c7b09aac31
Along the way: - Thread isolate parameter explicitly through code that used to rely on getting it from the zone. - Canonicalize the parameter position of isolate and zone for affected code - Change Hydrogen New<> instruction templates to automatically pass isolate R=mstarzinger@chromium.org LOG=N Review URL: https://codereview.chromium.org/868883002 Cr-Commit-Position: refs/heads/master@{#26252}
477 lines
16 KiB
C++
477 lines
16 KiB
C++
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/base/utils/random-number-generator.h"
|
|
#include "src/compiler/pipeline.h"
|
|
#include "test/unittests/compiler/instruction-sequence-unittest.h"
|
|
#include "test/unittests/test-utils.h"
|
|
#include "testing/gmock/include/gmock/gmock.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace compiler {
|
|
|
|
static const char*
|
|
general_register_names_[RegisterConfiguration::kMaxGeneralRegisters];
|
|
static const char*
|
|
double_register_names_[RegisterConfiguration::kMaxDoubleRegisters];
|
|
static char register_names_[10 * (RegisterConfiguration::kMaxGeneralRegisters +
|
|
RegisterConfiguration::kMaxDoubleRegisters)];
|
|
|
|
|
|
static void InitializeRegisterNames() {
|
|
char* loc = register_names_;
|
|
for (int i = 0; i < RegisterConfiguration::kMaxGeneralRegisters; ++i) {
|
|
general_register_names_[i] = loc;
|
|
loc += base::OS::SNPrintF(loc, 100, "gp_%d", i);
|
|
*loc++ = 0;
|
|
}
|
|
for (int i = 0; i < RegisterConfiguration::kMaxDoubleRegisters; ++i) {
|
|
double_register_names_[i] = loc;
|
|
loc += base::OS::SNPrintF(loc, 100, "fp_%d", i) + 1;
|
|
*loc++ = 0;
|
|
}
|
|
}
|
|
|
|
|
|
InstructionSequenceTest::InstructionSequenceTest()
|
|
: sequence_(nullptr),
|
|
num_general_registers_(kDefaultNRegs),
|
|
num_double_registers_(kDefaultNRegs),
|
|
instruction_blocks_(zone()),
|
|
current_instruction_index_(-1),
|
|
current_block_(nullptr),
|
|
block_returns_(false) {
|
|
InitializeRegisterNames();
|
|
}
|
|
|
|
|
|
void InstructionSequenceTest::SetNumRegs(int num_general_registers,
|
|
int num_double_registers) {
|
|
CHECK(config_.is_empty());
|
|
CHECK(instructions_.empty());
|
|
CHECK(instruction_blocks_.empty());
|
|
num_general_registers_ = num_general_registers;
|
|
num_double_registers_ = num_double_registers;
|
|
}
|
|
|
|
|
|
RegisterConfiguration* InstructionSequenceTest::config() {
|
|
if (config_.is_empty()) {
|
|
config_.Reset(new RegisterConfiguration(
|
|
num_general_registers_, num_double_registers_, num_double_registers_,
|
|
general_register_names_, double_register_names_));
|
|
}
|
|
return config_.get();
|
|
}
|
|
|
|
|
|
InstructionSequence* InstructionSequenceTest::sequence() {
|
|
if (sequence_ == nullptr) {
|
|
sequence_ = new (zone())
|
|
InstructionSequence(isolate(), zone(), &instruction_blocks_);
|
|
}
|
|
return sequence_;
|
|
}
|
|
|
|
|
|
void InstructionSequenceTest::StartLoop(int loop_blocks) {
|
|
CHECK(current_block_ == nullptr);
|
|
if (!loop_blocks_.empty()) {
|
|
CHECK(!loop_blocks_.back().loop_header_.IsValid());
|
|
}
|
|
LoopData loop_data = {Rpo::Invalid(), loop_blocks};
|
|
loop_blocks_.push_back(loop_data);
|
|
}
|
|
|
|
|
|
void InstructionSequenceTest::EndLoop() {
|
|
CHECK(current_block_ == nullptr);
|
|
CHECK(!loop_blocks_.empty());
|
|
CHECK_EQ(0, loop_blocks_.back().expected_blocks_);
|
|
loop_blocks_.pop_back();
|
|
}
|
|
|
|
|
|
void InstructionSequenceTest::StartBlock() {
|
|
block_returns_ = false;
|
|
NewBlock();
|
|
}
|
|
|
|
|
|
int InstructionSequenceTest::EndBlock(BlockCompletion completion) {
|
|
int instruction_index = kMinInt;
|
|
if (block_returns_) {
|
|
CHECK(completion.type_ == kBlockEnd || completion.type_ == kFallThrough);
|
|
completion.type_ = kBlockEnd;
|
|
}
|
|
switch (completion.type_) {
|
|
case kBlockEnd:
|
|
break;
|
|
case kFallThrough:
|
|
instruction_index = EmitFallThrough();
|
|
break;
|
|
case kJump:
|
|
CHECK(!block_returns_);
|
|
instruction_index = EmitJump();
|
|
break;
|
|
case kBranch:
|
|
CHECK(!block_returns_);
|
|
instruction_index = EmitBranch(completion.op_);
|
|
break;
|
|
}
|
|
completions_.push_back(completion);
|
|
CHECK(current_block_ != nullptr);
|
|
sequence()->EndBlock(current_block_->rpo_number());
|
|
current_block_ = nullptr;
|
|
return instruction_index;
|
|
}
|
|
|
|
|
|
InstructionSequenceTest::TestOperand InstructionSequenceTest::Imm(int32_t imm) {
|
|
int index = sequence()->AddImmediate(Constant(imm));
|
|
return TestOperand(kImmediate, index);
|
|
}
|
|
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::Define(
|
|
TestOperand output_op) {
|
|
VReg vreg = NewReg();
|
|
InstructionOperand* outputs[1]{ConvertOutputOp(vreg, output_op)};
|
|
Emit(vreg.value_, kArchNop, 1, outputs);
|
|
return vreg;
|
|
}
|
|
|
|
|
|
int InstructionSequenceTest::Return(TestOperand input_op_0) {
|
|
block_returns_ = true;
|
|
InstructionOperand* inputs[1]{ConvertInputOp(input_op_0)};
|
|
return Emit(NewIndex(), kArchRet, 0, nullptr, 1, inputs);
|
|
}
|
|
|
|
|
|
PhiInstruction* InstructionSequenceTest::Phi(VReg incoming_vreg_0,
|
|
VReg incoming_vreg_1,
|
|
VReg incoming_vreg_2,
|
|
VReg incoming_vreg_3) {
|
|
auto phi = new (zone()) PhiInstruction(zone(), NewReg().value_, 10);
|
|
VReg inputs[] = {incoming_vreg_0, incoming_vreg_1, incoming_vreg_2,
|
|
incoming_vreg_3};
|
|
for (size_t i = 0; i < arraysize(inputs); ++i) {
|
|
if (inputs[i].value_ == kNoValue) break;
|
|
Extend(phi, inputs[i]);
|
|
}
|
|
current_block_->AddPhi(phi);
|
|
return phi;
|
|
}
|
|
|
|
|
|
void InstructionSequenceTest::Extend(PhiInstruction* phi, VReg vreg) {
|
|
phi->Extend(zone(), vreg.value_);
|
|
}
|
|
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::DefineConstant(
|
|
int32_t imm) {
|
|
VReg vreg = NewReg();
|
|
sequence()->AddConstant(vreg.value_, Constant(imm));
|
|
InstructionOperand* outputs[1]{ConstantOperand::Create(vreg.value_, zone())};
|
|
Emit(vreg.value_, kArchNop, 1, outputs);
|
|
return vreg;
|
|
}
|
|
|
|
|
|
int InstructionSequenceTest::EmitNop() { return Emit(NewIndex(), kArchNop); }
|
|
|
|
|
|
static size_t CountInputs(size_t size,
|
|
InstructionSequenceTest::TestOperand* inputs) {
|
|
size_t i = 0;
|
|
for (; i < size; ++i) {
|
|
if (inputs[i].type_ == InstructionSequenceTest::kInvalid) break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
|
|
int InstructionSequenceTest::EmitI(size_t input_size, TestOperand* inputs) {
|
|
InstructionOperand** mapped_inputs = ConvertInputs(input_size, inputs);
|
|
return Emit(NewIndex(), kArchNop, 0, nullptr, input_size, mapped_inputs);
|
|
}
|
|
|
|
|
|
int InstructionSequenceTest::EmitI(TestOperand input_op_0,
|
|
TestOperand input_op_1,
|
|
TestOperand input_op_2,
|
|
TestOperand input_op_3) {
|
|
TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
|
|
return EmitI(CountInputs(arraysize(inputs), inputs), inputs);
|
|
}
|
|
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::EmitOI(
|
|
TestOperand output_op, size_t input_size, TestOperand* inputs) {
|
|
VReg output_vreg = NewReg();
|
|
InstructionOperand* outputs[1]{ConvertOutputOp(output_vreg, output_op)};
|
|
InstructionOperand** mapped_inputs = ConvertInputs(input_size, inputs);
|
|
Emit(output_vreg.value_, kArchNop, 1, outputs, input_size, mapped_inputs);
|
|
return output_vreg;
|
|
}
|
|
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::EmitOI(
|
|
TestOperand output_op, TestOperand input_op_0, TestOperand input_op_1,
|
|
TestOperand input_op_2, TestOperand input_op_3) {
|
|
TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
|
|
return EmitOI(output_op, CountInputs(arraysize(inputs), inputs), inputs);
|
|
}
|
|
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::EmitCall(
|
|
TestOperand output_op, size_t input_size, TestOperand* inputs) {
|
|
VReg output_vreg = NewReg();
|
|
InstructionOperand* outputs[1]{ConvertOutputOp(output_vreg, output_op)};
|
|
CHECK(UnallocatedOperand::cast(outputs[0])->HasFixedPolicy());
|
|
InstructionOperand** mapped_inputs = ConvertInputs(input_size, inputs);
|
|
Emit(output_vreg.value_, kArchCallCodeObject, 1, outputs, input_size,
|
|
mapped_inputs, 0, nullptr, true);
|
|
return output_vreg;
|
|
}
|
|
|
|
|
|
InstructionSequenceTest::VReg InstructionSequenceTest::EmitCall(
|
|
TestOperand output_op, TestOperand input_op_0, TestOperand input_op_1,
|
|
TestOperand input_op_2, TestOperand input_op_3) {
|
|
TestOperand inputs[] = {input_op_0, input_op_1, input_op_2, input_op_3};
|
|
return EmitCall(output_op, CountInputs(arraysize(inputs), inputs), inputs);
|
|
}
|
|
|
|
|
|
const Instruction* InstructionSequenceTest::GetInstruction(
|
|
int instruction_index) {
|
|
auto it = instructions_.find(instruction_index);
|
|
CHECK(it != instructions_.end());
|
|
return it->second;
|
|
}
|
|
|
|
|
|
int InstructionSequenceTest::EmitBranch(TestOperand input_op) {
|
|
InstructionOperand* inputs[4]{ConvertInputOp(input_op), ConvertInputOp(Imm()),
|
|
ConvertInputOp(Imm()), ConvertInputOp(Imm())};
|
|
InstructionCode opcode = kArchJmp | FlagsModeField::encode(kFlags_branch) |
|
|
FlagsConditionField::encode(kEqual);
|
|
auto instruction =
|
|
NewInstruction(opcode, 0, nullptr, 4, inputs)->MarkAsControl();
|
|
return AddInstruction(NewIndex(), instruction);
|
|
}
|
|
|
|
|
|
int InstructionSequenceTest::EmitFallThrough() {
|
|
auto instruction = NewInstruction(kArchNop, 0, nullptr)->MarkAsControl();
|
|
return AddInstruction(NewIndex(), instruction);
|
|
}
|
|
|
|
|
|
int InstructionSequenceTest::EmitJump() {
|
|
InstructionOperand* inputs[1]{ConvertInputOp(Imm())};
|
|
auto instruction =
|
|
NewInstruction(kArchJmp, 0, nullptr, 1, inputs)->MarkAsControl();
|
|
return AddInstruction(NewIndex(), instruction);
|
|
}
|
|
|
|
|
|
Instruction* InstructionSequenceTest::NewInstruction(
|
|
InstructionCode code, size_t outputs_size, InstructionOperand** outputs,
|
|
size_t inputs_size, InstructionOperand** inputs, size_t temps_size,
|
|
InstructionOperand** temps) {
|
|
CHECK_NE(nullptr, current_block_);
|
|
return Instruction::New(zone(), code, outputs_size, outputs, inputs_size,
|
|
inputs, temps_size, temps);
|
|
}
|
|
|
|
|
|
InstructionOperand* InstructionSequenceTest::Unallocated(
|
|
TestOperand op, UnallocatedOperand::ExtendedPolicy policy) {
|
|
auto unallocated = new (zone()) UnallocatedOperand(policy);
|
|
unallocated->set_virtual_register(op.vreg_.value_);
|
|
return unallocated;
|
|
}
|
|
|
|
|
|
InstructionOperand* InstructionSequenceTest::Unallocated(
|
|
TestOperand op, UnallocatedOperand::ExtendedPolicy policy,
|
|
UnallocatedOperand::Lifetime lifetime) {
|
|
auto unallocated = new (zone()) UnallocatedOperand(policy, lifetime);
|
|
unallocated->set_virtual_register(op.vreg_.value_);
|
|
return unallocated;
|
|
}
|
|
|
|
|
|
InstructionOperand* InstructionSequenceTest::Unallocated(
|
|
TestOperand op, UnallocatedOperand::ExtendedPolicy policy, int index) {
|
|
auto unallocated = new (zone()) UnallocatedOperand(policy, index);
|
|
unallocated->set_virtual_register(op.vreg_.value_);
|
|
return unallocated;
|
|
}
|
|
|
|
|
|
InstructionOperand* InstructionSequenceTest::Unallocated(
|
|
TestOperand op, UnallocatedOperand::BasicPolicy policy, int index) {
|
|
auto unallocated = new (zone()) UnallocatedOperand(policy, index);
|
|
unallocated->set_virtual_register(op.vreg_.value_);
|
|
return unallocated;
|
|
}
|
|
|
|
|
|
InstructionOperand** InstructionSequenceTest::ConvertInputs(
|
|
size_t input_size, TestOperand* inputs) {
|
|
InstructionOperand** mapped_inputs =
|
|
zone()->NewArray<InstructionOperand*>(static_cast<int>(input_size));
|
|
for (size_t i = 0; i < input_size; ++i) {
|
|
mapped_inputs[i] = ConvertInputOp(inputs[i]);
|
|
}
|
|
return mapped_inputs;
|
|
}
|
|
|
|
|
|
InstructionOperand* InstructionSequenceTest::ConvertInputOp(TestOperand op) {
|
|
if (op.type_ == kImmediate) {
|
|
CHECK_EQ(op.vreg_.value_, kNoValue);
|
|
return ImmediateOperand::Create(op.value_, zone());
|
|
}
|
|
CHECK_NE(op.vreg_.value_, kNoValue);
|
|
switch (op.type_) {
|
|
case kNone:
|
|
return Unallocated(op, UnallocatedOperand::NONE,
|
|
UnallocatedOperand::USED_AT_START);
|
|
case kUnique:
|
|
return Unallocated(op, UnallocatedOperand::NONE);
|
|
case kUniqueRegister:
|
|
return Unallocated(op, UnallocatedOperand::MUST_HAVE_REGISTER);
|
|
case kRegister:
|
|
return Unallocated(op, UnallocatedOperand::MUST_HAVE_REGISTER,
|
|
UnallocatedOperand::USED_AT_START);
|
|
case kFixedRegister:
|
|
CHECK(0 <= op.value_ && op.value_ < num_general_registers_);
|
|
return Unallocated(op, UnallocatedOperand::FIXED_REGISTER, op.value_);
|
|
case kFixedSlot:
|
|
return Unallocated(op, UnallocatedOperand::FIXED_SLOT, op.value_);
|
|
default:
|
|
break;
|
|
}
|
|
CHECK(false);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
InstructionOperand* InstructionSequenceTest::ConvertOutputOp(VReg vreg,
|
|
TestOperand op) {
|
|
CHECK_EQ(op.vreg_.value_, kNoValue);
|
|
op.vreg_ = vreg;
|
|
switch (op.type_) {
|
|
case kSameAsFirst:
|
|
return Unallocated(op, UnallocatedOperand::SAME_AS_FIRST_INPUT);
|
|
case kRegister:
|
|
return Unallocated(op, UnallocatedOperand::MUST_HAVE_REGISTER);
|
|
case kFixedSlot:
|
|
return Unallocated(op, UnallocatedOperand::FIXED_SLOT, op.value_);
|
|
case kFixedRegister:
|
|
CHECK(0 <= op.value_ && op.value_ < num_general_registers_);
|
|
return Unallocated(op, UnallocatedOperand::FIXED_REGISTER, op.value_);
|
|
default:
|
|
break;
|
|
}
|
|
CHECK(false);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
InstructionBlock* InstructionSequenceTest::NewBlock() {
|
|
CHECK(current_block_ == nullptr);
|
|
auto block_id = BasicBlock::Id::FromSize(instruction_blocks_.size());
|
|
Rpo rpo = Rpo::FromInt(block_id.ToInt());
|
|
Rpo loop_header = Rpo::Invalid();
|
|
Rpo loop_end = Rpo::Invalid();
|
|
if (!loop_blocks_.empty()) {
|
|
auto& loop_data = loop_blocks_.back();
|
|
// This is a loop header.
|
|
if (!loop_data.loop_header_.IsValid()) {
|
|
loop_end = Rpo::FromInt(block_id.ToInt() + loop_data.expected_blocks_);
|
|
loop_data.expected_blocks_--;
|
|
loop_data.loop_header_ = rpo;
|
|
} else {
|
|
// This is a loop body.
|
|
CHECK_NE(0, loop_data.expected_blocks_);
|
|
// TODO(dcarney): handle nested loops.
|
|
loop_data.expected_blocks_--;
|
|
loop_header = loop_data.loop_header_;
|
|
}
|
|
}
|
|
// Construct instruction block.
|
|
auto instruction_block = new (zone())
|
|
InstructionBlock(zone(), block_id, rpo, loop_header, loop_end, false);
|
|
instruction_blocks_.push_back(instruction_block);
|
|
current_block_ = instruction_block;
|
|
sequence()->StartBlock(rpo);
|
|
return instruction_block;
|
|
}
|
|
|
|
|
|
void InstructionSequenceTest::WireBlocks() {
|
|
CHECK_EQ(nullptr, current_block());
|
|
CHECK(instruction_blocks_.size() == completions_.size());
|
|
size_t offset = 0;
|
|
for (const auto& completion : completions_) {
|
|
switch (completion.type_) {
|
|
case kBlockEnd:
|
|
break;
|
|
case kFallThrough: // Fallthrough.
|
|
case kJump:
|
|
WireBlock(offset, completion.offset_0_);
|
|
break;
|
|
case kBranch:
|
|
WireBlock(offset, completion.offset_0_);
|
|
WireBlock(offset, completion.offset_1_);
|
|
break;
|
|
}
|
|
++offset;
|
|
}
|
|
}
|
|
|
|
|
|
void InstructionSequenceTest::WireBlock(size_t block_offset, int jump_offset) {
|
|
size_t target_block_offset = block_offset + static_cast<size_t>(jump_offset);
|
|
CHECK(block_offset < instruction_blocks_.size());
|
|
CHECK(target_block_offset < instruction_blocks_.size());
|
|
auto block = instruction_blocks_[block_offset];
|
|
auto target = instruction_blocks_[target_block_offset];
|
|
block->successors().push_back(target->rpo_number());
|
|
target->predecessors().push_back(block->rpo_number());
|
|
}
|
|
|
|
|
|
int InstructionSequenceTest::Emit(int instruction_index, InstructionCode code,
|
|
size_t outputs_size,
|
|
InstructionOperand** outputs,
|
|
size_t inputs_size,
|
|
InstructionOperand** inputs,
|
|
size_t temps_size, InstructionOperand** temps,
|
|
bool is_call) {
|
|
auto instruction = NewInstruction(code, outputs_size, outputs, inputs_size,
|
|
inputs, temps_size, temps);
|
|
if (is_call) instruction->MarkAsCall();
|
|
return AddInstruction(instruction_index, instruction);
|
|
}
|
|
|
|
|
|
int InstructionSequenceTest::AddInstruction(int instruction_index,
|
|
Instruction* instruction) {
|
|
sequence()->AddInstruction(instruction);
|
|
return instruction_index;
|
|
}
|
|
|
|
} // namespace compiler
|
|
} // namespace internal
|
|
} // namespace v8
|