v8/test/unittests/logging/counters-unittest.cc
Benedikt Meurer ea4206556e [counters] Introduce proper bottleneck for FunctionCallback.
API calls made via the CallApiCallback builtin, which is used from the
ICs and optimized code, are currently misattributed to the wrong counter
InvokeFunctionCallback instead of FunctionCallback. In addition we don't
use the C trampoline when only runtime call stats are enabled, but the
Chrome DevTools profiler is not active, which means that these calls
will not be attrituted properly at all, and that had to be worked around
using all kinds of tricks (i.e. disabling fast-paths in ICs when RCS is
active and not inlining calls/property accesses into optimized code
depending on the state of RCS).

All of this was really brittle and only due to the fact that the central
builtin didn't properly check for RCS (in addition to checking for the
CDT profiler). With this fix it's now handled in a central place and
attributed to the correct category, so user code doesn't need to worry
about RCS anymore and can just call straight into the fast-path.

Drive-by-fix: Do the same for AccessorInfo getter calls, which share the
core hand-written native code with the API callback logic.

Bug: v8:9183
Change-Id: Id0cd99d3dd676635fe3272b67cd76a19a9a9cea4
Cq-Include-Trybots: luci.chromium.try:linux-rel,win7-rel
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1651470
Commit-Queue: Benedikt Meurer <bmeurer@chromium.org>
Auto-Submit: Benedikt Meurer <bmeurer@chromium.org>
Reviewed-by: Toon Verwaest <verwaest@chromium.org>
Cr-Commit-Position: refs/heads/master@{#62109}
2019-06-12 09:04:38 +00:00

857 lines
26 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <vector>
#include "src/api/api-inl.h"
#include "src/base/atomic-utils.h"
#include "src/base/platform/time.h"
#include "src/handles/handles-inl.h"
#include "src/logging/counters-inl.h"
#include "src/logging/counters.h"
#include "src/objects/objects-inl.h"
#include "src/tracing/tracing-category-observer.h"
#include "test/unittests/test-utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace v8 {
namespace internal {
namespace {
class MockHistogram : public Histogram {
public:
void AddSample(int value) { samples_.push_back(value); }
std::vector<int>* samples() { return &samples_; }
private:
std::vector<int> samples_;
};
class AggregatedMemoryHistogramTest : public ::testing::Test {
public:
AggregatedMemoryHistogramTest() : aggregated_(&mock_) {}
~AggregatedMemoryHistogramTest() override = default;
void AddSample(double current_ms, double current_value) {
aggregated_.AddSample(current_ms, current_value);
}
std::vector<int>* samples() { return mock_.samples(); }
private:
AggregatedMemoryHistogram<MockHistogram> aggregated_;
MockHistogram mock_;
};
static base::TimeTicks runtime_call_stats_test_time_ = base::TimeTicks();
// Time source used for the RuntimeCallTimer during tests. We cannot rely on
// the native timer since it's too unpredictable on the build bots.
static base::TimeTicks RuntimeCallStatsTestNow() {
return runtime_call_stats_test_time_;
}
class RuntimeCallStatsTest : public TestWithNativeContext {
public:
RuntimeCallStatsTest() {
TracingFlags::runtime_stats.store(
v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE,
std::memory_order_relaxed);
// We need to set {time_} to a non-zero value since it would otherwise
// cause runtime call timers to think they are uninitialized.
Sleep(1);
stats()->Reset();
}
~RuntimeCallStatsTest() override {
// Disable RuntimeCallStats before tearing down the isolate to prevent
// printing the tests table. Comment the following line for debugging
// purposes.
TracingFlags::runtime_stats.store(0, std::memory_order_relaxed);
}
static void SetUpTestCase() {
TestWithIsolate::SetUpTestCase();
// Use a custom time source to precisly emulate system time.
RuntimeCallTimer::Now = &RuntimeCallStatsTestNow;
}
static void TearDownTestCase() {
TestWithIsolate::TearDownTestCase();
// Restore the original time source.
RuntimeCallTimer::Now = &base::TimeTicks::HighResolutionNow;
}
RuntimeCallStats* stats() {
return isolate()->counters()->runtime_call_stats();
}
RuntimeCallCounterId counter_id() {
return RuntimeCallCounterId::kTestCounter1;
}
RuntimeCallCounterId counter_id2() {
return RuntimeCallCounterId::kTestCounter2;
}
RuntimeCallCounterId counter_id3() {
return RuntimeCallCounterId::kTestCounter3;
}
RuntimeCallCounter* js_counter() {
return stats()->GetCounter(RuntimeCallCounterId::kJS_Execution);
}
RuntimeCallCounter* counter() { return stats()->GetCounter(counter_id()); }
RuntimeCallCounter* counter2() { return stats()->GetCounter(counter_id2()); }
RuntimeCallCounter* counter3() { return stats()->GetCounter(counter_id3()); }
void Sleep(int64_t microseconds) {
base::TimeDelta delta = base::TimeDelta::FromMicroseconds(microseconds);
time_ += delta;
runtime_call_stats_test_time_ =
base::TimeTicks::FromInternalValue(time_.InMicroseconds());
}
private:
base::TimeDelta time_;
};
// Temporarily use the native time to modify the test time.
class ElapsedTimeScope {
public:
explicit ElapsedTimeScope(RuntimeCallStatsTest* test) : test_(test) {
timer_.Start();
}
~ElapsedTimeScope() { test_->Sleep(timer_.Elapsed().InMicroseconds()); }
private:
base::ElapsedTimer timer_;
RuntimeCallStatsTest* test_;
};
// Temporarily use the default time source.
class NativeTimeScope {
public:
NativeTimeScope() {
CHECK_EQ(RuntimeCallTimer::Now, &RuntimeCallStatsTestNow);
RuntimeCallTimer::Now = &base::TimeTicks::HighResolutionNow;
}
~NativeTimeScope() {
CHECK_EQ(RuntimeCallTimer::Now, &base::TimeTicks::HighResolutionNow);
RuntimeCallTimer::Now = &RuntimeCallStatsTestNow;
}
};
class SnapshotNativeCounterTest : public TestWithNativeContextAndCounters {
public:
SnapshotNativeCounterTest() {}
bool SupportsNativeCounters() const {
#ifdef V8_USE_SNAPSHOT
#ifdef V8_SNAPSHOT_NATIVE_CODE_COUNTERS
return true;
#else
return false;
#endif // V8_SNAPSHOT_NATIVE_CODE_COUNTERS
#else
// If we do not have a snapshot then we rely on the runtime option.
return internal::FLAG_native_code_counters;
#endif // V8_USE_SNAPSHOT
}
#define SC(name, caption) \
int name() { \
CHECK(isolate()->counters()->name()->Enabled()); \
return *isolate()->counters()->name()->GetInternalPointer(); \
}
STATS_COUNTER_NATIVE_CODE_LIST(SC)
#undef SC
void PrintAll() {
#define SC(name, caption) PrintF(#caption " = %d\n", name());
STATS_COUNTER_NATIVE_CODE_LIST(SC)
#undef SC
}
};
} // namespace
TEST_F(AggregatedMemoryHistogramTest, OneSample1) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(20, 1000);
EXPECT_EQ(1U, samples()->size());
EXPECT_EQ(1000, (*samples())[0]);
}
TEST_F(AggregatedMemoryHistogramTest, OneSample2) {
FLAG_histogram_interval = 10;
AddSample(10, 500);
AddSample(20, 1000);
EXPECT_EQ(1U, samples()->size());
EXPECT_EQ(750, (*samples())[0]);
}
TEST_F(AggregatedMemoryHistogramTest, OneSample3) {
FLAG_histogram_interval = 10;
AddSample(10, 500);
AddSample(15, 500);
AddSample(15, 1000);
AddSample(20, 1000);
EXPECT_EQ(1U, samples()->size());
EXPECT_EQ(750, (*samples())[0]);
}
TEST_F(AggregatedMemoryHistogramTest, OneSample4) {
FLAG_histogram_interval = 10;
AddSample(10, 500);
AddSample(15, 750);
AddSample(20, 1000);
EXPECT_EQ(1U, samples()->size());
EXPECT_EQ(750, (*samples())[0]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples1) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(30, 1000);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ(1000, (*samples())[0]);
EXPECT_EQ(1000, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples2) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(20, 1000);
AddSample(30, 1000);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ(1000, (*samples())[0]);
EXPECT_EQ(1000, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples3) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(20, 1000);
AddSample(20, 500);
AddSample(30, 500);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ(1000, (*samples())[0]);
EXPECT_EQ(500, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples4) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(30, 0);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ(750, (*samples())[0]);
EXPECT_EQ(250, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples5) {
FLAG_histogram_interval = 10;
AddSample(10, 0);
AddSample(30, 1000);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ(250, (*samples())[0]);
EXPECT_EQ(750, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples6) {
FLAG_histogram_interval = 10;
AddSample(10, 0);
AddSample(15, 1000);
AddSample(30, 1000);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ((500 + 1000) / 2, (*samples())[0]);
EXPECT_EQ(1000, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples7) {
FLAG_histogram_interval = 10;
AddSample(10, 0);
AddSample(15, 1000);
AddSample(25, 0);
AddSample(30, 1000);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ((500 + 750) / 2, (*samples())[0]);
EXPECT_EQ((250 + 500) / 2, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, TwoSamples8) {
FLAG_histogram_interval = 10;
AddSample(10, 1000);
AddSample(15, 0);
AddSample(25, 1000);
AddSample(30, 0);
EXPECT_EQ(2U, samples()->size());
EXPECT_EQ((500 + 250) / 2, (*samples())[0]);
EXPECT_EQ((750 + 500) / 2, (*samples())[1]);
}
TEST_F(AggregatedMemoryHistogramTest, ManySamples1) {
FLAG_histogram_interval = 10;
const int kMaxSamples = 1000;
AddSample(0, 0);
AddSample(10 * kMaxSamples, 10 * kMaxSamples);
EXPECT_EQ(static_cast<unsigned>(kMaxSamples), samples()->size());
for (int i = 0; i < kMaxSamples; i++) {
EXPECT_EQ(i * 10 + 5, (*samples())[i]);
}
}
TEST_F(AggregatedMemoryHistogramTest, ManySamples2) {
FLAG_histogram_interval = 10;
const int kMaxSamples = 1000;
AddSample(0, 0);
AddSample(10 * (2 * kMaxSamples), 10 * (2 * kMaxSamples));
EXPECT_EQ(static_cast<unsigned>(kMaxSamples), samples()->size());
for (int i = 0; i < kMaxSamples; i++) {
EXPECT_EQ(i * 10 + 5, (*samples())[i]);
}
}
TEST_F(RuntimeCallStatsTest, RuntimeCallTimer) {
RuntimeCallTimer timer;
Sleep(50);
stats()->Enter(&timer, counter_id());
EXPECT_EQ(counter(), timer.counter());
EXPECT_EQ(nullptr, timer.parent());
EXPECT_TRUE(timer.IsStarted());
EXPECT_EQ(&timer, stats()->current_timer());
Sleep(100);
stats()->Leave(&timer);
Sleep(50);
EXPECT_FALSE(timer.IsStarted());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(100, counter()->time().InMicroseconds());
}
TEST_F(RuntimeCallStatsTest, RuntimeCallTimerSubTimer) {
RuntimeCallTimer timer;
RuntimeCallTimer timer2;
stats()->Enter(&timer, counter_id());
EXPECT_TRUE(timer.IsStarted());
EXPECT_FALSE(timer2.IsStarted());
EXPECT_EQ(counter(), timer.counter());
EXPECT_EQ(nullptr, timer.parent());
EXPECT_EQ(&timer, stats()->current_timer());
Sleep(50);
stats()->Enter(&timer2, counter_id2());
// timer 1 is paused, while timer 2 is active.
EXPECT_TRUE(timer2.IsStarted());
EXPECT_EQ(counter(), timer.counter());
EXPECT_EQ(counter2(), timer2.counter());
EXPECT_EQ(nullptr, timer.parent());
EXPECT_EQ(&timer, timer2.parent());
EXPECT_EQ(&timer2, stats()->current_timer());
Sleep(100);
stats()->Leave(&timer2);
// The subtimer subtracts its time from the parent timer.
EXPECT_TRUE(timer.IsStarted());
EXPECT_FALSE(timer2.IsStarted());
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(1, counter2()->count());
EXPECT_EQ(0, counter()->time().InMicroseconds());
EXPECT_EQ(100, counter2()->time().InMicroseconds());
EXPECT_EQ(&timer, stats()->current_timer());
Sleep(100);
stats()->Leave(&timer);
EXPECT_FALSE(timer.IsStarted());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(1, counter2()->count());
EXPECT_EQ(150, counter()->time().InMicroseconds());
EXPECT_EQ(100, counter2()->time().InMicroseconds());
EXPECT_EQ(nullptr, stats()->current_timer());
}
TEST_F(RuntimeCallStatsTest, RuntimeCallTimerRecursive) {
RuntimeCallTimer timer;
RuntimeCallTimer timer2;
stats()->Enter(&timer, counter_id());
EXPECT_EQ(counter(), timer.counter());
EXPECT_EQ(nullptr, timer.parent());
EXPECT_TRUE(timer.IsStarted());
EXPECT_EQ(&timer, stats()->current_timer());
stats()->Enter(&timer2, counter_id());
EXPECT_EQ(counter(), timer2.counter());
EXPECT_EQ(nullptr, timer.parent());
EXPECT_EQ(&timer, timer2.parent());
EXPECT_TRUE(timer2.IsStarted());
EXPECT_EQ(&timer2, stats()->current_timer());
Sleep(50);
stats()->Leave(&timer2);
EXPECT_EQ(nullptr, timer.parent());
EXPECT_FALSE(timer2.IsStarted());
EXPECT_TRUE(timer.IsStarted());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(50, counter()->time().InMicroseconds());
Sleep(100);
stats()->Leave(&timer);
EXPECT_FALSE(timer.IsStarted());
EXPECT_EQ(2, counter()->count());
EXPECT_EQ(150, counter()->time().InMicroseconds());
}
TEST_F(RuntimeCallStatsTest, RuntimeCallTimerScope) {
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
}
Sleep(100);
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(50, counter()->time().InMicroseconds());
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
}
EXPECT_EQ(2, counter()->count());
EXPECT_EQ(100, counter()->time().InMicroseconds());
}
TEST_F(RuntimeCallStatsTest, RuntimeCallTimerScopeRecursive) {
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter()->time().InMicroseconds());
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
}
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(50, counter()->time().InMicroseconds());
}
EXPECT_EQ(2, counter()->count());
EXPECT_EQ(100, counter()->time().InMicroseconds());
}
TEST_F(RuntimeCallStatsTest, RenameTimer) {
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(0, counter()->time().InMicroseconds());
EXPECT_EQ(0, counter2()->time().InMicroseconds());
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(100);
}
CHANGE_CURRENT_RUNTIME_COUNTER(stats(),
RuntimeCallCounterId::kTestCounter2);
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(0, counter2()->time().InMicroseconds());
}
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(1, counter2()->count());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(50, counter2()->time().InMicroseconds());
}
TEST_F(RuntimeCallStatsTest, BasicPrintAndSnapshot) {
std::ostringstream out;
stats()->Print(out);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(0, counter3()->count());
EXPECT_EQ(0, counter()->time().InMicroseconds());
EXPECT_EQ(0, counter2()->time().InMicroseconds());
EXPECT_EQ(0, counter3()->time().InMicroseconds());
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(50);
stats()->Print(out);
}
stats()->Print(out);
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(0, counter3()->count());
EXPECT_EQ(50, counter()->time().InMicroseconds());
EXPECT_EQ(0, counter2()->time().InMicroseconds());
EXPECT_EQ(0, counter3()->time().InMicroseconds());
}
TEST_F(RuntimeCallStatsTest, PrintAndSnapshot) {
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(100);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter()->time().InMicroseconds());
{
RuntimeCallTimerScope scope(stats(), counter_id2());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(0, counter2()->time().InMicroseconds());
Sleep(50);
// This calls Snapshot on the current active timer and sychronizes and
// commits the whole timer stack.
std::ostringstream out;
stats()->Print(out);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(50, counter2()->time().InMicroseconds());
// Calling Print several times shouldn't have a (big) impact on the
// measured times.
stats()->Print(out);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(50, counter2()->time().InMicroseconds());
Sleep(50);
stats()->Print(out);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, counter2()->count());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(100, counter2()->time().InMicroseconds());
Sleep(50);
}
Sleep(50);
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(1, counter2()->count());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(150, counter2()->time().InMicroseconds());
Sleep(50);
}
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(1, counter2()->count());
EXPECT_EQ(200, counter()->time().InMicroseconds());
EXPECT_EQ(150, counter2()->time().InMicroseconds());
}
TEST_F(RuntimeCallStatsTest, NestedScopes) {
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(100);
{
RuntimeCallTimerScope scope(stats(), counter_id2());
Sleep(100);
{
RuntimeCallTimerScope scope(stats(), counter_id3());
Sleep(50);
}
Sleep(50);
{
RuntimeCallTimerScope scope(stats(), counter_id3());
Sleep(50);
}
Sleep(50);
}
Sleep(100);
{
RuntimeCallTimerScope scope(stats(), counter_id2());
Sleep(100);
}
Sleep(50);
}
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(2, counter2()->count());
EXPECT_EQ(2, counter3()->count());
EXPECT_EQ(250, counter()->time().InMicroseconds());
EXPECT_EQ(300, counter2()->time().InMicroseconds());
EXPECT_EQ(100, counter3()->time().InMicroseconds());
}
TEST_F(RuntimeCallStatsTest, BasicJavaScript) {
RuntimeCallCounter* counter =
stats()->GetCounter(RuntimeCallCounterId::kJS_Execution);
EXPECT_EQ(0, counter->count());
EXPECT_EQ(0, counter->time().InMicroseconds());
{
NativeTimeScope native_timer_scope;
RunJS("function f() { return 1; };");
}
EXPECT_EQ(1, counter->count());
int64_t time = counter->time().InMicroseconds();
EXPECT_LT(0, time);
{
NativeTimeScope native_timer_scope;
RunJS("f();");
}
EXPECT_EQ(2, counter->count());
EXPECT_LE(time, counter->time().InMicroseconds());
}
TEST_F(RuntimeCallStatsTest, FunctionLengthGetter) {
RuntimeCallCounter* getter_counter =
stats()->GetCounter(RuntimeCallCounterId::kFunctionLengthGetter);
EXPECT_EQ(0, getter_counter->count());
EXPECT_EQ(0, js_counter()->count());
EXPECT_EQ(0, getter_counter->time().InMicroseconds());
EXPECT_EQ(0, js_counter()->time().InMicroseconds());
{
NativeTimeScope native_timer_scope;
RunJS("function f(array) { return array.length; };");
}
EXPECT_EQ(0, getter_counter->count());
EXPECT_EQ(1, js_counter()->count());
EXPECT_EQ(0, getter_counter->time().InMicroseconds());
int64_t js_time = js_counter()->time().InMicroseconds();
EXPECT_LT(0, js_time);
{
NativeTimeScope native_timer_scope;
RunJS("f.length;");
}
EXPECT_EQ(1, getter_counter->count());
EXPECT_EQ(2, js_counter()->count());
EXPECT_LE(0, getter_counter->time().InMicroseconds());
EXPECT_LE(js_time, js_counter()->time().InMicroseconds());
{
NativeTimeScope native_timer_scope;
RunJS("for (let i = 0; i < 50; i++) { f.length };");
}
EXPECT_EQ(51, getter_counter->count());
EXPECT_EQ(3, js_counter()->count());
{
NativeTimeScope native_timer_scope;
RunJS("for (let i = 0; i < 1000; i++) { f.length; };");
}
EXPECT_EQ(1051, getter_counter->count());
EXPECT_EQ(4, js_counter()->count());
}
namespace {
static RuntimeCallStatsTest* current_test;
static const int kCustomCallbackTime = 1234;
static void CustomCallback(const v8::FunctionCallbackInfo<v8::Value>& info) {
RuntimeCallTimerScope scope(current_test->stats(),
current_test->counter_id2());
current_test->Sleep(kCustomCallbackTime);
}
} // namespace
TEST_F(RuntimeCallStatsTest, CallbackFunction) {
FLAG_allow_natives_syntax = true;
RuntimeCallCounter* callback_counter =
stats()->GetCounter(RuntimeCallCounterId::kFunctionCallback);
current_test = this;
// Set up a function template with a custom callback.
v8::Isolate* isolate = v8_isolate();
v8::HandleScope scope(isolate);
v8::Local<v8::ObjectTemplate> object_template =
v8::ObjectTemplate::New(isolate);
object_template->Set(isolate, "callback",
v8::FunctionTemplate::New(isolate, CustomCallback));
v8::Local<v8::Object> object =
object_template->NewInstance(v8_context()).ToLocalChecked();
SetGlobalProperty("custom_object", object);
EXPECT_EQ(0, js_counter()->count());
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, callback_counter->count());
EXPECT_EQ(0, counter2()->count());
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(100);
RunJS("custom_object.callback();");
}
EXPECT_EQ(1, js_counter()->count());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(1, callback_counter->count());
EXPECT_EQ(1, counter2()->count());
// Given that no native timers are used, only the two scopes explitly
// mentioned above will track the time.
EXPECT_EQ(0, js_counter()->time().InMicroseconds());
EXPECT_EQ(0, callback_counter->time().InMicroseconds());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(kCustomCallbackTime, counter2()->time().InMicroseconds());
RunJS("for (let i = 0; i < 9; i++) { custom_object.callback(); };");
EXPECT_EQ(2, js_counter()->count());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(10, callback_counter->count());
EXPECT_EQ(10, counter2()->count());
EXPECT_EQ(0, js_counter()->time().InMicroseconds());
EXPECT_EQ(0, callback_counter->time().InMicroseconds());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(kCustomCallbackTime * 10, counter2()->time().InMicroseconds());
RunJS("for (let i = 0; i < 4000; i++) { custom_object.callback(); };");
EXPECT_EQ(3, js_counter()->count());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(4010, callback_counter->count());
EXPECT_EQ(4010, counter2()->count());
EXPECT_EQ(0, js_counter()->time().InMicroseconds());
EXPECT_EQ(0, callback_counter->time().InMicroseconds());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(kCustomCallbackTime * 4010, counter2()->time().InMicroseconds());
// Check that the FunctionCallback tracing also works properly
// when the `callback` is called from optimized code.
RunJS(
"function wrap(o) { return o.callback(); };\n"
"%PrepareFunctionForOptimization(wrap);\n"
"wrap(custom_object);\n"
"wrap(custom_object);\n"
"%OptimizeFunctionOnNextCall(wrap);\n"
"wrap(custom_object);\n");
EXPECT_EQ(4, js_counter()->count());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(4013, callback_counter->count());
EXPECT_EQ(4013, counter2()->count());
EXPECT_EQ(0, js_counter()->time().InMicroseconds());
EXPECT_EQ(0, callback_counter->time().InMicroseconds());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(kCustomCallbackTime * 4013, counter2()->time().InMicroseconds());
}
TEST_F(RuntimeCallStatsTest, ApiGetter) {
FLAG_allow_natives_syntax = true;
RuntimeCallCounter* callback_counter =
stats()->GetCounter(RuntimeCallCounterId::kFunctionCallback);
current_test = this;
// Set up a function template with an api accessor.
v8::Isolate* isolate = v8_isolate();
v8::HandleScope scope(isolate);
v8::Local<v8::ObjectTemplate> object_template =
v8::ObjectTemplate::New(isolate);
object_template->SetAccessorProperty(
NewString("apiGetter"),
v8::FunctionTemplate::New(isolate, CustomCallback));
v8::Local<v8::Object> object =
object_template->NewInstance(v8_context()).ToLocalChecked();
SetGlobalProperty("custom_object", object);
// TODO(cbruni): Check api accessor timer (one above the custom callback).
EXPECT_EQ(0, js_counter()->count());
EXPECT_EQ(0, counter()->count());
EXPECT_EQ(0, callback_counter->count());
EXPECT_EQ(0, counter2()->count());
{
RuntimeCallTimerScope scope(stats(), counter_id());
Sleep(100);
RunJS("custom_object.apiGetter;");
}
EXPECT_EQ(1, js_counter()->count());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(1, callback_counter->count());
EXPECT_EQ(1, counter2()->count());
// Given that no native timers are used, only the two scopes explitly
// mentioned above will track the time.
EXPECT_EQ(0, js_counter()->time().InMicroseconds());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(0, callback_counter->time().InMicroseconds());
EXPECT_EQ(kCustomCallbackTime, counter2()->time().InMicroseconds());
RunJS("for (let i = 0; i < 9; i++) { custom_object.apiGetter };");
EXPECT_EQ(2, js_counter()->count());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(10, callback_counter->count());
EXPECT_EQ(10, counter2()->count());
EXPECT_EQ(0, js_counter()->time().InMicroseconds());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(0, callback_counter->time().InMicroseconds());
EXPECT_EQ(kCustomCallbackTime * 10, counter2()->time().InMicroseconds());
RunJS("for (let i = 0; i < 4000; i++) { custom_object.apiGetter };");
EXPECT_EQ(3, js_counter()->count());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(4010, callback_counter->count());
EXPECT_EQ(4010, counter2()->count());
EXPECT_EQ(0, js_counter()->time().InMicroseconds());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(0, callback_counter->time().InMicroseconds());
EXPECT_EQ(kCustomCallbackTime * 4010, counter2()->time().InMicroseconds());
// Check that the FunctionCallback tracing also works properly
// when the `apiGetter` is called from optimized code.
RunJS(
"function wrap(o) { return o.apiGetter; };\n"
"%PrepareFunctionForOptimization(wrap);\n"
"wrap(custom_object);\n"
"wrap(custom_object);\n"
"%OptimizeFunctionOnNextCall(wrap);\n"
"wrap(custom_object);\n");
EXPECT_EQ(4, js_counter()->count());
EXPECT_EQ(1, counter()->count());
EXPECT_EQ(4013, callback_counter->count());
EXPECT_EQ(4013, counter2()->count());
EXPECT_EQ(0, js_counter()->time().InMicroseconds());
EXPECT_EQ(100, counter()->time().InMicroseconds());
EXPECT_EQ(0, callback_counter->time().InMicroseconds());
EXPECT_EQ(kCustomCallbackTime * 4013, counter2()->time().InMicroseconds());
}
TEST_F(SnapshotNativeCounterTest, StringAddNative) {
RunJS("let s = 'hello, ' + 'world!'");
if (SupportsNativeCounters()) {
EXPECT_NE(0, string_add_native());
} else {
EXPECT_EQ(0, string_add_native());
}
PrintAll();
}
TEST_F(SnapshotNativeCounterTest, SubStringNative) {
RunJS("'hello, world!'.substring(6);");
if (SupportsNativeCounters()) {
EXPECT_NE(0, sub_string_native());
} else {
EXPECT_EQ(0, sub_string_native());
}
PrintAll();
}
TEST_F(SnapshotNativeCounterTest, WriteBarrier) {
RunJS("let o = {a: 42};");
if (SupportsNativeCounters()) {
EXPECT_NE(0, write_barriers());
} else {
EXPECT_EQ(0, write_barriers());
}
PrintAll();
}
} // namespace internal
} // namespace v8