v8/src/ia32/macro-assembler-ia32.cc
fschneider@chromium.org dbe99e405a Introduce number type information in the virtual frame.
Each frame element gets a new attribute with number type information. A frame element can be: 

- smi 
- heap number 
- number (i.e. either of the above) 
- or something else. 

The type information is propagated along with all virtual frame operations. 
Results popped from the frame carry the number information with them.

Two optimizations in the code generator make use of the new 
information: 
- GenericBinaryOpSyub omits map checks if input operands are numbers. 
- Boolean conversion for numbers: Emit inline code for converting a number (smi or heap number) to boolean. Do not emit call to ToBoolean stub in this case.


Review URL: http://codereview.chromium.org/545007

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3861 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2010-02-15 14:24:38 +00:00

1638 lines
56 KiB
C++

// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "bootstrapper.h"
#include "codegen-inl.h"
#include "debug.h"
#include "runtime.h"
#include "serialize.h"
namespace v8 {
namespace internal {
// -------------------------------------------------------------------------
// MacroAssembler implementation.
MacroAssembler::MacroAssembler(void* buffer, int size)
: Assembler(buffer, size),
generating_stub_(false),
allow_stub_calls_(true),
code_object_(Heap::undefined_value()) {
}
static void RecordWriteHelper(MacroAssembler* masm,
Register object,
Register addr,
Register scratch) {
Label fast;
// Compute the page start address from the heap object pointer, and reuse
// the 'object' register for it.
masm->and_(object, ~Page::kPageAlignmentMask);
Register page_start = object;
// Compute the bit addr in the remembered set/index of the pointer in the
// page. Reuse 'addr' as pointer_offset.
masm->sub(addr, Operand(page_start));
masm->shr(addr, kObjectAlignmentBits);
Register pointer_offset = addr;
// If the bit offset lies beyond the normal remembered set range, it is in
// the extra remembered set area of a large object.
masm->cmp(pointer_offset, Page::kPageSize / kPointerSize);
masm->j(less, &fast);
// Adjust 'page_start' so that addressing using 'pointer_offset' hits the
// extra remembered set after the large object.
// Find the length of the large object (FixedArray).
masm->mov(scratch, Operand(page_start, Page::kObjectStartOffset
+ FixedArray::kLengthOffset));
Register array_length = scratch;
// Extra remembered set starts right after the large object (a FixedArray), at
// page_start + kObjectStartOffset + objectSize
// where objectSize is FixedArray::kHeaderSize + kPointerSize * array_length.
// Add the delta between the end of the normal RSet and the start of the
// extra RSet to 'page_start', so that addressing the bit using
// 'pointer_offset' hits the extra RSet words.
masm->lea(page_start,
Operand(page_start, array_length, times_pointer_size,
Page::kObjectStartOffset + FixedArray::kHeaderSize
- Page::kRSetEndOffset));
// NOTE: For now, we use the bit-test-and-set (bts) x86 instruction
// to limit code size. We should probably evaluate this decision by
// measuring the performance of an equivalent implementation using
// "simpler" instructions
masm->bind(&fast);
masm->bts(Operand(page_start, Page::kRSetOffset), pointer_offset);
}
class RecordWriteStub : public CodeStub {
public:
RecordWriteStub(Register object, Register addr, Register scratch)
: object_(object), addr_(addr), scratch_(scratch) { }
void Generate(MacroAssembler* masm);
private:
Register object_;
Register addr_;
Register scratch_;
#ifdef DEBUG
void Print() {
PrintF("RecordWriteStub (object reg %d), (addr reg %d), (scratch reg %d)\n",
object_.code(), addr_.code(), scratch_.code());
}
#endif
// Minor key encoding in 12 bits of three registers (object, address and
// scratch) OOOOAAAASSSS.
class ScratchBits: public BitField<uint32_t, 0, 4> {};
class AddressBits: public BitField<uint32_t, 4, 4> {};
class ObjectBits: public BitField<uint32_t, 8, 4> {};
Major MajorKey() { return RecordWrite; }
int MinorKey() {
// Encode the registers.
return ObjectBits::encode(object_.code()) |
AddressBits::encode(addr_.code()) |
ScratchBits::encode(scratch_.code());
}
};
void RecordWriteStub::Generate(MacroAssembler* masm) {
RecordWriteHelper(masm, object_, addr_, scratch_);
masm->ret(0);
}
// Set the remembered set bit for [object+offset].
// object is the object being stored into, value is the object being stored.
// If offset is zero, then the scratch register contains the array index into
// the elements array represented as a Smi.
// All registers are clobbered by the operation.
void MacroAssembler::RecordWrite(Register object, int offset,
Register value, Register scratch) {
// The compiled code assumes that record write doesn't change the
// context register, so we check that none of the clobbered
// registers are esi.
ASSERT(!object.is(esi) && !value.is(esi) && !scratch.is(esi));
// First, check if a remembered set write is even needed. The tests below
// catch stores of Smis and stores into young gen (which does not have space
// for the remembered set bits.
Label done;
// Skip barrier if writing a smi.
ASSERT_EQ(0, kSmiTag);
test(value, Immediate(kSmiTagMask));
j(zero, &done);
if (Serializer::enabled()) {
// Can't do arithmetic on external references if it might get serialized.
mov(value, Operand(object));
and_(value, Heap::NewSpaceMask());
cmp(Operand(value), Immediate(ExternalReference::new_space_start()));
j(equal, &done);
} else {
int32_t new_space_start = reinterpret_cast<int32_t>(
ExternalReference::new_space_start().address());
lea(value, Operand(object, -new_space_start));
and_(value, Heap::NewSpaceMask());
j(equal, &done);
}
if ((offset > 0) && (offset < Page::kMaxHeapObjectSize)) {
// Compute the bit offset in the remembered set, leave it in 'value'.
lea(value, Operand(object, offset));
and_(value, Page::kPageAlignmentMask);
shr(value, kPointerSizeLog2);
// Compute the page address from the heap object pointer, leave it in
// 'object'.
and_(object, ~Page::kPageAlignmentMask);
// NOTE: For now, we use the bit-test-and-set (bts) x86 instruction
// to limit code size. We should probably evaluate this decision by
// measuring the performance of an equivalent implementation using
// "simpler" instructions
bts(Operand(object, Page::kRSetOffset), value);
} else {
Register dst = scratch;
if (offset != 0) {
lea(dst, Operand(object, offset));
} else {
// array access: calculate the destination address in the same manner as
// KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset
// into an array of words.
ASSERT_EQ(1, kSmiTagSize);
ASSERT_EQ(0, kSmiTag);
lea(dst, Operand(object, dst, times_half_pointer_size,
FixedArray::kHeaderSize - kHeapObjectTag));
}
// If we are already generating a shared stub, not inlining the
// record write code isn't going to save us any memory.
if (generating_stub()) {
RecordWriteHelper(this, object, dst, value);
} else {
RecordWriteStub stub(object, dst, value);
CallStub(&stub);
}
}
bind(&done);
// Clobber all input registers when running with the debug-code flag
// turned on to provoke errors.
if (FLAG_debug_code) {
mov(object, Immediate(bit_cast<int32_t>(kZapValue)));
mov(value, Immediate(bit_cast<int32_t>(kZapValue)));
mov(scratch, Immediate(bit_cast<int32_t>(kZapValue)));
}
}
void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) {
cmp(esp,
Operand::StaticVariable(ExternalReference::address_of_stack_limit()));
j(below, on_stack_overflow);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void MacroAssembler::SaveRegistersToMemory(RegList regs) {
ASSERT((regs & ~kJSCallerSaved) == 0);
// Copy the content of registers to memory location.
for (int i = 0; i < kNumJSCallerSaved; i++) {
int r = JSCallerSavedCode(i);
if ((regs & (1 << r)) != 0) {
Register reg = { r };
ExternalReference reg_addr =
ExternalReference(Debug_Address::Register(i));
mov(Operand::StaticVariable(reg_addr), reg);
}
}
}
void MacroAssembler::RestoreRegistersFromMemory(RegList regs) {
ASSERT((regs & ~kJSCallerSaved) == 0);
// Copy the content of memory location to registers.
for (int i = kNumJSCallerSaved; --i >= 0;) {
int r = JSCallerSavedCode(i);
if ((regs & (1 << r)) != 0) {
Register reg = { r };
ExternalReference reg_addr =
ExternalReference(Debug_Address::Register(i));
mov(reg, Operand::StaticVariable(reg_addr));
}
}
}
void MacroAssembler::PushRegistersFromMemory(RegList regs) {
ASSERT((regs & ~kJSCallerSaved) == 0);
// Push the content of the memory location to the stack.
for (int i = 0; i < kNumJSCallerSaved; i++) {
int r = JSCallerSavedCode(i);
if ((regs & (1 << r)) != 0) {
ExternalReference reg_addr =
ExternalReference(Debug_Address::Register(i));
push(Operand::StaticVariable(reg_addr));
}
}
}
void MacroAssembler::PopRegistersToMemory(RegList regs) {
ASSERT((regs & ~kJSCallerSaved) == 0);
// Pop the content from the stack to the memory location.
for (int i = kNumJSCallerSaved; --i >= 0;) {
int r = JSCallerSavedCode(i);
if ((regs & (1 << r)) != 0) {
ExternalReference reg_addr =
ExternalReference(Debug_Address::Register(i));
pop(Operand::StaticVariable(reg_addr));
}
}
}
void MacroAssembler::CopyRegistersFromStackToMemory(Register base,
Register scratch,
RegList regs) {
ASSERT((regs & ~kJSCallerSaved) == 0);
// Copy the content of the stack to the memory location and adjust base.
for (int i = kNumJSCallerSaved; --i >= 0;) {
int r = JSCallerSavedCode(i);
if ((regs & (1 << r)) != 0) {
mov(scratch, Operand(base, 0));
ExternalReference reg_addr =
ExternalReference(Debug_Address::Register(i));
mov(Operand::StaticVariable(reg_addr), scratch);
lea(base, Operand(base, kPointerSize));
}
}
}
void MacroAssembler::DebugBreak() {
Set(eax, Immediate(0));
mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak)));
CEntryStub ces(1);
call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
}
#endif
void MacroAssembler::Set(Register dst, const Immediate& x) {
if (x.is_zero()) {
xor_(dst, Operand(dst)); // shorter than mov
} else {
mov(dst, x);
}
}
void MacroAssembler::Set(const Operand& dst, const Immediate& x) {
mov(dst, x);
}
void MacroAssembler::CmpObjectType(Register heap_object,
InstanceType type,
Register map) {
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
CmpInstanceType(map, type);
}
void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
static_cast<int8_t>(type));
}
void MacroAssembler::CheckMap(Register obj,
Handle<Map> map,
Label* fail,
bool is_heap_object) {
if (!is_heap_object) {
test(obj, Immediate(kSmiTagMask));
j(zero, fail);
}
cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
j(not_equal, fail);
}
Condition MacroAssembler::IsObjectStringType(Register heap_object,
Register map,
Register instance_type) {
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
ASSERT(kNotStringTag != 0);
test(instance_type, Immediate(kIsNotStringMask));
return zero;
}
void MacroAssembler::FCmp() {
if (CpuFeatures::IsSupported(CMOV)) {
fucomip();
ffree(0);
fincstp();
} else {
fucompp();
push(eax);
fnstsw_ax();
sahf();
pop(eax);
}
}
void MacroAssembler::AbortIfNotNumber(Register object, const char* msg) {
Label ok;
test(object, Immediate(kSmiTagMask));
j(zero, &ok);
cmp(FieldOperand(object, HeapObject::kMapOffset),
Factory::heap_number_map());
Assert(equal, msg);
bind(&ok);
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
push(ebp);
mov(ebp, Operand(esp));
push(esi);
push(Immediate(Smi::FromInt(type)));
push(Immediate(CodeObject()));
if (FLAG_debug_code) {
cmp(Operand(esp, 0), Immediate(Factory::undefined_value()));
Check(not_equal, "code object not properly patched");
}
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
if (FLAG_debug_code) {
cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
Immediate(Smi::FromInt(type)));
Check(equal, "stack frame types must match");
}
leave();
}
void MacroAssembler::EnterExitFramePrologue(ExitFrame::Mode mode) {
// Setup the frame structure on the stack.
ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
push(ebp);
mov(ebp, Operand(esp));
// Reserve room for entry stack pointer and push the debug marker.
ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
push(Immediate(0)); // Saved entry sp, patched before call.
push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot.
// Save the frame pointer and the context in top.
ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address);
ExternalReference context_address(Top::k_context_address);
mov(Operand::StaticVariable(c_entry_fp_address), ebp);
mov(Operand::StaticVariable(context_address), esi);
}
void MacroAssembler::EnterExitFrameEpilogue(ExitFrame::Mode mode, int argc) {
#ifdef ENABLE_DEBUGGER_SUPPORT
// Save the state of all registers to the stack from the memory
// location. This is needed to allow nested break points.
if (mode == ExitFrame::MODE_DEBUG) {
// TODO(1243899): This should be symmetric to
// CopyRegistersFromStackToMemory() but it isn't! esp is assumed
// correct here, but computed for the other call. Very error
// prone! FIX THIS. Actually there are deeper problems with
// register saving than this asymmetry (see the bug report
// associated with this issue).
PushRegistersFromMemory(kJSCallerSaved);
}
#endif
// Reserve space for arguments.
sub(Operand(esp), Immediate(argc * kPointerSize));
// Get the required frame alignment for the OS.
static const int kFrameAlignment = OS::ActivationFrameAlignment();
if (kFrameAlignment > 0) {
ASSERT(IsPowerOf2(kFrameAlignment));
and_(esp, -kFrameAlignment);
}
// Patch the saved entry sp.
mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
}
void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode) {
EnterExitFramePrologue(mode);
// Setup argc and argv in callee-saved registers.
int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
mov(edi, Operand(eax));
lea(esi, Operand(ebp, eax, times_4, offset));
EnterExitFrameEpilogue(mode, 2);
}
void MacroAssembler::EnterApiExitFrame(ExitFrame::Mode mode,
int stack_space,
int argc) {
EnterExitFramePrologue(mode);
int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
lea(esi, Operand(ebp, (stack_space * kPointerSize) + offset));
EnterExitFrameEpilogue(mode, argc);
}
void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode) {
#ifdef ENABLE_DEBUGGER_SUPPORT
// Restore the memory copy of the registers by digging them out from
// the stack. This is needed to allow nested break points.
if (mode == ExitFrame::MODE_DEBUG) {
// It's okay to clobber register ebx below because we don't need
// the function pointer after this.
const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize;
int kOffset = ExitFrameConstants::kCodeOffset - kCallerSavedSize;
lea(ebx, Operand(ebp, kOffset));
CopyRegistersFromStackToMemory(ebx, ecx, kJSCallerSaved);
}
#endif
// Get the return address from the stack and restore the frame pointer.
mov(ecx, Operand(ebp, 1 * kPointerSize));
mov(ebp, Operand(ebp, 0 * kPointerSize));
// Pop the arguments and the receiver from the caller stack.
lea(esp, Operand(esi, 1 * kPointerSize));
// Restore current context from top and clear it in debug mode.
ExternalReference context_address(Top::k_context_address);
mov(esi, Operand::StaticVariable(context_address));
#ifdef DEBUG
mov(Operand::StaticVariable(context_address), Immediate(0));
#endif
// Push the return address to get ready to return.
push(ecx);
// Clear the top frame.
ExternalReference c_entry_fp_address(Top::k_c_entry_fp_address);
mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
}
void MacroAssembler::PushTryHandler(CodeLocation try_location,
HandlerType type) {
// Adjust this code if not the case.
ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
// The pc (return address) is already on TOS.
if (try_location == IN_JAVASCRIPT) {
if (type == TRY_CATCH_HANDLER) {
push(Immediate(StackHandler::TRY_CATCH));
} else {
push(Immediate(StackHandler::TRY_FINALLY));
}
push(ebp);
} else {
ASSERT(try_location == IN_JS_ENTRY);
// The frame pointer does not point to a JS frame so we save NULL
// for ebp. We expect the code throwing an exception to check ebp
// before dereferencing it to restore the context.
push(Immediate(StackHandler::ENTRY));
push(Immediate(0)); // NULL frame pointer.
}
// Save the current handler as the next handler.
push(Operand::StaticVariable(ExternalReference(Top::k_handler_address)));
// Link this handler as the new current one.
mov(Operand::StaticVariable(ExternalReference(Top::k_handler_address)), esp);
}
void MacroAssembler::PopTryHandler() {
ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address)));
add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize));
}
Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg,
JSObject* holder, Register holder_reg,
Register scratch,
int save_at_depth,
Label* miss) {
// Make sure there's no overlap between scratch and the other
// registers.
ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg));
// Keep track of the current object in register reg.
Register reg = object_reg;
int depth = 0;
if (save_at_depth == depth) {
mov(Operand(esp, kPointerSize), object_reg);
}
// Check the maps in the prototype chain.
// Traverse the prototype chain from the object and do map checks.
while (object != holder) {
depth++;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
JSObject* prototype = JSObject::cast(object->GetPrototype());
if (Heap::InNewSpace(prototype)) {
// Get the map of the current object.
mov(scratch, FieldOperand(reg, HeapObject::kMapOffset));
cmp(Operand(scratch), Immediate(Handle<Map>(object->map())));
// Branch on the result of the map check.
j(not_equal, miss, not_taken);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (object->IsJSGlobalProxy()) {
CheckAccessGlobalProxy(reg, scratch, miss);
// Restore scratch register to be the map of the object.
// We load the prototype from the map in the scratch register.
mov(scratch, FieldOperand(reg, HeapObject::kMapOffset));
}
// The prototype is in new space; we cannot store a reference
// to it in the code. Load it from the map.
reg = holder_reg; // from now the object is in holder_reg
mov(reg, FieldOperand(scratch, Map::kPrototypeOffset));
} else {
// Check the map of the current object.
cmp(FieldOperand(reg, HeapObject::kMapOffset),
Immediate(Handle<Map>(object->map())));
// Branch on the result of the map check.
j(not_equal, miss, not_taken);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (object->IsJSGlobalProxy()) {
CheckAccessGlobalProxy(reg, scratch, miss);
}
// The prototype is in old space; load it directly.
reg = holder_reg; // from now the object is in holder_reg
mov(reg, Handle<JSObject>(prototype));
}
if (save_at_depth == depth) {
mov(Operand(esp, kPointerSize), reg);
}
// Go to the next object in the prototype chain.
object = prototype;
}
// Check the holder map.
cmp(FieldOperand(reg, HeapObject::kMapOffset),
Immediate(Handle<Map>(holder->map())));
j(not_equal, miss, not_taken);
// Log the check depth.
LOG(IntEvent("check-maps-depth", depth + 1));
// Perform security check for access to the global object and return
// the holder register.
ASSERT(object == holder);
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
if (object->IsJSGlobalProxy()) {
CheckAccessGlobalProxy(reg, scratch, miss);
}
return reg;
}
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
ASSERT(!holder_reg.is(scratch));
// Load current lexical context from the stack frame.
mov(scratch, Operand(ebp, StandardFrameConstants::kContextOffset));
// When generating debug code, make sure the lexical context is set.
if (FLAG_debug_code) {
cmp(Operand(scratch), Immediate(0));
Check(not_equal, "we should not have an empty lexical context");
}
// Load the global context of the current context.
int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
mov(scratch, FieldOperand(scratch, offset));
mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset));
// Check the context is a global context.
if (FLAG_debug_code) {
push(scratch);
// Read the first word and compare to global_context_map.
mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
cmp(scratch, Factory::global_context_map());
Check(equal, "JSGlobalObject::global_context should be a global context.");
pop(scratch);
}
// Check if both contexts are the same.
cmp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
j(equal, &same_contexts, taken);
// Compare security tokens, save holder_reg on the stack so we can use it
// as a temporary register.
//
// TODO(119): avoid push(holder_reg)/pop(holder_reg)
push(holder_reg);
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
mov(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset));
// Check the context is a global context.
if (FLAG_debug_code) {
cmp(holder_reg, Factory::null_value());
Check(not_equal, "JSGlobalProxy::context() should not be null.");
push(holder_reg);
// Read the first word and compare to global_context_map(),
mov(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
cmp(holder_reg, Factory::global_context_map());
Check(equal, "JSGlobalObject::global_context should be a global context.");
pop(holder_reg);
}
int token_offset = Context::kHeaderSize +
Context::SECURITY_TOKEN_INDEX * kPointerSize;
mov(scratch, FieldOperand(scratch, token_offset));
cmp(scratch, FieldOperand(holder_reg, token_offset));
pop(holder_reg);
j(not_equal, miss, not_taken);
bind(&same_contexts);
}
void MacroAssembler::LoadAllocationTopHelper(Register result,
Register result_end,
Register scratch,
AllocationFlags flags) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address();
// Just return if allocation top is already known.
if ((flags & RESULT_CONTAINS_TOP) != 0) {
// No use of scratch if allocation top is provided.
ASSERT(scratch.is(no_reg));
#ifdef DEBUG
// Assert that result actually contains top on entry.
cmp(result, Operand::StaticVariable(new_space_allocation_top));
Check(equal, "Unexpected allocation top");
#endif
return;
}
// Move address of new object to result. Use scratch register if available.
if (scratch.is(no_reg)) {
mov(result, Operand::StaticVariable(new_space_allocation_top));
} else {
ASSERT(!scratch.is(result_end));
mov(Operand(scratch), Immediate(new_space_allocation_top));
mov(result, Operand(scratch, 0));
}
}
void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
Register scratch) {
if (FLAG_debug_code) {
test(result_end, Immediate(kObjectAlignmentMask));
Check(zero, "Unaligned allocation in new space");
}
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address();
// Update new top. Use scratch if available.
if (scratch.is(no_reg)) {
mov(Operand::StaticVariable(new_space_allocation_top), result_end);
} else {
mov(Operand(scratch, 0), result_end);
}
}
void MacroAssembler::AllocateInNewSpace(int object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
ASSERT(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, result_end, scratch, flags);
// Calculate new top and bail out if new space is exhausted.
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address();
lea(result_end, Operand(result, object_size));
cmp(result_end, Operand::StaticVariable(new_space_allocation_limit));
j(above, gc_required, not_taken);
// Tag result if requested.
if ((flags & TAG_OBJECT) != 0) {
lea(result, Operand(result, kHeapObjectTag));
}
// Update allocation top.
UpdateAllocationTopHelper(result_end, scratch);
}
void MacroAssembler::AllocateInNewSpace(int header_size,
ScaleFactor element_size,
Register element_count,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
ASSERT(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, result_end, scratch, flags);
// Calculate new top and bail out if new space is exhausted.
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address();
lea(result_end, Operand(result, element_count, element_size, header_size));
cmp(result_end, Operand::StaticVariable(new_space_allocation_limit));
j(above, gc_required);
// Tag result if requested.
if ((flags & TAG_OBJECT) != 0) {
lea(result, Operand(result, kHeapObjectTag));
}
// Update allocation top.
UpdateAllocationTopHelper(result_end, scratch);
}
void MacroAssembler::AllocateInNewSpace(Register object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
ASSERT(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, result_end, scratch, flags);
// Calculate new top and bail out if new space is exhausted.
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address();
if (!object_size.is(result_end)) {
mov(result_end, object_size);
}
add(result_end, Operand(result));
cmp(result_end, Operand::StaticVariable(new_space_allocation_limit));
j(above, gc_required, not_taken);
// Tag result if requested.
if ((flags & TAG_OBJECT) != 0) {
lea(result, Operand(result, kHeapObjectTag));
}
// Update allocation top.
UpdateAllocationTopHelper(result_end, scratch);
}
void MacroAssembler::UndoAllocationInNewSpace(Register object) {
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address();
// Make sure the object has no tag before resetting top.
and_(Operand(object), Immediate(~kHeapObjectTagMask));
#ifdef DEBUG
cmp(object, Operand::StaticVariable(new_space_allocation_top));
Check(below, "Undo allocation of non allocated memory");
#endif
mov(Operand::StaticVariable(new_space_allocation_top), object);
}
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
AllocateInNewSpace(HeapNumber::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
// Set the map.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(Factory::heap_number_map()));
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
ASSERT(kShortSize == 2);
// scratch1 = length * 2 + kObjectAlignmentMask.
lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
and_(Operand(scratch1), Immediate(~kObjectAlignmentMask));
// Allocate two byte string in new space.
AllocateInNewSpace(SeqTwoByteString::kHeaderSize,
times_1,
scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(Factory::string_map()));
mov(FieldOperand(result, String::kLengthOffset), length);
mov(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
mov(scratch1, length);
ASSERT(kCharSize == 1);
add(Operand(scratch1), Immediate(kObjectAlignmentMask));
and_(Operand(scratch1), Immediate(~kObjectAlignmentMask));
// Allocate ascii string in new space.
AllocateInNewSpace(SeqAsciiString::kHeaderSize,
times_1,
scratch1,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Set the map, length and hash field.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(Factory::ascii_string_map()));
mov(FieldOperand(result, String::kLengthOffset), length);
mov(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
AllocateInNewSpace(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(Factory::cons_string_map()));
}
void MacroAssembler::AllocateAsciiConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
AllocateInNewSpace(ConsString::kSize,
result,
scratch1,
scratch2,
gc_required,
TAG_OBJECT);
// Set the map. The other fields are left uninitialized.
mov(FieldOperand(result, HeapObject::kMapOffset),
Immediate(Factory::cons_ascii_string_map()));
}
void MacroAssembler::NegativeZeroTest(CodeGenerator* cgen,
Register result,
Register op,
JumpTarget* then_target) {
JumpTarget ok;
test(result, Operand(result));
ok.Branch(not_zero, taken);
test(op, Operand(op));
then_target->Branch(sign, not_taken);
ok.Bind();
}
void MacroAssembler::NegativeZeroTest(Register result,
Register op,
Label* then_label) {
Label ok;
test(result, Operand(result));
j(not_zero, &ok, taken);
test(op, Operand(op));
j(sign, then_label, not_taken);
bind(&ok);
}
void MacroAssembler::NegativeZeroTest(Register result,
Register op1,
Register op2,
Register scratch,
Label* then_label) {
Label ok;
test(result, Operand(result));
j(not_zero, &ok, taken);
mov(scratch, Operand(op1));
or_(scratch, Operand(op2));
j(sign, then_label, not_taken);
bind(&ok);
}
void MacroAssembler::TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss) {
// Check that the receiver isn't a smi.
test(function, Immediate(kSmiTagMask));
j(zero, miss, not_taken);
// Check that the function really is a function.
CmpObjectType(function, JS_FUNCTION_TYPE, result);
j(not_equal, miss, not_taken);
// Make sure that the function has an instance prototype.
Label non_instance;
movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
j(not_zero, &non_instance, not_taken);
// Get the prototype or initial map from the function.
mov(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
cmp(Operand(result), Immediate(Factory::the_hole_value()));
j(equal, miss, not_taken);
// If the function does not have an initial map, we're done.
Label done;
CmpObjectType(result, MAP_TYPE, scratch);
j(not_equal, &done);
// Get the prototype from the initial map.
mov(result, FieldOperand(result, Map::kPrototypeOffset));
jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
bind(&non_instance);
mov(result, FieldOperand(result, Map::kConstructorOffset));
// All done.
bind(&done);
}
void MacroAssembler::CallStub(CodeStub* stub) {
ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
call(stub->GetCode(), RelocInfo::CODE_TARGET);
}
Object* MacroAssembler::TryCallStub(CodeStub* stub) {
ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
Object* result = stub->TryGetCode();
if (!result->IsFailure()) {
call(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET);
}
return result;
}
void MacroAssembler::TailCallStub(CodeStub* stub) {
ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
}
Object* MacroAssembler::TryTailCallStub(CodeStub* stub) {
ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs.
Object* result = stub->TryGetCode();
if (!result->IsFailure()) {
jmp(Handle<Code>(Code::cast(result)), RelocInfo::CODE_TARGET);
}
return result;
}
void MacroAssembler::StubReturn(int argc) {
ASSERT(argc >= 1 && generating_stub());
ret((argc - 1) * kPointerSize);
}
void MacroAssembler::IllegalOperation(int num_arguments) {
if (num_arguments > 0) {
add(Operand(esp), Immediate(num_arguments * kPointerSize));
}
mov(eax, Immediate(Factory::undefined_value()));
}
void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) {
CallRuntime(Runtime::FunctionForId(id), num_arguments);
}
Object* MacroAssembler::TryCallRuntime(Runtime::FunctionId id,
int num_arguments) {
return TryCallRuntime(Runtime::FunctionForId(id), num_arguments);
}
void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) {
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
if (f->nargs >= 0 && f->nargs != num_arguments) {
IllegalOperation(num_arguments);
return;
}
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(eax, Immediate(num_arguments));
mov(ebx, Immediate(ExternalReference(f)));
CEntryStub ces(1);
CallStub(&ces);
}
void MacroAssembler::CallExternalReference(ExternalReference ref,
int num_arguments) {
mov(eax, Immediate(num_arguments));
mov(ebx, Immediate(ref));
CEntryStub stub(1);
CallStub(&stub);
}
Object* MacroAssembler::TryCallRuntime(Runtime::Function* f,
int num_arguments) {
if (f->nargs >= 0 && f->nargs != num_arguments) {
IllegalOperation(num_arguments);
// Since we did not call the stub, there was no allocation failure.
// Return some non-failure object.
return Heap::undefined_value();
}
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(eax, Immediate(num_arguments));
mov(ebx, Immediate(ExternalReference(f)));
CEntryStub ces(1);
return TryCallStub(&ces);
}
void MacroAssembler::TailCallRuntime(const ExternalReference& ext,
int num_arguments,
int result_size) {
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(eax, Immediate(num_arguments));
JumpToRuntime(ext);
}
void MacroAssembler::PushHandleScope(Register scratch) {
// Push the number of extensions, smi-tagged so the gc will ignore it.
ExternalReference extensions_address =
ExternalReference::handle_scope_extensions_address();
mov(scratch, Operand::StaticVariable(extensions_address));
ASSERT_EQ(0, kSmiTag);
shl(scratch, kSmiTagSize);
push(scratch);
mov(Operand::StaticVariable(extensions_address), Immediate(0));
// Push next and limit pointers which will be wordsize aligned and
// hence automatically smi tagged.
ExternalReference next_address =
ExternalReference::handle_scope_next_address();
push(Operand::StaticVariable(next_address));
ExternalReference limit_address =
ExternalReference::handle_scope_limit_address();
push(Operand::StaticVariable(limit_address));
}
Object* MacroAssembler::PopHandleScopeHelper(Register saved,
Register scratch,
bool gc_allowed) {
Object* result = NULL;
ExternalReference extensions_address =
ExternalReference::handle_scope_extensions_address();
Label write_back;
mov(scratch, Operand::StaticVariable(extensions_address));
cmp(Operand(scratch), Immediate(0));
j(equal, &write_back);
// Calling a runtime function messes with registers so we save and
// restore any one we're asked not to change
if (saved.is_valid()) push(saved);
if (gc_allowed) {
CallRuntime(Runtime::kDeleteHandleScopeExtensions, 0);
} else {
result = TryCallRuntime(Runtime::kDeleteHandleScopeExtensions, 0);
if (result->IsFailure()) return result;
}
if (saved.is_valid()) pop(saved);
bind(&write_back);
ExternalReference limit_address =
ExternalReference::handle_scope_limit_address();
pop(Operand::StaticVariable(limit_address));
ExternalReference next_address =
ExternalReference::handle_scope_next_address();
pop(Operand::StaticVariable(next_address));
pop(scratch);
shr(scratch, kSmiTagSize);
mov(Operand::StaticVariable(extensions_address), scratch);
return result;
}
void MacroAssembler::PopHandleScope(Register saved, Register scratch) {
PopHandleScopeHelper(saved, scratch, true);
}
Object* MacroAssembler::TryPopHandleScope(Register saved, Register scratch) {
return PopHandleScopeHelper(saved, scratch, false);
}
void MacroAssembler::JumpToRuntime(const ExternalReference& ext) {
// Set the entry point and jump to the C entry runtime stub.
mov(ebx, Immediate(ext));
CEntryStub ces(1);
jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
const Operand& code_operand,
Label* done,
InvokeFlag flag) {
bool definitely_matches = false;
Label invoke;
if (expected.is_immediate()) {
ASSERT(actual.is_immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
mov(eax, actual.immediate());
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
mov(ebx, expected.immediate());
}
}
} else {
if (actual.is_immediate()) {
// Expected is in register, actual is immediate. This is the
// case when we invoke function values without going through the
// IC mechanism.
cmp(expected.reg(), actual.immediate());
j(equal, &invoke);
ASSERT(expected.reg().is(ebx));
mov(eax, actual.immediate());
} else if (!expected.reg().is(actual.reg())) {
// Both expected and actual are in (different) registers. This
// is the case when we invoke functions using call and apply.
cmp(expected.reg(), Operand(actual.reg()));
j(equal, &invoke);
ASSERT(actual.reg().is(eax));
ASSERT(expected.reg().is(ebx));
}
}
if (!definitely_matches) {
Handle<Code> adaptor =
Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
if (!code_constant.is_null()) {
mov(edx, Immediate(code_constant));
add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag));
} else if (!code_operand.is_reg(edx)) {
mov(edx, code_operand);
}
if (flag == CALL_FUNCTION) {
call(adaptor, RelocInfo::CODE_TARGET);
jmp(done);
} else {
jmp(adaptor, RelocInfo::CODE_TARGET);
}
bind(&invoke);
}
}
void MacroAssembler::InvokeCode(const Operand& code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag) {
Label done;
InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag);
if (flag == CALL_FUNCTION) {
call(code);
} else {
ASSERT(flag == JUMP_FUNCTION);
jmp(code);
}
bind(&done);
}
void MacroAssembler::InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag) {
Label done;
Operand dummy(eax);
InvokePrologue(expected, actual, code, dummy, &done, flag);
if (flag == CALL_FUNCTION) {
call(code, rmode);
} else {
ASSERT(flag == JUMP_FUNCTION);
jmp(code, rmode);
}
bind(&done);
}
void MacroAssembler::InvokeFunction(Register fun,
const ParameterCount& actual,
InvokeFlag flag) {
ASSERT(fun.is(edi));
mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset));
lea(edx, FieldOperand(edx, Code::kHeaderSize));
ParameterCount expected(ebx);
InvokeCode(Operand(edx), expected, actual, flag);
}
void MacroAssembler::InvokeFunction(JSFunction* function,
const ParameterCount& actual,
InvokeFlag flag) {
ASSERT(function->is_compiled());
// Get the function and setup the context.
mov(edi, Immediate(Handle<JSFunction>(function)));
mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Invoke the cached code.
Handle<Code> code(function->code());
ParameterCount expected(function->shared()->formal_parameter_count());
InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag);
}
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag) {
// Calls are not allowed in some stubs.
ASSERT(flag == JUMP_FUNCTION || allow_stub_calls());
// Rely on the assertion to check that the number of provided
// arguments match the expected number of arguments. Fake a
// parameter count to avoid emitting code to do the check.
ParameterCount expected(0);
GetBuiltinEntry(edx, id);
InvokeCode(Operand(edx), expected, expected, flag);
}
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
// Load the JavaScript builtin function from the builtins object.
mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
mov(edi, FieldOperand(edi, GlobalObject::kBuiltinsOffset));
int builtins_offset =
JSBuiltinsObject::kJSBuiltinsOffset + (id * kPointerSize);
mov(edi, FieldOperand(edi, builtins_offset));
// Load the code entry point from the function into the target register.
mov(target, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
mov(target, FieldOperand(target, SharedFunctionInfo::kCodeOffset));
add(Operand(target), Immediate(Code::kHeaderSize - kHeapObjectTag));
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
mov(dst, Operand(esi, Context::SlotOffset(Context::CLOSURE_INDEX)));
// Load the function context (which is the incoming, outer context).
mov(dst, FieldOperand(dst, JSFunction::kContextOffset));
for (int i = 1; i < context_chain_length; i++) {
mov(dst, Operand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
mov(dst, FieldOperand(dst, JSFunction::kContextOffset));
}
// The context may be an intermediate context, not a function context.
mov(dst, Operand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
} else { // Slot is in the current function context.
// The context may be an intermediate context, not a function context.
mov(dst, Operand(esi, Context::SlotOffset(Context::FCONTEXT_INDEX)));
}
}
void MacroAssembler::Ret() {
ret(0);
}
void MacroAssembler::Drop(int stack_elements) {
if (stack_elements > 0) {
add(Operand(esp), Immediate(stack_elements * kPointerSize));
}
}
void MacroAssembler::Move(Register dst, Handle<Object> value) {
mov(dst, value);
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
if (FLAG_native_code_counters && counter->Enabled()) {
mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Operand operand = Operand::StaticVariable(ExternalReference(counter));
if (value == 1) {
inc(operand);
} else {
add(operand, Immediate(value));
}
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Operand operand = Operand::StaticVariable(ExternalReference(counter));
if (value == 1) {
dec(operand);
} else {
sub(operand, Immediate(value));
}
}
}
void MacroAssembler::IncrementCounter(Condition cc,
StatsCounter* counter,
int value) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Label skip;
j(NegateCondition(cc), &skip);
pushfd();
IncrementCounter(counter, value);
popfd();
bind(&skip);
}
}
void MacroAssembler::DecrementCounter(Condition cc,
StatsCounter* counter,
int value) {
ASSERT(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Label skip;
j(NegateCondition(cc), &skip);
pushfd();
DecrementCounter(counter, value);
popfd();
bind(&skip);
}
}
void MacroAssembler::Assert(Condition cc, const char* msg) {
if (FLAG_debug_code) Check(cc, msg);
}
void MacroAssembler::Check(Condition cc, const char* msg) {
Label L;
j(cc, &L, taken);
Abort(msg);
// will not return here
bind(&L);
}
void MacroAssembler::Abort(const char* msg) {
// We want to pass the msg string like a smi to avoid GC
// problems, however msg is not guaranteed to be aligned
// properly. Instead, we pass an aligned pointer that is
// a proper v8 smi, but also pass the alignment difference
// from the real pointer as a smi.
intptr_t p1 = reinterpret_cast<intptr_t>(msg);
intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
#ifdef DEBUG
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
#endif
// Disable stub call restrictions to always allow calls to abort.
set_allow_stub_calls(true);
push(eax);
push(Immediate(p0));
push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0))));
CallRuntime(Runtime::kAbort, 2);
// will not return here
int3();
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
Register instance_type,
Register scratch,
Label *failure) {
if (!scratch.is(instance_type)) {
mov(scratch, instance_type);
}
and_(scratch,
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
cmp(scratch, kStringTag | kSeqStringTag | kAsciiStringTag);
j(not_equal, failure);
}
void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1,
Register object2,
Register scratch1,
Register scratch2,
Label* failure) {
// Check that both objects are not smis.
ASSERT_EQ(0, kSmiTag);
mov(scratch1, Operand(object1));
and_(scratch1, Operand(object2));
test(scratch1, Immediate(kSmiTagMask));
j(zero, failure);
// Load instance type for both strings.
mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
// Check that both are flat ascii strings.
const int kFlatAsciiStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
// Interleave bits from both instance types and compare them in one check.
ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
and_(scratch1, kFlatAsciiStringMask);
and_(scratch2, kFlatAsciiStringMask);
lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3));
j(not_equal, failure);
}
CodePatcher::CodePatcher(byte* address, int size)
: address_(address), size_(size), masm_(address, size + Assembler::kGap) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
CPU::FlushICache(address_, size_);
// Check that the code was patched as expected.
ASSERT(masm_.pc_ == address_ + size_);
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
} } // namespace v8::internal