
// 1. Ensure that the new space is empty.
GcAndSweep(OLD_SPACE);
// 2. Fill the new space with FixedArrays.
std::vector<Handle<FixedArray>> arrays;
SimulateFullSpace(heap->new_space(), &arrays);
// 3. Trim the last array by one word thus creating a one-word filler.
Handle<FixedArray> last = arrays.back();
CHECK_GT(last->length(), 0);
heap->RightTrimFixedArray(*last, 1);
// 4. Get the last filler on the page.
HeapObject filler = HeapObject::FromAddress(
MemoryChunk::FromHeapObject(*last)->area_end() - kTaggedSize);
HeapObject::FromAddress(last->address() + last->Size());
CHECK(filler.IsFiller());
// 5. Start incremental marking.
i::IncrementalMarking* marking = heap->incremental_marking();
if (marking->IsStopped()) {
IsolateSafepointScope scope(heap);
heap->tracer()->StartCycle(
GarbageCollector::MARK_COMPACTOR, GarbageCollectionReason::kTesting,
"collector cctest", GCTracer::MarkingType::kIncremental);
marking->Start(GarbageCollector::MARK_COMPACTOR,
i::GarbageCollectionReason::kTesting);
}
MarkingState* marking_state = heap->marking_state();
// 6. Mark the filler black to access its two markbits. This triggers
// an out-of-bounds access of the marking bitmap in a bad case.
marking_state->WhiteToGrey(filler);
marking_state->GreyToBlack(filler);
}
} // namespace internal
} // namespace v8