v8/src/types.h
rossberg@chromium.org 372457a793 Allow smis for singleton types
To that end, introduce a generic Box struct.

R=danno@chromium.org
BUG=

Review URL: https://codereview.chromium.org/16562003

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14987 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-06-06 15:40:28 +00:00

200 lines
7.5 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_TYPES_H_
#define V8_TYPES_H_
#include "v8.h"
#include "objects.h"
namespace v8 {
namespace internal {
// A simple type system for compiler-internal use. It is based entirely on
// union types, and all subtyping hence amounts to set inclusion. Besides the
// obvious primitive types and some predefined unions, the type language also
// can express class types (a.k.a. specific maps) and singleton types (i.e.,
// concrete constants).
//
// The following equations and inequations hold:
//
// None <= T
// T <= Any
//
// Oddball = Boolean \/ Null \/ Undefined
// Number = Smi \/ Double
// Name = String \/ Symbol
// UniqueName = InternalizedString \/ Symbol
// InternalizedString < String
//
// Receiver = Object \/ Proxy
// Array < Object
// Function < Object
//
// Class(map) < T iff instance_type(map) < T
// Constant(x) < T iff instance_type(map(x)) < T
//
// Note that Constant(x) < Class(map(x)) does _not_ hold, since x's map can
// change! (Its instance type cannot, however.)
// TODO(rossberg): the latter is not currently true for proxies, because of fix,
// but will hold once we implement direct proxies.
//
// There are two main functions for testing types:
//
// T1->Is(T2) -- tests whether T1 is included in T2 (i.e., T1 <= T2)
// T1->Maybe(T2) -- tests whether T1 and T2 overlap (i.e., T1 /\ T2 =/= 0)
//
// Typically, the latter should be used to check whether a specific case needs
// handling (e.g., via T->Maybe(Number)).
//
// There is no functionality to discover whether a type is a leaf in the
// lattice. That is intentional. It should always be possible to refine the
// lattice (e.g., splitting up number types further) without invalidating any
// existing assumptions or tests.
//
// Internally, all 'primitive' types, and their unions, are represented as
// bitsets via smis. Class is a heap pointer to the respective map. Only
// Constant's, or unions containing Class'es or Constant's, require allocation.
//
// The type representation is heap-allocated, so cannot (currently) be used in
// a parallel compilation context.
class Type : public Object {
public:
static Type* None() { return from_bitset(kNone); }
static Type* Any() { return from_bitset(kAny); }
static Type* Oddball() { return from_bitset(kOddball); }
static Type* Boolean() { return from_bitset(kBoolean); }
static Type* Null() { return from_bitset(kNull); }
static Type* Undefined() { return from_bitset(kUndefined); }
static Type* Number() { return from_bitset(kNumber); }
static Type* Smi() { return from_bitset(kSmi); }
static Type* Double() { return from_bitset(kDouble); }
static Type* Name() { return from_bitset(kName); }
static Type* UniqueName() { return from_bitset(kUniqueName); }
static Type* String() { return from_bitset(kString); }
static Type* InternalizedString() { return from_bitset(kInternalizedString); }
static Type* Symbol() { return from_bitset(kSymbol); }
static Type* Receiver() { return from_bitset(kReceiver); }
static Type* Object() { return from_bitset(kObject); }
static Type* Array() { return from_bitset(kArray); }
static Type* Function() { return from_bitset(kFunction); }
static Type* Proxy() { return from_bitset(kProxy); }
static Type* Class(Handle<Map> map) { return from_handle(map); }
static Type* Constant(Handle<HeapObject> value) {
return Constant(value, value->GetIsolate());
}
static Type* Constant(Handle<v8::internal::Object> value, Isolate* isolate) {
return from_handle(isolate->factory()->NewBox(value));
}
static Type* Union(Handle<Type> type1, Handle<Type> type2);
static Type* Optional(Handle<Type> type); // type \/ Undefined
bool Is(Handle<Type> that);
bool Maybe(Handle<Type> that);
// TODO(rossberg): method to iterate unions?
private:
// A union is a fixed array containing types. Invariants:
// - its length is at least 2
// - at most one field is a bitset, and it must go into index 0
// - no field is a union
typedef FixedArray Unioned;
enum {
kNull = 1 << 0,
kUndefined = 1 << 1,
kBoolean = 1 << 2,
kSmi = 1 << 3,
kDouble = 1 << 4,
kSymbol = 1 << 5,
kInternalizedString = 1 << 6,
kOtherString = 1 << 7,
kArray = 1 << 8,
kFunction = 1 << 9,
kOtherObject = 1 << 10,
kProxy = 1 << 11,
kOddball = kBoolean | kNull | kUndefined,
kNumber = kSmi | kDouble,
kString = kInternalizedString | kOtherString,
kUniqueName = kSymbol | kInternalizedString,
kName = kSymbol | kString,
kObject = kArray | kFunction | kOtherObject,
kReceiver = kObject | kProxy,
kAny = kOddball | kNumber | kName | kReceiver,
kNone = 0
};
bool is_bitset() { return this->IsSmi(); }
bool is_class() { return this->IsMap(); }
bool is_constant() { return this->IsBox(); }
bool is_union() { return this->IsFixedArray(); }
int as_bitset() { return Smi::cast(this)->value(); }
Handle<Map> as_class() { return Handle<Map>::cast(handle()); }
Handle<Box> as_constant() { return Handle<Box>::cast(handle()); }
Handle<Unioned> as_union() { return Handle<Unioned>::cast(handle()); }
Handle<Type> handle() { return handle_via_isolate_of(this); }
Handle<Type> handle_via_isolate_of(Type* type) {
ASSERT(type->IsHeapObject());
return v8::internal::handle(this, HeapObject::cast(type)->GetIsolate());
}
static Type* from_bitset(int bitset) {
return static_cast<Type*>(Object::cast(Smi::FromInt(bitset)));
}
static Type* from_handle(Handle<HeapObject> handle) {
return static_cast<Type*>(Object::cast(*handle));
}
static Handle<Type> union_get(Handle<Unioned> unioned, int i) {
Type* type = static_cast<Type*>(unioned->get(i));
ASSERT(!type->is_union());
return type->handle_via_isolate_of(from_handle(unioned));
}
int LubBitset(); // least upper bound that's a bitset
int GlbBitset(); // greatest lower bound that's a bitset
bool InUnion(Handle<Unioned> unioned, int current_size);
int ExtendUnion(Handle<Unioned> unioned, int current_size);
};
} } // namespace v8::internal
#endif // V8_TYPES_H_