1ab7f2f840
Port cfbd25617c
Original commit message:
Preparing the young generation for (real) non-contiguous backing memory, this
change removes object masks that are used to compute containment in semi and new
space. The masks are replaced by lookups for object tags and page headers, where
possible.
Details:
- Use the fast checks (page header lookups) for containment in regular code.
- Use the slow version that masks out the page start adress and iterates all
pages of a space for debugging/verification.
- The slow version works for off-heap/unmapped memory.
- Encapsulate all checks for the old->new barrier in Heap::RecordWrite().
R=mlippautz@chromium.org, joransiu@ca.ibm.com, jyan@ca.ibm.com, michael_dawson@ca.ibm.com
BUG=chromium:581412
LOG=N
Review URL: https://codereview.chromium.org/1687113002
Cr-Commit-Position: refs/heads/master@{#33877}
1617 lines
67 KiB
C++
1617 lines
67 KiB
C++
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_PPC_MACRO_ASSEMBLER_PPC_H_
|
|
#define V8_PPC_MACRO_ASSEMBLER_PPC_H_
|
|
|
|
#include "src/assembler.h"
|
|
#include "src/bailout-reason.h"
|
|
#include "src/frames.h"
|
|
#include "src/globals.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// Give alias names to registers for calling conventions.
|
|
const Register kReturnRegister0 = {Register::kCode_r3};
|
|
const Register kReturnRegister1 = {Register::kCode_r4};
|
|
const Register kReturnRegister2 = {Register::kCode_r5};
|
|
const Register kJSFunctionRegister = {Register::kCode_r4};
|
|
const Register kContextRegister = {Register::kCode_r30};
|
|
const Register kInterpreterAccumulatorRegister = {Register::kCode_r3};
|
|
const Register kInterpreterRegisterFileRegister = {Register::kCode_r14};
|
|
const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r15};
|
|
const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r16};
|
|
const Register kInterpreterDispatchTableRegister = {Register::kCode_r17};
|
|
const Register kJavaScriptCallArgCountRegister = {Register::kCode_r3};
|
|
const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r6};
|
|
const Register kRuntimeCallFunctionRegister = {Register::kCode_r4};
|
|
const Register kRuntimeCallArgCountRegister = {Register::kCode_r3};
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Static helper functions
|
|
|
|
// Generate a MemOperand for loading a field from an object.
|
|
inline MemOperand FieldMemOperand(Register object, int offset) {
|
|
return MemOperand(object, offset - kHeapObjectTag);
|
|
}
|
|
|
|
|
|
// Flags used for AllocateHeapNumber
|
|
enum TaggingMode {
|
|
// Tag the result.
|
|
TAG_RESULT,
|
|
// Don't tag
|
|
DONT_TAG_RESULT
|
|
};
|
|
|
|
|
|
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
|
|
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
|
|
enum PointersToHereCheck {
|
|
kPointersToHereMaybeInteresting,
|
|
kPointersToHereAreAlwaysInteresting
|
|
};
|
|
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
|
|
|
|
|
|
Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
|
|
Register reg3 = no_reg,
|
|
Register reg4 = no_reg,
|
|
Register reg5 = no_reg,
|
|
Register reg6 = no_reg);
|
|
|
|
|
|
#ifdef DEBUG
|
|
bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
|
|
Register reg4 = no_reg, Register reg5 = no_reg,
|
|
Register reg6 = no_reg, Register reg7 = no_reg,
|
|
Register reg8 = no_reg, Register reg9 = no_reg,
|
|
Register reg10 = no_reg);
|
|
#endif
|
|
|
|
// These exist to provide portability between 32 and 64bit
|
|
#if V8_TARGET_ARCH_PPC64
|
|
#define LoadPU ldu
|
|
#define LoadPX ldx
|
|
#define LoadPUX ldux
|
|
#define StorePU stdu
|
|
#define StorePX stdx
|
|
#define StorePUX stdux
|
|
#define ShiftLeftImm sldi
|
|
#define ShiftRightImm srdi
|
|
#define ClearLeftImm clrldi
|
|
#define ClearRightImm clrrdi
|
|
#define ShiftRightArithImm sradi
|
|
#define ShiftLeft_ sld
|
|
#define ShiftRight_ srd
|
|
#define ShiftRightArith srad
|
|
#define Mul mulld
|
|
#define Div divd
|
|
#else
|
|
#define LoadPU lwzu
|
|
#define LoadPX lwzx
|
|
#define LoadPUX lwzux
|
|
#define StorePU stwu
|
|
#define StorePX stwx
|
|
#define StorePUX stwux
|
|
#define ShiftLeftImm slwi
|
|
#define ShiftRightImm srwi
|
|
#define ClearLeftImm clrlwi
|
|
#define ClearRightImm clrrwi
|
|
#define ShiftRightArithImm srawi
|
|
#define ShiftLeft_ slw
|
|
#define ShiftRight_ srw
|
|
#define ShiftRightArith sraw
|
|
#define Mul mullw
|
|
#define Div divw
|
|
#endif
|
|
|
|
|
|
// MacroAssembler implements a collection of frequently used macros.
|
|
class MacroAssembler : public Assembler {
|
|
public:
|
|
MacroAssembler(Isolate* isolate, void* buffer, int size,
|
|
CodeObjectRequired create_code_object);
|
|
|
|
|
|
// Returns the size of a call in instructions. Note, the value returned is
|
|
// only valid as long as no entries are added to the constant pool between
|
|
// checking the call size and emitting the actual call.
|
|
static int CallSize(Register target);
|
|
int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
|
|
static int CallSizeNotPredictableCodeSize(Address target,
|
|
RelocInfo::Mode rmode,
|
|
Condition cond = al);
|
|
|
|
// Jump, Call, and Ret pseudo instructions implementing inter-working.
|
|
void Jump(Register target);
|
|
void JumpToJSEntry(Register target);
|
|
void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
|
|
CRegister cr = cr7);
|
|
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
|
|
void Call(Register target);
|
|
void CallJSEntry(Register target);
|
|
void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
|
|
int CallSize(Handle<Code> code,
|
|
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
|
TypeFeedbackId ast_id = TypeFeedbackId::None(),
|
|
Condition cond = al);
|
|
void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
|
|
TypeFeedbackId ast_id = TypeFeedbackId::None(),
|
|
Condition cond = al);
|
|
void Ret() { blr(); }
|
|
void Ret(Condition cond, CRegister cr = cr7) { bclr(cond, cr); }
|
|
|
|
// Emit code to discard a non-negative number of pointer-sized elements
|
|
// from the stack, clobbering only the sp register.
|
|
void Drop(int count);
|
|
void Drop(Register count, Register scratch = r0);
|
|
|
|
void Ret(int drop) {
|
|
Drop(drop);
|
|
blr();
|
|
}
|
|
|
|
void Call(Label* target);
|
|
|
|
// Emit call to the code we are currently generating.
|
|
void CallSelf() {
|
|
Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
|
|
Call(self, RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
// Register move. May do nothing if the registers are identical.
|
|
void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
|
|
void Move(Register dst, Handle<Object> value);
|
|
void Move(Register dst, Register src, Condition cond = al);
|
|
void Move(DoubleRegister dst, DoubleRegister src);
|
|
|
|
void MultiPush(RegList regs, Register location = sp);
|
|
void MultiPop(RegList regs, Register location = sp);
|
|
|
|
void MultiPushDoubles(RegList dregs, Register location = sp);
|
|
void MultiPopDoubles(RegList dregs, Register location = sp);
|
|
|
|
// Load an object from the root table.
|
|
void LoadRoot(Register destination, Heap::RootListIndex index,
|
|
Condition cond = al);
|
|
// Store an object to the root table.
|
|
void StoreRoot(Register source, Heap::RootListIndex index,
|
|
Condition cond = al);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// GC Support
|
|
|
|
void IncrementalMarkingRecordWriteHelper(Register object, Register value,
|
|
Register address);
|
|
|
|
enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
|
|
|
|
// Record in the remembered set the fact that we have a pointer to new space
|
|
// at the address pointed to by the addr register. Only works if addr is not
|
|
// in new space.
|
|
void RememberedSetHelper(Register object, // Used for debug code.
|
|
Register addr, Register scratch,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetFinalAction and_then);
|
|
|
|
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
|
|
Label* condition_met);
|
|
|
|
// Check if object is in new space. Jumps if the object is not in new space.
|
|
// The register scratch can be object itself, but scratch will be clobbered.
|
|
void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
|
|
InNewSpace(object, scratch, eq, branch);
|
|
}
|
|
|
|
// Check if object is in new space. Jumps if the object is in new space.
|
|
// The register scratch can be object itself, but it will be clobbered.
|
|
void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
|
|
InNewSpace(object, scratch, ne, branch);
|
|
}
|
|
|
|
// Check if an object has a given incremental marking color.
|
|
void HasColor(Register object, Register scratch0, Register scratch1,
|
|
Label* has_color, int first_bit, int second_bit);
|
|
|
|
void JumpIfBlack(Register object, Register scratch0, Register scratch1,
|
|
Label* on_black);
|
|
|
|
// Checks the color of an object. If the object is white we jump to the
|
|
// incremental marker.
|
|
void JumpIfWhite(Register value, Register scratch1, Register scratch2,
|
|
Register scratch3, Label* value_is_white);
|
|
|
|
// Notify the garbage collector that we wrote a pointer into an object.
|
|
// |object| is the object being stored into, |value| is the object being
|
|
// stored. value and scratch registers are clobbered by the operation.
|
|
// The offset is the offset from the start of the object, not the offset from
|
|
// the tagged HeapObject pointer. For use with FieldMemOperand(reg, off).
|
|
void RecordWriteField(
|
|
Register object, int offset, Register value, Register scratch,
|
|
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
|
SmiCheck smi_check = INLINE_SMI_CHECK,
|
|
PointersToHereCheck pointers_to_here_check_for_value =
|
|
kPointersToHereMaybeInteresting);
|
|
|
|
// As above, but the offset has the tag presubtracted. For use with
|
|
// MemOperand(reg, off).
|
|
inline void RecordWriteContextSlot(
|
|
Register context, int offset, Register value, Register scratch,
|
|
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
|
SmiCheck smi_check = INLINE_SMI_CHECK,
|
|
PointersToHereCheck pointers_to_here_check_for_value =
|
|
kPointersToHereMaybeInteresting) {
|
|
RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
|
|
lr_status, save_fp, remembered_set_action, smi_check,
|
|
pointers_to_here_check_for_value);
|
|
}
|
|
|
|
// Notify the garbage collector that we wrote a code entry into a
|
|
// JSFunction. Only scratch is clobbered by the operation.
|
|
void RecordWriteCodeEntryField(Register js_function, Register code_entry,
|
|
Register scratch);
|
|
|
|
void RecordWriteForMap(Register object, Register map, Register dst,
|
|
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);
|
|
|
|
// For a given |object| notify the garbage collector that the slot |address|
|
|
// has been written. |value| is the object being stored. The value and
|
|
// address registers are clobbered by the operation.
|
|
void RecordWrite(
|
|
Register object, Register address, Register value,
|
|
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
|
|
SmiCheck smi_check = INLINE_SMI_CHECK,
|
|
PointersToHereCheck pointers_to_here_check_for_value =
|
|
kPointersToHereMaybeInteresting);
|
|
|
|
void Push(Register src) { push(src); }
|
|
|
|
// Push a handle.
|
|
void Push(Handle<Object> handle);
|
|
void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
|
|
|
|
// Push two registers. Pushes leftmost register first (to highest address).
|
|
void Push(Register src1, Register src2) {
|
|
StorePU(src2, MemOperand(sp, -2 * kPointerSize));
|
|
StoreP(src1, MemOperand(sp, kPointerSize));
|
|
}
|
|
|
|
// Push three registers. Pushes leftmost register first (to highest address).
|
|
void Push(Register src1, Register src2, Register src3) {
|
|
StorePU(src3, MemOperand(sp, -3 * kPointerSize));
|
|
StoreP(src2, MemOperand(sp, kPointerSize));
|
|
StoreP(src1, MemOperand(sp, 2 * kPointerSize));
|
|
}
|
|
|
|
// Push four registers. Pushes leftmost register first (to highest address).
|
|
void Push(Register src1, Register src2, Register src3, Register src4) {
|
|
StorePU(src4, MemOperand(sp, -4 * kPointerSize));
|
|
StoreP(src3, MemOperand(sp, kPointerSize));
|
|
StoreP(src2, MemOperand(sp, 2 * kPointerSize));
|
|
StoreP(src1, MemOperand(sp, 3 * kPointerSize));
|
|
}
|
|
|
|
// Push five registers. Pushes leftmost register first (to highest address).
|
|
void Push(Register src1, Register src2, Register src3, Register src4,
|
|
Register src5) {
|
|
StorePU(src5, MemOperand(sp, -5 * kPointerSize));
|
|
StoreP(src4, MemOperand(sp, kPointerSize));
|
|
StoreP(src3, MemOperand(sp, 2 * kPointerSize));
|
|
StoreP(src2, MemOperand(sp, 3 * kPointerSize));
|
|
StoreP(src1, MemOperand(sp, 4 * kPointerSize));
|
|
}
|
|
|
|
void Pop(Register dst) { pop(dst); }
|
|
|
|
// Pop two registers. Pops rightmost register first (from lower address).
|
|
void Pop(Register src1, Register src2) {
|
|
LoadP(src2, MemOperand(sp, 0));
|
|
LoadP(src1, MemOperand(sp, kPointerSize));
|
|
addi(sp, sp, Operand(2 * kPointerSize));
|
|
}
|
|
|
|
// Pop three registers. Pops rightmost register first (from lower address).
|
|
void Pop(Register src1, Register src2, Register src3) {
|
|
LoadP(src3, MemOperand(sp, 0));
|
|
LoadP(src2, MemOperand(sp, kPointerSize));
|
|
LoadP(src1, MemOperand(sp, 2 * kPointerSize));
|
|
addi(sp, sp, Operand(3 * kPointerSize));
|
|
}
|
|
|
|
// Pop four registers. Pops rightmost register first (from lower address).
|
|
void Pop(Register src1, Register src2, Register src3, Register src4) {
|
|
LoadP(src4, MemOperand(sp, 0));
|
|
LoadP(src3, MemOperand(sp, kPointerSize));
|
|
LoadP(src2, MemOperand(sp, 2 * kPointerSize));
|
|
LoadP(src1, MemOperand(sp, 3 * kPointerSize));
|
|
addi(sp, sp, Operand(4 * kPointerSize));
|
|
}
|
|
|
|
// Pop five registers. Pops rightmost register first (from lower address).
|
|
void Pop(Register src1, Register src2, Register src3, Register src4,
|
|
Register src5) {
|
|
LoadP(src5, MemOperand(sp, 0));
|
|
LoadP(src4, MemOperand(sp, kPointerSize));
|
|
LoadP(src3, MemOperand(sp, 2 * kPointerSize));
|
|
LoadP(src2, MemOperand(sp, 3 * kPointerSize));
|
|
LoadP(src1, MemOperand(sp, 4 * kPointerSize));
|
|
addi(sp, sp, Operand(5 * kPointerSize));
|
|
}
|
|
|
|
// Push a fixed frame, consisting of lr, fp, context and
|
|
// JS function / marker id if marker_reg is a valid register.
|
|
void PushFixedFrame(Register marker_reg = no_reg);
|
|
void PopFixedFrame(Register marker_reg = no_reg);
|
|
|
|
// Restore caller's frame pointer and return address prior to being
|
|
// overwritten by tail call stack preparation.
|
|
void RestoreFrameStateForTailCall();
|
|
|
|
// Push and pop the registers that can hold pointers, as defined by the
|
|
// RegList constant kSafepointSavedRegisters.
|
|
void PushSafepointRegisters();
|
|
void PopSafepointRegisters();
|
|
// Store value in register src in the safepoint stack slot for
|
|
// register dst.
|
|
void StoreToSafepointRegisterSlot(Register src, Register dst);
|
|
// Load the value of the src register from its safepoint stack slot
|
|
// into register dst.
|
|
void LoadFromSafepointRegisterSlot(Register dst, Register src);
|
|
|
|
// Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
|
|
// from C.
|
|
// Does not handle errors.
|
|
void FlushICache(Register address, size_t size, Register scratch);
|
|
|
|
// If the value is a NaN, canonicalize the value else, do nothing.
|
|
void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
|
|
void CanonicalizeNaN(const DoubleRegister value) {
|
|
CanonicalizeNaN(value, value);
|
|
}
|
|
|
|
// Converts the integer (untagged smi) in |src| to a double, storing
|
|
// the result to |dst|
|
|
void ConvertIntToDouble(Register src, DoubleRegister dst);
|
|
|
|
// Converts the unsigned integer (untagged smi) in |src| to
|
|
// a double, storing the result to |dst|
|
|
void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);
|
|
|
|
// Converts the integer (untagged smi) in |src| to
|
|
// a float, storing the result in |dst|
|
|
void ConvertIntToFloat(Register src, DoubleRegister dst);
|
|
|
|
// Converts the unsigned integer (untagged smi) in |src| to
|
|
// a float, storing the result in |dst|
|
|
void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
|
|
void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
|
|
void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
|
|
void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
|
|
#endif
|
|
|
|
// Converts the double_input to an integer. Note that, upon return,
|
|
// the contents of double_dst will also hold the fixed point representation.
|
|
void ConvertDoubleToInt64(const DoubleRegister double_input,
|
|
#if !V8_TARGET_ARCH_PPC64
|
|
const Register dst_hi,
|
|
#endif
|
|
const Register dst, const DoubleRegister double_dst,
|
|
FPRoundingMode rounding_mode = kRoundToZero);
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
// Converts the double_input to an unsigned integer. Note that, upon return,
|
|
// the contents of double_dst will also hold the fixed point representation.
|
|
void ConvertDoubleToUnsignedInt64(
|
|
const DoubleRegister double_input, const Register dst,
|
|
const DoubleRegister double_dst,
|
|
FPRoundingMode rounding_mode = kRoundToZero);
|
|
#endif
|
|
|
|
// Generates function and stub prologue code.
|
|
void StubPrologue(Register base = no_reg, int prologue_offset = 0);
|
|
void Prologue(bool code_pre_aging, Register base, int prologue_offset = 0);
|
|
|
|
// Enter exit frame.
|
|
// stack_space - extra stack space, used for parameters before call to C.
|
|
// At least one slot (for the return address) should be provided.
|
|
void EnterExitFrame(bool save_doubles, int stack_space = 1);
|
|
|
|
// Leave the current exit frame. Expects the return value in r0.
|
|
// Expect the number of values, pushed prior to the exit frame, to
|
|
// remove in a register (or no_reg, if there is nothing to remove).
|
|
void LeaveExitFrame(bool save_doubles, Register argument_count,
|
|
bool restore_context,
|
|
bool argument_count_is_length = false);
|
|
|
|
// Get the actual activation frame alignment for target environment.
|
|
static int ActivationFrameAlignment();
|
|
|
|
void LoadContext(Register dst, int context_chain_length);
|
|
|
|
// Load the global object from the current context.
|
|
void LoadGlobalObject(Register dst) {
|
|
LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
|
|
}
|
|
|
|
// Load the global proxy from the current context.
|
|
void LoadGlobalProxy(Register dst) {
|
|
LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
|
|
}
|
|
|
|
// Conditionally load the cached Array transitioned map of type
|
|
// transitioned_kind from the native context if the map in register
|
|
// map_in_out is the cached Array map in the native context of
|
|
// expected_kind.
|
|
void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
|
|
ElementsKind transitioned_kind,
|
|
Register map_in_out,
|
|
Register scratch,
|
|
Label* no_map_match);
|
|
|
|
void LoadNativeContextSlot(int index, Register dst);
|
|
|
|
// Load the initial map from the global function. The registers
|
|
// function and map can be the same, function is then overwritten.
|
|
void LoadGlobalFunctionInitialMap(Register function, Register map,
|
|
Register scratch);
|
|
|
|
void InitializeRootRegister() {
|
|
ExternalReference roots_array_start =
|
|
ExternalReference::roots_array_start(isolate());
|
|
mov(kRootRegister, Operand(roots_array_start));
|
|
}
|
|
|
|
// ----------------------------------------------------------------
|
|
// new PPC macro-assembler interfaces that are slightly higher level
|
|
// than assembler-ppc and may generate variable length sequences
|
|
|
|
// load a literal signed int value <value> to GPR <dst>
|
|
void LoadIntLiteral(Register dst, int value);
|
|
|
|
// load an SMI value <value> to GPR <dst>
|
|
void LoadSmiLiteral(Register dst, Smi* smi);
|
|
|
|
// load a literal double value <value> to FPR <result>
|
|
void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);
|
|
|
|
void LoadWord(Register dst, const MemOperand& mem, Register scratch);
|
|
void LoadWordArith(Register dst, const MemOperand& mem,
|
|
Register scratch = no_reg);
|
|
void StoreWord(Register src, const MemOperand& mem, Register scratch);
|
|
|
|
void LoadHalfWord(Register dst, const MemOperand& mem, Register scratch);
|
|
void LoadHalfWordArith(Register dst, const MemOperand& mem,
|
|
Register scratch = no_reg);
|
|
void StoreHalfWord(Register src, const MemOperand& mem, Register scratch);
|
|
|
|
void LoadByte(Register dst, const MemOperand& mem, Register scratch);
|
|
void StoreByte(Register src, const MemOperand& mem, Register scratch);
|
|
|
|
void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
|
|
Register scratch = no_reg);
|
|
void StoreRepresentation(Register src, const MemOperand& mem,
|
|
Representation r, Register scratch = no_reg);
|
|
|
|
void LoadDouble(DoubleRegister dst, const MemOperand& mem, Register scratch);
|
|
void StoreDouble(DoubleRegister src, const MemOperand& mem, Register scratch);
|
|
|
|
// Move values between integer and floating point registers.
|
|
void MovIntToDouble(DoubleRegister dst, Register src, Register scratch);
|
|
void MovUnsignedIntToDouble(DoubleRegister dst, Register src,
|
|
Register scratch);
|
|
void MovInt64ToDouble(DoubleRegister dst,
|
|
#if !V8_TARGET_ARCH_PPC64
|
|
Register src_hi,
|
|
#endif
|
|
Register src);
|
|
#if V8_TARGET_ARCH_PPC64
|
|
void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi,
|
|
Register src_lo, Register scratch);
|
|
#endif
|
|
void InsertDoubleLow(DoubleRegister dst, Register src, Register scratch);
|
|
void InsertDoubleHigh(DoubleRegister dst, Register src, Register scratch);
|
|
void MovDoubleLowToInt(Register dst, DoubleRegister src);
|
|
void MovDoubleHighToInt(Register dst, DoubleRegister src);
|
|
void MovDoubleToInt64(
|
|
#if !V8_TARGET_ARCH_PPC64
|
|
Register dst_hi,
|
|
#endif
|
|
Register dst, DoubleRegister src);
|
|
void MovIntToFloat(DoubleRegister dst, Register src);
|
|
void MovFloatToInt(Register dst, DoubleRegister src);
|
|
|
|
void Add(Register dst, Register src, intptr_t value, Register scratch);
|
|
void Cmpi(Register src1, const Operand& src2, Register scratch,
|
|
CRegister cr = cr7);
|
|
void Cmpli(Register src1, const Operand& src2, Register scratch,
|
|
CRegister cr = cr7);
|
|
void Cmpwi(Register src1, const Operand& src2, Register scratch,
|
|
CRegister cr = cr7);
|
|
void Cmplwi(Register src1, const Operand& src2, Register scratch,
|
|
CRegister cr = cr7);
|
|
void And(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
|
|
void Or(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
|
|
void Xor(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
|
|
|
|
void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
|
|
void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
|
|
void CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
|
|
CRegister cr = cr7);
|
|
void CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
|
|
CRegister cr = cr7);
|
|
void AndSmiLiteral(Register dst, Register src, Smi* smi, Register scratch,
|
|
RCBit rc = LeaveRC);
|
|
|
|
// Set new rounding mode RN to FPSCR
|
|
void SetRoundingMode(FPRoundingMode RN);
|
|
|
|
// reset rounding mode to default (kRoundToNearest)
|
|
void ResetRoundingMode();
|
|
|
|
// These exist to provide portability between 32 and 64bit
|
|
void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
|
|
void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// JavaScript invokes
|
|
|
|
// Invoke the JavaScript function code by either calling or jumping.
|
|
void InvokeFunctionCode(Register function, Register new_target,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual, InvokeFlag flag,
|
|
const CallWrapper& call_wrapper);
|
|
|
|
void FloodFunctionIfStepping(Register fun, Register new_target,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual);
|
|
|
|
// Invoke the JavaScript function in the given register. Changes the
|
|
// current context to the context in the function before invoking.
|
|
void InvokeFunction(Register function, Register new_target,
|
|
const ParameterCount& actual, InvokeFlag flag,
|
|
const CallWrapper& call_wrapper);
|
|
|
|
void InvokeFunction(Register function, const ParameterCount& expected,
|
|
const ParameterCount& actual, InvokeFlag flag,
|
|
const CallWrapper& call_wrapper);
|
|
|
|
void InvokeFunction(Handle<JSFunction> function,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual, InvokeFlag flag,
|
|
const CallWrapper& call_wrapper);
|
|
|
|
void IsObjectJSStringType(Register object, Register scratch, Label* fail);
|
|
|
|
void IsObjectNameType(Register object, Register scratch, Label* fail);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Debugger Support
|
|
|
|
void DebugBreak();
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Exception handling
|
|
|
|
// Push a new stack handler and link into stack handler chain.
|
|
void PushStackHandler();
|
|
|
|
// Unlink the stack handler on top of the stack from the stack handler chain.
|
|
// Must preserve the result register.
|
|
void PopStackHandler();
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Inline caching support
|
|
|
|
// Generate code for checking access rights - used for security checks
|
|
// on access to global objects across environments. The holder register
|
|
// is left untouched, whereas both scratch registers are clobbered.
|
|
void CheckAccessGlobalProxy(Register holder_reg, Register scratch,
|
|
Label* miss);
|
|
|
|
void GetNumberHash(Register t0, Register scratch);
|
|
|
|
void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
|
|
Register result, Register t0, Register t1,
|
|
Register t2);
|
|
|
|
|
|
inline void MarkCode(NopMarkerTypes type) { nop(type); }
|
|
|
|
// Check if the given instruction is a 'type' marker.
|
|
// i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
|
|
// These instructions are generated to mark special location in the code,
|
|
// like some special IC code.
|
|
static inline bool IsMarkedCode(Instr instr, int type) {
|
|
DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
|
|
return IsNop(instr, type);
|
|
}
|
|
|
|
|
|
static inline int GetCodeMarker(Instr instr) {
|
|
int dst_reg_offset = 12;
|
|
int dst_mask = 0xf << dst_reg_offset;
|
|
int src_mask = 0xf;
|
|
int dst_reg = (instr & dst_mask) >> dst_reg_offset;
|
|
int src_reg = instr & src_mask;
|
|
uint32_t non_register_mask = ~(dst_mask | src_mask);
|
|
uint32_t mov_mask = al | 13 << 21;
|
|
|
|
// Return <n> if we have a mov rn rn, else return -1.
|
|
int type = ((instr & non_register_mask) == mov_mask) &&
|
|
(dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
|
|
(dst_reg < LAST_CODE_MARKER)
|
|
? src_reg
|
|
: -1;
|
|
DCHECK((type == -1) ||
|
|
((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
|
|
return type;
|
|
}
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Allocation support
|
|
|
|
// Allocate an object in new space or old space. The object_size is
|
|
// specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
|
|
// is passed. If the space is exhausted control continues at the gc_required
|
|
// label. The allocated object is returned in result. If the flag
|
|
// tag_allocated_object is true the result is tagged as as a heap object.
|
|
// All registers are clobbered also when control continues at the gc_required
|
|
// label.
|
|
void Allocate(int object_size, Register result, Register scratch1,
|
|
Register scratch2, Label* gc_required, AllocationFlags flags);
|
|
|
|
void Allocate(Register object_size, Register result, Register result_end,
|
|
Register scratch, Label* gc_required, AllocationFlags flags);
|
|
|
|
void AllocateTwoByteString(Register result, Register length,
|
|
Register scratch1, Register scratch2,
|
|
Register scratch3, Label* gc_required);
|
|
void AllocateOneByteString(Register result, Register length,
|
|
Register scratch1, Register scratch2,
|
|
Register scratch3, Label* gc_required);
|
|
void AllocateTwoByteConsString(Register result, Register length,
|
|
Register scratch1, Register scratch2,
|
|
Label* gc_required);
|
|
void AllocateOneByteConsString(Register result, Register length,
|
|
Register scratch1, Register scratch2,
|
|
Label* gc_required);
|
|
void AllocateTwoByteSlicedString(Register result, Register length,
|
|
Register scratch1, Register scratch2,
|
|
Label* gc_required);
|
|
void AllocateOneByteSlicedString(Register result, Register length,
|
|
Register scratch1, Register scratch2,
|
|
Label* gc_required);
|
|
|
|
// Allocates a heap number or jumps to the gc_required label if the young
|
|
// space is full and a scavenge is needed. All registers are clobbered also
|
|
// when control continues at the gc_required label.
|
|
void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
|
|
Register heap_number_map, Label* gc_required,
|
|
TaggingMode tagging_mode = TAG_RESULT,
|
|
MutableMode mode = IMMUTABLE);
|
|
void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
|
|
Register scratch1, Register scratch2,
|
|
Register heap_number_map,
|
|
Label* gc_required);
|
|
|
|
// Allocate and initialize a JSValue wrapper with the specified {constructor}
|
|
// and {value}.
|
|
void AllocateJSValue(Register result, Register constructor, Register value,
|
|
Register scratch1, Register scratch2,
|
|
Label* gc_required);
|
|
|
|
// Copies a number of bytes from src to dst. All registers are clobbered. On
|
|
// exit src and dst will point to the place just after where the last byte was
|
|
// read or written and length will be zero.
|
|
void CopyBytes(Register src, Register dst, Register length, Register scratch);
|
|
|
|
// Initialize fields with filler values. |count| fields starting at
|
|
// |current_address| are overwritten with the value in |filler|. At the end
|
|
// the loop, |current_address| points at the next uninitialized field.
|
|
// |count| is assumed to be non-zero.
|
|
void InitializeNFieldsWithFiller(Register current_address, Register count,
|
|
Register filler);
|
|
|
|
// Initialize fields with filler values. Fields starting at |current_address|
|
|
// not including |end_address| are overwritten with the value in |filler|. At
|
|
// the end the loop, |current_address| takes the value of |end_address|.
|
|
void InitializeFieldsWithFiller(Register current_address,
|
|
Register end_address, Register filler);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Support functions.
|
|
|
|
// Machine code version of Map::GetConstructor().
|
|
// |temp| holds |result|'s map when done, and |temp2| its instance type.
|
|
void GetMapConstructor(Register result, Register map, Register temp,
|
|
Register temp2);
|
|
|
|
// Try to get function prototype of a function and puts the value in
|
|
// the result register. Checks that the function really is a
|
|
// function and jumps to the miss label if the fast checks fail. The
|
|
// function register will be untouched; the other registers may be
|
|
// clobbered.
|
|
void TryGetFunctionPrototype(Register function, Register result,
|
|
Register scratch, Label* miss);
|
|
|
|
// Compare object type for heap object. heap_object contains a non-Smi
|
|
// whose object type should be compared with the given type. This both
|
|
// sets the flags and leaves the object type in the type_reg register.
|
|
// It leaves the map in the map register (unless the type_reg and map register
|
|
// are the same register). It leaves the heap object in the heap_object
|
|
// register unless the heap_object register is the same register as one of the
|
|
// other registers.
|
|
// Type_reg can be no_reg. In that case ip is used.
|
|
void CompareObjectType(Register heap_object, Register map, Register type_reg,
|
|
InstanceType type);
|
|
|
|
// Compare instance type in a map. map contains a valid map object whose
|
|
// object type should be compared with the given type. This both
|
|
// sets the flags and leaves the object type in the type_reg register.
|
|
void CompareInstanceType(Register map, Register type_reg, InstanceType type);
|
|
|
|
|
|
// Check if a map for a JSObject indicates that the object has fast elements.
|
|
// Jump to the specified label if it does not.
|
|
void CheckFastElements(Register map, Register scratch, Label* fail);
|
|
|
|
// Check if a map for a JSObject indicates that the object can have both smi
|
|
// and HeapObject elements. Jump to the specified label if it does not.
|
|
void CheckFastObjectElements(Register map, Register scratch, Label* fail);
|
|
|
|
// Check if a map for a JSObject indicates that the object has fast smi only
|
|
// elements. Jump to the specified label if it does not.
|
|
void CheckFastSmiElements(Register map, Register scratch, Label* fail);
|
|
|
|
// Check to see if maybe_number can be stored as a double in
|
|
// FastDoubleElements. If it can, store it at the index specified by key in
|
|
// the FastDoubleElements array elements. Otherwise jump to fail.
|
|
void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
|
|
Register elements_reg, Register scratch1,
|
|
DoubleRegister double_scratch, Label* fail,
|
|
int elements_offset = 0);
|
|
|
|
// Compare an object's map with the specified map and its transitioned
|
|
// elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
|
|
// set with result of map compare. If multiple map compares are required, the
|
|
// compare sequences branches to early_success.
|
|
void CompareMap(Register obj, Register scratch, Handle<Map> map,
|
|
Label* early_success);
|
|
|
|
// As above, but the map of the object is already loaded into the register
|
|
// which is preserved by the code generated.
|
|
void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);
|
|
|
|
// Check if the map of an object is equal to a specified map and branch to
|
|
// label if not. Skip the smi check if not required (object is known to be a
|
|
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
|
|
// against maps that are ElementsKind transition maps of the specified map.
|
|
void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
|
|
SmiCheckType smi_check_type);
|
|
|
|
|
|
void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
|
|
Label* fail, SmiCheckType smi_check_type);
|
|
|
|
|
|
// Check if the map of an object is equal to a specified weak map and branch
|
|
// to a specified target if equal. Skip the smi check if not required
|
|
// (object is known to be a heap object)
|
|
void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
|
|
Handle<WeakCell> cell, Handle<Code> success,
|
|
SmiCheckType smi_check_type);
|
|
|
|
// Compare the given value and the value of weak cell.
|
|
void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
|
|
CRegister cr = cr7);
|
|
|
|
void GetWeakValue(Register value, Handle<WeakCell> cell);
|
|
|
|
// Load the value of the weak cell in the value register. Branch to the given
|
|
// miss label if the weak cell was cleared.
|
|
void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
|
|
|
|
// Compare the object in a register to a value from the root list.
|
|
// Uses the ip register as scratch.
|
|
void CompareRoot(Register obj, Heap::RootListIndex index);
|
|
void PushRoot(Heap::RootListIndex index) {
|
|
LoadRoot(r0, index);
|
|
Push(r0);
|
|
}
|
|
|
|
// Compare the object in a register to a value and jump if they are equal.
|
|
void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
|
|
CompareRoot(with, index);
|
|
beq(if_equal);
|
|
}
|
|
|
|
// Compare the object in a register to a value and jump if they are not equal.
|
|
void JumpIfNotRoot(Register with, Heap::RootListIndex index,
|
|
Label* if_not_equal) {
|
|
CompareRoot(with, index);
|
|
bne(if_not_equal);
|
|
}
|
|
|
|
// Load and check the instance type of an object for being a string.
|
|
// Loads the type into the second argument register.
|
|
// Returns a condition that will be enabled if the object was a string.
|
|
Condition IsObjectStringType(Register obj, Register type) {
|
|
LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
|
|
lbz(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
|
|
andi(r0, type, Operand(kIsNotStringMask));
|
|
DCHECK_EQ(0u, kStringTag);
|
|
return eq;
|
|
}
|
|
|
|
|
|
// Picks out an array index from the hash field.
|
|
// Register use:
|
|
// hash - holds the index's hash. Clobbered.
|
|
// index - holds the overwritten index on exit.
|
|
void IndexFromHash(Register hash, Register index);
|
|
|
|
// Get the number of least significant bits from a register
|
|
void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
|
|
void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
|
|
|
|
// Load the value of a smi object into a double register.
|
|
void SmiToDouble(DoubleRegister value, Register smi);
|
|
|
|
// Check if a double can be exactly represented as a signed 32-bit integer.
|
|
// CR_EQ in cr7 is set if true.
|
|
void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
|
|
Register scratch2, DoubleRegister double_scratch);
|
|
|
|
// Check if a double is equal to -0.0.
|
|
// CR_EQ in cr7 holds the result.
|
|
void TestDoubleIsMinusZero(DoubleRegister input, Register scratch1,
|
|
Register scratch2);
|
|
|
|
// Check the sign of a double.
|
|
// CR_LT in cr7 holds the result.
|
|
void TestDoubleSign(DoubleRegister input, Register scratch);
|
|
void TestHeapNumberSign(Register input, Register scratch);
|
|
|
|
// Try to convert a double to a signed 32-bit integer.
|
|
// CR_EQ in cr7 is set and result assigned if the conversion is exact.
|
|
void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
|
|
Register scratch, DoubleRegister double_scratch);
|
|
|
|
// Floor a double and writes the value to the result register.
|
|
// Go to exact if the conversion is exact (to be able to test -0),
|
|
// fall through calling code if an overflow occurred, else go to done.
|
|
// In return, input_high is loaded with high bits of input.
|
|
void TryInt32Floor(Register result, DoubleRegister double_input,
|
|
Register input_high, Register scratch,
|
|
DoubleRegister double_scratch, Label* done, Label* exact);
|
|
|
|
// Performs a truncating conversion of a floating point number as used by
|
|
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
|
|
// succeeds, otherwise falls through if result is saturated. On return
|
|
// 'result' either holds answer, or is clobbered on fall through.
|
|
//
|
|
// Only public for the test code in test-code-stubs-arm.cc.
|
|
void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
|
|
Label* done);
|
|
|
|
// Performs a truncating conversion of a floating point number as used by
|
|
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
|
|
// Exits with 'result' holding the answer.
|
|
void TruncateDoubleToI(Register result, DoubleRegister double_input);
|
|
|
|
// Performs a truncating conversion of a heap number as used by
|
|
// the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
|
|
// must be different registers. Exits with 'result' holding the answer.
|
|
void TruncateHeapNumberToI(Register result, Register object);
|
|
|
|
// Converts the smi or heap number in object to an int32 using the rules
|
|
// for ToInt32 as described in ECMAScript 9.5.: the value is truncated
|
|
// and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
|
|
// different registers.
|
|
void TruncateNumberToI(Register object, Register result,
|
|
Register heap_number_map, Register scratch1,
|
|
Label* not_int32);
|
|
|
|
// Overflow handling functions.
|
|
// Usage: call the appropriate arithmetic function and then call one of the
|
|
// flow control functions with the corresponding label.
|
|
|
|
// Compute dst = left + right, setting condition codes. dst may be same as
|
|
// either left or right (or a unique register). left and right must not be
|
|
// the same register.
|
|
void AddAndCheckForOverflow(Register dst, Register left, Register right,
|
|
Register overflow_dst, Register scratch = r0);
|
|
void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
|
|
Register overflow_dst, Register scratch = r0);
|
|
|
|
// Compute dst = left - right, setting condition codes. dst may be same as
|
|
// either left or right (or a unique register). left and right must not be
|
|
// the same register.
|
|
void SubAndCheckForOverflow(Register dst, Register left, Register right,
|
|
Register overflow_dst, Register scratch = r0);
|
|
|
|
void BranchOnOverflow(Label* label) { blt(label, cr0); }
|
|
|
|
void BranchOnNoOverflow(Label* label) { bge(label, cr0); }
|
|
|
|
void RetOnOverflow(void) { Ret(lt, cr0); }
|
|
|
|
void RetOnNoOverflow(void) { Ret(ge, cr0); }
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Runtime calls
|
|
|
|
// Call a code stub.
|
|
void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
|
|
Condition cond = al);
|
|
|
|
// Call a code stub.
|
|
void TailCallStub(CodeStub* stub, Condition cond = al);
|
|
|
|
// Call a runtime routine.
|
|
void CallRuntime(const Runtime::Function* f, int num_arguments,
|
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
|
|
void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
|
|
const Runtime::Function* function = Runtime::FunctionForId(fid);
|
|
CallRuntime(function, function->nargs, kSaveFPRegs);
|
|
}
|
|
|
|
// Convenience function: Same as above, but takes the fid instead.
|
|
void CallRuntime(Runtime::FunctionId fid,
|
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
|
|
const Runtime::Function* function = Runtime::FunctionForId(fid);
|
|
CallRuntime(function, function->nargs, save_doubles);
|
|
}
|
|
|
|
// Convenience function: Same as above, but takes the fid instead.
|
|
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
|
|
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
|
|
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
|
|
}
|
|
|
|
// Convenience function: call an external reference.
|
|
void CallExternalReference(const ExternalReference& ext, int num_arguments);
|
|
|
|
// Convenience function: tail call a runtime routine (jump).
|
|
void TailCallRuntime(Runtime::FunctionId fid);
|
|
|
|
int CalculateStackPassedWords(int num_reg_arguments,
|
|
int num_double_arguments);
|
|
|
|
// Before calling a C-function from generated code, align arguments on stack.
|
|
// After aligning the frame, non-register arguments must be stored in
|
|
// sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
|
|
// are word sized. If double arguments are used, this function assumes that
|
|
// all double arguments are stored before core registers; otherwise the
|
|
// correct alignment of the double values is not guaranteed.
|
|
// Some compilers/platforms require the stack to be aligned when calling
|
|
// C++ code.
|
|
// Needs a scratch register to do some arithmetic. This register will be
|
|
// trashed.
|
|
void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
|
|
Register scratch);
|
|
void PrepareCallCFunction(int num_reg_arguments, Register scratch);
|
|
|
|
// There are two ways of passing double arguments on ARM, depending on
|
|
// whether soft or hard floating point ABI is used. These functions
|
|
// abstract parameter passing for the three different ways we call
|
|
// C functions from generated code.
|
|
void MovToFloatParameter(DoubleRegister src);
|
|
void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
|
|
void MovToFloatResult(DoubleRegister src);
|
|
|
|
// Calls a C function and cleans up the space for arguments allocated
|
|
// by PrepareCallCFunction. The called function is not allowed to trigger a
|
|
// garbage collection, since that might move the code and invalidate the
|
|
// return address (unless this is somehow accounted for by the called
|
|
// function).
|
|
void CallCFunction(ExternalReference function, int num_arguments);
|
|
void CallCFunction(Register function, int num_arguments);
|
|
void CallCFunction(ExternalReference function, int num_reg_arguments,
|
|
int num_double_arguments);
|
|
void CallCFunction(Register function, int num_reg_arguments,
|
|
int num_double_arguments);
|
|
|
|
void MovFromFloatParameter(DoubleRegister dst);
|
|
void MovFromFloatResult(DoubleRegister dst);
|
|
|
|
// Jump to a runtime routine.
|
|
void JumpToExternalReference(const ExternalReference& builtin);
|
|
|
|
Handle<Object> CodeObject() {
|
|
DCHECK(!code_object_.is_null());
|
|
return code_object_;
|
|
}
|
|
|
|
|
|
// Emit code for a truncating division by a constant. The dividend register is
|
|
// unchanged and ip gets clobbered. Dividend and result must be different.
|
|
void TruncatingDiv(Register result, Register dividend, int32_t divisor);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// StatsCounter support
|
|
|
|
void SetCounter(StatsCounter* counter, int value, Register scratch1,
|
|
Register scratch2);
|
|
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
|
|
Register scratch2);
|
|
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
|
|
Register scratch2);
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Debugging
|
|
|
|
// Calls Abort(msg) if the condition cond is not satisfied.
|
|
// Use --debug_code to enable.
|
|
void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
|
|
void AssertFastElements(Register elements);
|
|
|
|
// Like Assert(), but always enabled.
|
|
void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);
|
|
|
|
// Print a message to stdout and abort execution.
|
|
void Abort(BailoutReason reason);
|
|
|
|
// Verify restrictions about code generated in stubs.
|
|
void set_generating_stub(bool value) { generating_stub_ = value; }
|
|
bool generating_stub() { return generating_stub_; }
|
|
void set_has_frame(bool value) { has_frame_ = value; }
|
|
bool has_frame() { return has_frame_; }
|
|
inline bool AllowThisStubCall(CodeStub* stub);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Number utilities
|
|
|
|
// Check whether the value of reg is a power of two and not zero. If not
|
|
// control continues at the label not_power_of_two. If reg is a power of two
|
|
// the register scratch contains the value of (reg - 1) when control falls
|
|
// through.
|
|
void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
|
|
Label* not_power_of_two_or_zero);
|
|
// Check whether the value of reg is a power of two and not zero.
|
|
// Control falls through if it is, with scratch containing the mask
|
|
// value (reg - 1).
|
|
// Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
|
|
// zero or negative, or jumps to the 'not_power_of_two' label if the value is
|
|
// strictly positive but not a power of two.
|
|
void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
|
|
Label* zero_and_neg,
|
|
Label* not_power_of_two);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Bit testing/extraction
|
|
//
|
|
// Bit numbering is such that the least significant bit is bit 0
|
|
// (for consistency between 32/64-bit).
|
|
|
|
// Extract consecutive bits (defined by rangeStart - rangeEnd) from src
|
|
// and place them into the least significant bits of dst.
|
|
inline void ExtractBitRange(Register dst, Register src, int rangeStart,
|
|
int rangeEnd, RCBit rc = LeaveRC) {
|
|
DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
|
|
int rotate = (rangeEnd == 0) ? 0 : kBitsPerPointer - rangeEnd;
|
|
int width = rangeStart - rangeEnd + 1;
|
|
if (rc == SetRC && rangeEnd == 0 && width <= 16) {
|
|
andi(dst, src, Operand((1 << width) - 1));
|
|
} else {
|
|
#if V8_TARGET_ARCH_PPC64
|
|
rldicl(dst, src, rotate, kBitsPerPointer - width, rc);
|
|
#else
|
|
rlwinm(dst, src, rotate, kBitsPerPointer - width, kBitsPerPointer - 1,
|
|
rc);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
inline void ExtractBit(Register dst, Register src, uint32_t bitNumber,
|
|
RCBit rc = LeaveRC) {
|
|
ExtractBitRange(dst, src, bitNumber, bitNumber, rc);
|
|
}
|
|
|
|
// Extract consecutive bits (defined by mask) from src and place them
|
|
// into the least significant bits of dst.
|
|
inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
|
|
RCBit rc = LeaveRC) {
|
|
int start = kBitsPerPointer - 1;
|
|
int end;
|
|
uintptr_t bit = (1L << start);
|
|
|
|
while (bit && (mask & bit) == 0) {
|
|
start--;
|
|
bit >>= 1;
|
|
}
|
|
end = start;
|
|
bit >>= 1;
|
|
|
|
while (bit && (mask & bit)) {
|
|
end--;
|
|
bit >>= 1;
|
|
}
|
|
|
|
// 1-bits in mask must be contiguous
|
|
DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);
|
|
|
|
ExtractBitRange(dst, src, start, end, rc);
|
|
}
|
|
|
|
// Test single bit in value.
|
|
inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
|
|
ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC);
|
|
}
|
|
|
|
// Test consecutive bit range in value. Range is defined by
|
|
// rangeStart - rangeEnd.
|
|
inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
|
|
Register scratch = r0) {
|
|
ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC);
|
|
}
|
|
|
|
// Test consecutive bit range in value. Range is defined by mask.
|
|
inline void TestBitMask(Register value, uintptr_t mask,
|
|
Register scratch = r0) {
|
|
ExtractBitMask(scratch, value, mask, SetRC);
|
|
}
|
|
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Smi utilities
|
|
|
|
// Shift left by kSmiShift
|
|
void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); }
|
|
void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) {
|
|
ShiftLeftImm(dst, src, Operand(kSmiShift), rc);
|
|
}
|
|
|
|
#if !V8_TARGET_ARCH_PPC64
|
|
// Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
|
|
void SmiTagCheckOverflow(Register reg, Register overflow);
|
|
void SmiTagCheckOverflow(Register dst, Register src, Register overflow);
|
|
|
|
inline void JumpIfNotSmiCandidate(Register value, Register scratch,
|
|
Label* not_smi_label) {
|
|
// High bits must be identical to fit into an Smi
|
|
STATIC_ASSERT(kSmiShift == 1);
|
|
addis(scratch, value, Operand(0x40000000u >> 16));
|
|
cmpi(scratch, Operand::Zero());
|
|
blt(not_smi_label);
|
|
}
|
|
#endif
|
|
inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
|
|
// The test is different for unsigned int values. Since we need
|
|
// the value to be in the range of a positive smi, we can't
|
|
// handle any of the high bits being set in the value.
|
|
TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
|
|
scratch);
|
|
}
|
|
inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
|
|
Label* not_smi_label) {
|
|
TestUnsignedSmiCandidate(value, scratch);
|
|
bne(not_smi_label, cr0);
|
|
}
|
|
|
|
void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); }
|
|
|
|
void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) {
|
|
ShiftRightArithImm(dst, src, kSmiShift, rc);
|
|
}
|
|
|
|
void SmiToPtrArrayOffset(Register dst, Register src) {
|
|
#if V8_TARGET_ARCH_PPC64
|
|
STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
|
|
ShiftRightArithImm(dst, src, kSmiShift - kPointerSizeLog2);
|
|
#else
|
|
STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
|
|
ShiftLeftImm(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
|
|
#endif
|
|
}
|
|
|
|
void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }
|
|
|
|
void SmiToShortArrayOffset(Register dst, Register src) {
|
|
#if V8_TARGET_ARCH_PPC64
|
|
STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
|
|
ShiftRightArithImm(dst, src, kSmiShift - 1);
|
|
#else
|
|
STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
|
|
if (!dst.is(src)) {
|
|
mr(dst, src);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void SmiToIntArrayOffset(Register dst, Register src) {
|
|
#if V8_TARGET_ARCH_PPC64
|
|
STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
|
|
ShiftRightArithImm(dst, src, kSmiShift - 2);
|
|
#else
|
|
STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
|
|
ShiftLeftImm(dst, src, Operand(2 - kSmiShift));
|
|
#endif
|
|
}
|
|
|
|
#define SmiToFloatArrayOffset SmiToIntArrayOffset
|
|
|
|
void SmiToDoubleArrayOffset(Register dst, Register src) {
|
|
#if V8_TARGET_ARCH_PPC64
|
|
STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
|
|
ShiftRightArithImm(dst, src, kSmiShift - kDoubleSizeLog2);
|
|
#else
|
|
STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
|
|
ShiftLeftImm(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
|
|
#endif
|
|
}
|
|
|
|
void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
|
|
if (kSmiShift < elementSizeLog2) {
|
|
ShiftLeftImm(dst, src, Operand(elementSizeLog2 - kSmiShift));
|
|
} else if (kSmiShift > elementSizeLog2) {
|
|
ShiftRightArithImm(dst, src, kSmiShift - elementSizeLog2);
|
|
} else if (!dst.is(src)) {
|
|
mr(dst, src);
|
|
}
|
|
}
|
|
|
|
void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
|
|
bool isSmi) {
|
|
if (isSmi) {
|
|
SmiToArrayOffset(dst, src, elementSizeLog2);
|
|
} else {
|
|
ShiftLeftImm(dst, src, Operand(elementSizeLog2));
|
|
}
|
|
}
|
|
|
|
// Untag the source value into destination and jump if source is a smi.
|
|
// Souce and destination can be the same register.
|
|
void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
|
|
|
|
// Untag the source value into destination and jump if source is not a smi.
|
|
// Souce and destination can be the same register.
|
|
void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
|
|
|
|
inline void TestIfSmi(Register value, Register scratch) {
|
|
TestBitRange(value, kSmiTagSize - 1, 0, scratch);
|
|
}
|
|
|
|
inline void TestIfPositiveSmi(Register value, Register scratch) {
|
|
#if V8_TARGET_ARCH_PPC64
|
|
rldicl(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize), SetRC);
|
|
#else
|
|
rlwinm(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize),
|
|
kBitsPerPointer - 1, SetRC);
|
|
#endif
|
|
}
|
|
|
|
// Jump the register contains a smi.
|
|
inline void JumpIfSmi(Register value, Label* smi_label) {
|
|
TestIfSmi(value, r0);
|
|
beq(smi_label, cr0); // branch if SMI
|
|
}
|
|
// Jump if either of the registers contain a non-smi.
|
|
inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
|
|
TestIfSmi(value, r0);
|
|
bne(not_smi_label, cr0);
|
|
}
|
|
// Jump if either of the registers contain a non-smi.
|
|
void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
|
|
// Jump if either of the registers contain a smi.
|
|
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
|
|
|
|
// Abort execution if argument is a smi, enabled via --debug-code.
|
|
void AssertNotSmi(Register object);
|
|
void AssertSmi(Register object);
|
|
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
inline void TestIfInt32(Register value, Register scratch,
|
|
CRegister cr = cr7) {
|
|
// High bits must be identical to fit into an 32-bit integer
|
|
extsw(scratch, value);
|
|
cmp(scratch, value, cr);
|
|
}
|
|
#else
|
|
inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch,
|
|
CRegister cr = cr7) {
|
|
// High bits must be identical to fit into an 32-bit integer
|
|
srawi(scratch, lo_word, 31);
|
|
cmp(scratch, hi_word, cr);
|
|
}
|
|
#endif
|
|
|
|
#if V8_TARGET_ARCH_PPC64
|
|
// Ensure it is permissable to read/write int value directly from
|
|
// upper half of the smi.
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
|
|
#endif
|
|
#if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN
|
|
#define SmiWordOffset(offset) (offset + kPointerSize / 2)
|
|
#else
|
|
#define SmiWordOffset(offset) offset
|
|
#endif
|
|
|
|
// Abort execution if argument is not a string, enabled via --debug-code.
|
|
void AssertString(Register object);
|
|
|
|
// Abort execution if argument is not a name, enabled via --debug-code.
|
|
void AssertName(Register object);
|
|
|
|
void AssertFunction(Register object);
|
|
|
|
// Abort execution if argument is not a JSBoundFunction,
|
|
// enabled via --debug-code.
|
|
void AssertBoundFunction(Register object);
|
|
|
|
// Abort execution if argument is not undefined or an AllocationSite, enabled
|
|
// via --debug-code.
|
|
void AssertUndefinedOrAllocationSite(Register object, Register scratch);
|
|
|
|
// Abort execution if reg is not the root value with the given index,
|
|
// enabled via --debug-code.
|
|
void AssertIsRoot(Register reg, Heap::RootListIndex index);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// HeapNumber utilities
|
|
|
|
void JumpIfNotHeapNumber(Register object, Register heap_number_map,
|
|
Register scratch, Label* on_not_heap_number);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// String utilities
|
|
|
|
// Checks if both objects are sequential one-byte strings and jumps to label
|
|
// if either is not. Assumes that neither object is a smi.
|
|
void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
|
|
Register object2,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* failure);
|
|
|
|
// Checks if both objects are sequential one-byte strings and jumps to label
|
|
// if either is not.
|
|
void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* not_flat_one_byte_strings);
|
|
|
|
// Checks if both instance types are sequential one-byte strings and jumps to
|
|
// label if either is not.
|
|
void JumpIfBothInstanceTypesAreNotSequentialOneByte(
|
|
Register first_object_instance_type, Register second_object_instance_type,
|
|
Register scratch1, Register scratch2, Label* failure);
|
|
|
|
// Check if instance type is sequential one-byte string and jump to label if
|
|
// it is not.
|
|
void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
|
|
Label* failure);
|
|
|
|
void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
|
|
|
|
void EmitSeqStringSetCharCheck(Register string, Register index,
|
|
Register value, uint32_t encoding_mask);
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Patching helpers.
|
|
|
|
// Decode offset from constant pool load instruction(s).
|
|
// Caller must place the instruction word at <location> in <result>.
|
|
void DecodeConstantPoolOffset(Register result, Register location);
|
|
|
|
void ClampUint8(Register output_reg, Register input_reg);
|
|
|
|
// Saturate a value into 8-bit unsigned integer
|
|
// if input_value < 0, output_value is 0
|
|
// if input_value > 255, output_value is 255
|
|
// otherwise output_value is the (int)input_value (round to nearest)
|
|
void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
|
|
DoubleRegister temp_double_reg);
|
|
|
|
|
|
void LoadInstanceDescriptors(Register map, Register descriptors);
|
|
void EnumLength(Register dst, Register map);
|
|
void NumberOfOwnDescriptors(Register dst, Register map);
|
|
void LoadAccessor(Register dst, Register holder, int accessor_index,
|
|
AccessorComponent accessor);
|
|
|
|
template <typename Field>
|
|
void DecodeField(Register dst, Register src, RCBit rc = LeaveRC) {
|
|
ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift,
|
|
rc);
|
|
}
|
|
|
|
template <typename Field>
|
|
void DecodeField(Register reg, RCBit rc = LeaveRC) {
|
|
DecodeField<Field>(reg, reg, rc);
|
|
}
|
|
|
|
template <typename Field>
|
|
void DecodeFieldToSmi(Register dst, Register src) {
|
|
#if V8_TARGET_ARCH_PPC64
|
|
DecodeField<Field>(dst, src);
|
|
SmiTag(dst);
|
|
#else
|
|
// 32-bit can do this in one instruction:
|
|
int start = Field::kSize + kSmiShift - 1;
|
|
int end = kSmiShift;
|
|
int rotate = kSmiShift - Field::kShift;
|
|
if (rotate < 0) {
|
|
rotate += kBitsPerPointer;
|
|
}
|
|
rlwinm(dst, src, rotate, kBitsPerPointer - start - 1,
|
|
kBitsPerPointer - end - 1);
|
|
#endif
|
|
}
|
|
|
|
template <typename Field>
|
|
void DecodeFieldToSmi(Register reg) {
|
|
DecodeFieldToSmi<Field>(reg, reg);
|
|
}
|
|
|
|
// Load the type feedback vector from a JavaScript frame.
|
|
void EmitLoadTypeFeedbackVector(Register vector);
|
|
|
|
// Activation support.
|
|
void EnterFrame(StackFrame::Type type,
|
|
bool load_constant_pool_pointer_reg = false);
|
|
// Returns the pc offset at which the frame ends.
|
|
int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);
|
|
|
|
// Expects object in r3 and returns map with validated enum cache
|
|
// in r3. Assumes that any other register can be used as a scratch.
|
|
void CheckEnumCache(Label* call_runtime);
|
|
|
|
// AllocationMemento support. Arrays may have an associated
|
|
// AllocationMemento object that can be checked for in order to pretransition
|
|
// to another type.
|
|
// On entry, receiver_reg should point to the array object.
|
|
// scratch_reg gets clobbered.
|
|
// If allocation info is present, condition flags are set to eq.
|
|
void TestJSArrayForAllocationMemento(Register receiver_reg,
|
|
Register scratch_reg,
|
|
Label* no_memento_found);
|
|
|
|
void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
|
|
Register scratch_reg,
|
|
Label* memento_found) {
|
|
Label no_memento_found;
|
|
TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
|
|
&no_memento_found);
|
|
beq(memento_found);
|
|
bind(&no_memento_found);
|
|
}
|
|
|
|
// Jumps to found label if a prototype map has dictionary elements.
|
|
void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
|
|
Register scratch1, Label* found);
|
|
|
|
// Loads the constant pool pointer (kConstantPoolRegister).
|
|
void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
|
|
Register code_target_address);
|
|
void LoadConstantPoolPointerRegister();
|
|
void LoadConstantPoolPointerRegister(Register base, int code_entry_delta = 0);
|
|
|
|
void AbortConstantPoolBuilding() {
|
|
#ifdef DEBUG
|
|
// Avoid DCHECK(!is_linked()) failure in ~Label()
|
|
bind(ConstantPoolPosition());
|
|
#endif
|
|
}
|
|
|
|
private:
|
|
static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
|
|
|
|
void CallCFunctionHelper(Register function, int num_reg_arguments,
|
|
int num_double_arguments);
|
|
|
|
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
|
|
CRegister cr = cr7);
|
|
|
|
// Helper functions for generating invokes.
|
|
void InvokePrologue(const ParameterCount& expected,
|
|
const ParameterCount& actual, Label* done,
|
|
bool* definitely_mismatches, InvokeFlag flag,
|
|
const CallWrapper& call_wrapper);
|
|
|
|
void InitializeNewString(Register string, Register length,
|
|
Heap::RootListIndex map_index, Register scratch1,
|
|
Register scratch2);
|
|
|
|
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
|
|
void InNewSpace(Register object, Register scratch,
|
|
Condition cond, // eq for new space, ne otherwise.
|
|
Label* branch);
|
|
|
|
// Helper for finding the mark bits for an address. Afterwards, the
|
|
// bitmap register points at the word with the mark bits and the mask
|
|
// the position of the first bit. Leaves addr_reg unchanged.
|
|
inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
|
|
Register mask_reg);
|
|
|
|
static const RegList kSafepointSavedRegisters;
|
|
static const int kNumSafepointSavedRegisters;
|
|
|
|
// Compute memory operands for safepoint stack slots.
|
|
static int SafepointRegisterStackIndex(int reg_code);
|
|
MemOperand SafepointRegisterSlot(Register reg);
|
|
MemOperand SafepointRegistersAndDoublesSlot(Register reg);
|
|
|
|
bool generating_stub_;
|
|
bool has_frame_;
|
|
// This handle will be patched with the code object on installation.
|
|
Handle<Object> code_object_;
|
|
|
|
// Needs access to SafepointRegisterStackIndex for compiled frame
|
|
// traversal.
|
|
friend class StandardFrame;
|
|
};
|
|
|
|
|
|
// The code patcher is used to patch (typically) small parts of code e.g. for
|
|
// debugging and other types of instrumentation. When using the code patcher
|
|
// the exact number of bytes specified must be emitted. It is not legal to emit
|
|
// relocation information. If any of these constraints are violated it causes
|
|
// an assertion to fail.
|
|
class CodePatcher {
|
|
public:
|
|
enum FlushICache { FLUSH, DONT_FLUSH };
|
|
|
|
CodePatcher(Isolate* isolate, byte* address, int instructions,
|
|
FlushICache flush_cache = FLUSH);
|
|
~CodePatcher();
|
|
|
|
// Macro assembler to emit code.
|
|
MacroAssembler* masm() { return &masm_; }
|
|
|
|
// Emit an instruction directly.
|
|
void Emit(Instr instr);
|
|
|
|
// Emit the condition part of an instruction leaving the rest of the current
|
|
// instruction unchanged.
|
|
void EmitCondition(Condition cond);
|
|
|
|
private:
|
|
byte* address_; // The address of the code being patched.
|
|
int size_; // Number of bytes of the expected patch size.
|
|
MacroAssembler masm_; // Macro assembler used to generate the code.
|
|
FlushICache flush_cache_; // Whether to flush the I cache after patching.
|
|
};
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Static helper functions.
|
|
|
|
inline MemOperand ContextMemOperand(Register context, int index = 0) {
|
|
return MemOperand(context, Context::SlotOffset(index));
|
|
}
|
|
|
|
|
|
inline MemOperand NativeContextMemOperand() {
|
|
return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
|
|
}
|
|
|
|
|
|
#ifdef GENERATED_CODE_COVERAGE
|
|
#define CODE_COVERAGE_STRINGIFY(x) #x
|
|
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
|
|
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
|
|
#define ACCESS_MASM(masm) \
|
|
masm->stop(__FILE_LINE__); \
|
|
masm->
|
|
#else
|
|
#define ACCESS_MASM(masm) masm->
|
|
#endif
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_PPC_MACRO_ASSEMBLER_PPC_H_
|