d1190c503d
This reverts commit r22082 for breaking arm64 build. TBR=verwaest@chromium.org Review URL: https://codereview.chromium.org/360023003 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22083 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
3415 lines
111 KiB
C++
3415 lines
111 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/v8.h"
|
|
|
|
#if V8_TARGET_ARCH_IA32
|
|
|
|
#include "src/bootstrapper.h"
|
|
#include "src/codegen.h"
|
|
#include "src/cpu-profiler.h"
|
|
#include "src/debug.h"
|
|
#include "src/isolate-inl.h"
|
|
#include "src/runtime.h"
|
|
#include "src/serialize.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// -------------------------------------------------------------------------
|
|
// MacroAssembler implementation.
|
|
|
|
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
|
|
: Assembler(arg_isolate, buffer, size),
|
|
generating_stub_(false),
|
|
has_frame_(false) {
|
|
if (isolate() != NULL) {
|
|
// TODO(titzer): should we just use a null handle here instead?
|
|
code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
|
|
isolate());
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
|
|
ASSERT(!r.IsDouble());
|
|
if (r.IsInteger8()) {
|
|
movsx_b(dst, src);
|
|
} else if (r.IsUInteger8()) {
|
|
movzx_b(dst, src);
|
|
} else if (r.IsInteger16()) {
|
|
movsx_w(dst, src);
|
|
} else if (r.IsUInteger16()) {
|
|
movzx_w(dst, src);
|
|
} else {
|
|
mov(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
|
|
ASSERT(!r.IsDouble());
|
|
if (r.IsInteger8() || r.IsUInteger8()) {
|
|
mov_b(dst, src);
|
|
} else if (r.IsInteger16() || r.IsUInteger16()) {
|
|
mov_w(dst, src);
|
|
} else {
|
|
if (r.IsHeapObject()) {
|
|
AssertNotSmi(src);
|
|
} else if (r.IsSmi()) {
|
|
AssertSmi(src);
|
|
}
|
|
mov(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
|
|
if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
|
|
Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
|
|
mov(destination, value);
|
|
return;
|
|
}
|
|
ExternalReference roots_array_start =
|
|
ExternalReference::roots_array_start(isolate());
|
|
mov(destination, Immediate(index));
|
|
mov(destination, Operand::StaticArray(destination,
|
|
times_pointer_size,
|
|
roots_array_start));
|
|
}
|
|
|
|
|
|
void MacroAssembler::StoreRoot(Register source,
|
|
Register scratch,
|
|
Heap::RootListIndex index) {
|
|
ASSERT(Heap::RootCanBeWrittenAfterInitialization(index));
|
|
ExternalReference roots_array_start =
|
|
ExternalReference::roots_array_start(isolate());
|
|
mov(scratch, Immediate(index));
|
|
mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
|
|
source);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CompareRoot(Register with,
|
|
Register scratch,
|
|
Heap::RootListIndex index) {
|
|
ExternalReference roots_array_start =
|
|
ExternalReference::roots_array_start(isolate());
|
|
mov(scratch, Immediate(index));
|
|
cmp(with, Operand::StaticArray(scratch,
|
|
times_pointer_size,
|
|
roots_array_start));
|
|
}
|
|
|
|
|
|
void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
|
|
ASSERT(isolate()->heap()->RootCanBeTreatedAsConstant(index));
|
|
Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
|
|
cmp(with, value);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CompareRoot(const Operand& with,
|
|
Heap::RootListIndex index) {
|
|
ASSERT(isolate()->heap()->RootCanBeTreatedAsConstant(index));
|
|
Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
|
|
cmp(with, value);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InNewSpace(
|
|
Register object,
|
|
Register scratch,
|
|
Condition cc,
|
|
Label* condition_met,
|
|
Label::Distance condition_met_distance) {
|
|
ASSERT(cc == equal || cc == not_equal);
|
|
if (scratch.is(object)) {
|
|
and_(scratch, Immediate(~Page::kPageAlignmentMask));
|
|
} else {
|
|
mov(scratch, Immediate(~Page::kPageAlignmentMask));
|
|
and_(scratch, object);
|
|
}
|
|
// Check that we can use a test_b.
|
|
ASSERT(MemoryChunk::IN_FROM_SPACE < 8);
|
|
ASSERT(MemoryChunk::IN_TO_SPACE < 8);
|
|
int mask = (1 << MemoryChunk::IN_FROM_SPACE)
|
|
| (1 << MemoryChunk::IN_TO_SPACE);
|
|
// If non-zero, the page belongs to new-space.
|
|
test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
|
|
static_cast<uint8_t>(mask));
|
|
j(cc, condition_met, condition_met_distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::RememberedSetHelper(
|
|
Register object, // Only used for debug checks.
|
|
Register addr,
|
|
Register scratch,
|
|
SaveFPRegsMode save_fp,
|
|
MacroAssembler::RememberedSetFinalAction and_then) {
|
|
Label done;
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
|
|
int3();
|
|
bind(&ok);
|
|
}
|
|
// Load store buffer top.
|
|
ExternalReference store_buffer =
|
|
ExternalReference::store_buffer_top(isolate());
|
|
mov(scratch, Operand::StaticVariable(store_buffer));
|
|
// Store pointer to buffer.
|
|
mov(Operand(scratch, 0), addr);
|
|
// Increment buffer top.
|
|
add(scratch, Immediate(kPointerSize));
|
|
// Write back new top of buffer.
|
|
mov(Operand::StaticVariable(store_buffer), scratch);
|
|
// Call stub on end of buffer.
|
|
// Check for end of buffer.
|
|
test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
|
|
if (and_then == kReturnAtEnd) {
|
|
Label buffer_overflowed;
|
|
j(not_equal, &buffer_overflowed, Label::kNear);
|
|
ret(0);
|
|
bind(&buffer_overflowed);
|
|
} else {
|
|
ASSERT(and_then == kFallThroughAtEnd);
|
|
j(equal, &done, Label::kNear);
|
|
}
|
|
StoreBufferOverflowStub store_buffer_overflow =
|
|
StoreBufferOverflowStub(isolate(), save_fp);
|
|
CallStub(&store_buffer_overflow);
|
|
if (and_then == kReturnAtEnd) {
|
|
ret(0);
|
|
} else {
|
|
ASSERT(and_then == kFallThroughAtEnd);
|
|
bind(&done);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
|
|
XMMRegister scratch_reg,
|
|
Register result_reg) {
|
|
Label done;
|
|
Label conv_failure;
|
|
xorps(scratch_reg, scratch_reg);
|
|
cvtsd2si(result_reg, input_reg);
|
|
test(result_reg, Immediate(0xFFFFFF00));
|
|
j(zero, &done, Label::kNear);
|
|
cmp(result_reg, Immediate(0x1));
|
|
j(overflow, &conv_failure, Label::kNear);
|
|
mov(result_reg, Immediate(0));
|
|
setcc(sign, result_reg);
|
|
sub(result_reg, Immediate(1));
|
|
and_(result_reg, Immediate(255));
|
|
jmp(&done, Label::kNear);
|
|
bind(&conv_failure);
|
|
Move(result_reg, Immediate(0));
|
|
ucomisd(input_reg, scratch_reg);
|
|
j(below, &done, Label::kNear);
|
|
Move(result_reg, Immediate(255));
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::ClampUint8(Register reg) {
|
|
Label done;
|
|
test(reg, Immediate(0xFFFFFF00));
|
|
j(zero, &done, Label::kNear);
|
|
setcc(negative, reg); // 1 if negative, 0 if positive.
|
|
dec_b(reg); // 0 if negative, 255 if positive.
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SlowTruncateToI(Register result_reg,
|
|
Register input_reg,
|
|
int offset) {
|
|
DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
|
|
call(stub.GetCode(), RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TruncateDoubleToI(Register result_reg,
|
|
XMMRegister input_reg) {
|
|
Label done;
|
|
cvttsd2si(result_reg, Operand(input_reg));
|
|
cmp(result_reg, 0x1);
|
|
j(no_overflow, &done, Label::kNear);
|
|
|
|
sub(esp, Immediate(kDoubleSize));
|
|
movsd(MemOperand(esp, 0), input_reg);
|
|
SlowTruncateToI(result_reg, esp, 0);
|
|
add(esp, Immediate(kDoubleSize));
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::DoubleToI(Register result_reg,
|
|
XMMRegister input_reg,
|
|
XMMRegister scratch,
|
|
MinusZeroMode minus_zero_mode,
|
|
Label* conversion_failed,
|
|
Label::Distance dst) {
|
|
ASSERT(!input_reg.is(scratch));
|
|
cvttsd2si(result_reg, Operand(input_reg));
|
|
Cvtsi2sd(scratch, Operand(result_reg));
|
|
ucomisd(scratch, input_reg);
|
|
j(not_equal, conversion_failed, dst);
|
|
j(parity_even, conversion_failed, dst); // NaN.
|
|
if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
|
|
Label done;
|
|
// The integer converted back is equal to the original. We
|
|
// only have to test if we got -0 as an input.
|
|
test(result_reg, Operand(result_reg));
|
|
j(not_zero, &done, Label::kNear);
|
|
movmskpd(result_reg, input_reg);
|
|
// Bit 0 contains the sign of the double in input_reg.
|
|
// If input was positive, we are ok and return 0, otherwise
|
|
// jump to conversion_failed.
|
|
and_(result_reg, 1);
|
|
j(not_zero, conversion_failed, dst);
|
|
bind(&done);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
|
|
Register input_reg) {
|
|
Label done, slow_case;
|
|
|
|
if (CpuFeatures::IsSupported(SSE3)) {
|
|
CpuFeatureScope scope(this, SSE3);
|
|
Label convert;
|
|
// Use more powerful conversion when sse3 is available.
|
|
// Load x87 register with heap number.
|
|
fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
|
|
// Get exponent alone and check for too-big exponent.
|
|
mov(result_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
|
|
and_(result_reg, HeapNumber::kExponentMask);
|
|
const uint32_t kTooBigExponent =
|
|
(HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
|
|
cmp(Operand(result_reg), Immediate(kTooBigExponent));
|
|
j(greater_equal, &slow_case, Label::kNear);
|
|
|
|
// Reserve space for 64 bit answer.
|
|
sub(Operand(esp), Immediate(kDoubleSize));
|
|
// Do conversion, which cannot fail because we checked the exponent.
|
|
fisttp_d(Operand(esp, 0));
|
|
mov(result_reg, Operand(esp, 0)); // Low word of answer is the result.
|
|
add(Operand(esp), Immediate(kDoubleSize));
|
|
jmp(&done, Label::kNear);
|
|
|
|
// Slow case.
|
|
bind(&slow_case);
|
|
if (input_reg.is(result_reg)) {
|
|
// Input is clobbered. Restore number from fpu stack
|
|
sub(Operand(esp), Immediate(kDoubleSize));
|
|
fstp_d(Operand(esp, 0));
|
|
SlowTruncateToI(result_reg, esp, 0);
|
|
add(esp, Immediate(kDoubleSize));
|
|
} else {
|
|
fstp(0);
|
|
SlowTruncateToI(result_reg, input_reg);
|
|
}
|
|
} else {
|
|
movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
|
|
cvttsd2si(result_reg, Operand(xmm0));
|
|
cmp(result_reg, 0x1);
|
|
j(no_overflow, &done, Label::kNear);
|
|
// Check if the input was 0x8000000 (kMinInt).
|
|
// If no, then we got an overflow and we deoptimize.
|
|
ExternalReference min_int = ExternalReference::address_of_min_int();
|
|
ucomisd(xmm0, Operand::StaticVariable(min_int));
|
|
j(not_equal, &slow_case, Label::kNear);
|
|
j(parity_even, &slow_case, Label::kNear); // NaN.
|
|
jmp(&done, Label::kNear);
|
|
|
|
// Slow case.
|
|
bind(&slow_case);
|
|
if (input_reg.is(result_reg)) {
|
|
// Input is clobbered. Restore number from double scratch.
|
|
sub(esp, Immediate(kDoubleSize));
|
|
movsd(MemOperand(esp, 0), xmm0);
|
|
SlowTruncateToI(result_reg, esp, 0);
|
|
add(esp, Immediate(kDoubleSize));
|
|
} else {
|
|
SlowTruncateToI(result_reg, input_reg);
|
|
}
|
|
}
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TaggedToI(Register result_reg,
|
|
Register input_reg,
|
|
XMMRegister temp,
|
|
MinusZeroMode minus_zero_mode,
|
|
Label* lost_precision) {
|
|
Label done;
|
|
ASSERT(!temp.is(xmm0));
|
|
|
|
cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
|
|
isolate()->factory()->heap_number_map());
|
|
j(not_equal, lost_precision, Label::kNear);
|
|
|
|
ASSERT(!temp.is(no_xmm_reg));
|
|
|
|
movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
|
|
cvttsd2si(result_reg, Operand(xmm0));
|
|
Cvtsi2sd(temp, Operand(result_reg));
|
|
ucomisd(xmm0, temp);
|
|
RecordComment("Deferred TaggedToI: lost precision");
|
|
j(not_equal, lost_precision, Label::kNear);
|
|
RecordComment("Deferred TaggedToI: NaN");
|
|
j(parity_even, lost_precision, Label::kNear);
|
|
if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
|
|
test(result_reg, Operand(result_reg));
|
|
j(not_zero, &done, Label::kNear);
|
|
movmskpd(result_reg, xmm0);
|
|
and_(result_reg, 1);
|
|
RecordComment("Deferred TaggedToI: minus zero");
|
|
j(not_zero, lost_precision, Label::kNear);
|
|
}
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadUint32(XMMRegister dst,
|
|
Register src) {
|
|
Label done;
|
|
cmp(src, Immediate(0));
|
|
ExternalReference uint32_bias =
|
|
ExternalReference::address_of_uint32_bias();
|
|
Cvtsi2sd(dst, src);
|
|
j(not_sign, &done, Label::kNear);
|
|
addsd(dst, Operand::StaticVariable(uint32_bias));
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWriteArray(
|
|
Register object,
|
|
Register value,
|
|
Register index,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action,
|
|
SmiCheck smi_check,
|
|
PointersToHereCheck pointers_to_here_check_for_value) {
|
|
// First, check if a write barrier is even needed. The tests below
|
|
// catch stores of Smis.
|
|
Label done;
|
|
|
|
// Skip barrier if writing a smi.
|
|
if (smi_check == INLINE_SMI_CHECK) {
|
|
ASSERT_EQ(0, kSmiTag);
|
|
test(value, Immediate(kSmiTagMask));
|
|
j(zero, &done);
|
|
}
|
|
|
|
// Array access: calculate the destination address in the same manner as
|
|
// KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset
|
|
// into an array of words.
|
|
Register dst = index;
|
|
lea(dst, Operand(object, index, times_half_pointer_size,
|
|
FixedArray::kHeaderSize - kHeapObjectTag));
|
|
|
|
RecordWrite(object, dst, value, save_fp, remembered_set_action,
|
|
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
|
|
|
|
bind(&done);
|
|
|
|
// Clobber clobbered input registers when running with the debug-code flag
|
|
// turned on to provoke errors.
|
|
if (emit_debug_code()) {
|
|
mov(value, Immediate(BitCast<int32_t>(kZapValue)));
|
|
mov(index, Immediate(BitCast<int32_t>(kZapValue)));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWriteField(
|
|
Register object,
|
|
int offset,
|
|
Register value,
|
|
Register dst,
|
|
SaveFPRegsMode save_fp,
|
|
RememberedSetAction remembered_set_action,
|
|
SmiCheck smi_check,
|
|
PointersToHereCheck pointers_to_here_check_for_value) {
|
|
// First, check if a write barrier is even needed. The tests below
|
|
// catch stores of Smis.
|
|
Label done;
|
|
|
|
// Skip barrier if writing a smi.
|
|
if (smi_check == INLINE_SMI_CHECK) {
|
|
JumpIfSmi(value, &done, Label::kNear);
|
|
}
|
|
|
|
// Although the object register is tagged, the offset is relative to the start
|
|
// of the object, so so offset must be a multiple of kPointerSize.
|
|
ASSERT(IsAligned(offset, kPointerSize));
|
|
|
|
lea(dst, FieldOperand(object, offset));
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
test_b(dst, (1 << kPointerSizeLog2) - 1);
|
|
j(zero, &ok, Label::kNear);
|
|
int3();
|
|
bind(&ok);
|
|
}
|
|
|
|
RecordWrite(object, dst, value, save_fp, remembered_set_action,
|
|
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
|
|
|
|
bind(&done);
|
|
|
|
// Clobber clobbered input registers when running with the debug-code flag
|
|
// turned on to provoke errors.
|
|
if (emit_debug_code()) {
|
|
mov(value, Immediate(BitCast<int32_t>(kZapValue)));
|
|
mov(dst, Immediate(BitCast<int32_t>(kZapValue)));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWriteForMap(
|
|
Register object,
|
|
Handle<Map> map,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
SaveFPRegsMode save_fp) {
|
|
Label done;
|
|
|
|
Register address = scratch1;
|
|
Register value = scratch2;
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
lea(address, FieldOperand(object, HeapObject::kMapOffset));
|
|
test_b(address, (1 << kPointerSizeLog2) - 1);
|
|
j(zero, &ok, Label::kNear);
|
|
int3();
|
|
bind(&ok);
|
|
}
|
|
|
|
ASSERT(!object.is(value));
|
|
ASSERT(!object.is(address));
|
|
ASSERT(!value.is(address));
|
|
AssertNotSmi(object);
|
|
|
|
if (!FLAG_incremental_marking) {
|
|
return;
|
|
}
|
|
|
|
// Compute the address.
|
|
lea(address, FieldOperand(object, HeapObject::kMapOffset));
|
|
|
|
// Count number of write barriers in generated code.
|
|
isolate()->counters()->write_barriers_static()->Increment();
|
|
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
|
|
|
|
// A single check of the map's pages interesting flag suffices, since it is
|
|
// only set during incremental collection, and then it's also guaranteed that
|
|
// the from object's page's interesting flag is also set. This optimization
|
|
// relies on the fact that maps can never be in new space.
|
|
ASSERT(!isolate()->heap()->InNewSpace(*map));
|
|
CheckPageFlagForMap(map,
|
|
MemoryChunk::kPointersToHereAreInterestingMask,
|
|
zero,
|
|
&done,
|
|
Label::kNear);
|
|
|
|
RecordWriteStub stub(isolate(), object, value, address, OMIT_REMEMBERED_SET,
|
|
save_fp);
|
|
CallStub(&stub);
|
|
|
|
bind(&done);
|
|
|
|
// Clobber clobbered input registers when running with the debug-code flag
|
|
// turned on to provoke errors.
|
|
if (emit_debug_code()) {
|
|
mov(value, Immediate(BitCast<int32_t>(kZapValue)));
|
|
mov(scratch1, Immediate(BitCast<int32_t>(kZapValue)));
|
|
mov(scratch2, Immediate(BitCast<int32_t>(kZapValue)));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::RecordWrite(
|
|
Register object,
|
|
Register address,
|
|
Register value,
|
|
SaveFPRegsMode fp_mode,
|
|
RememberedSetAction remembered_set_action,
|
|
SmiCheck smi_check,
|
|
PointersToHereCheck pointers_to_here_check_for_value) {
|
|
ASSERT(!object.is(value));
|
|
ASSERT(!object.is(address));
|
|
ASSERT(!value.is(address));
|
|
AssertNotSmi(object);
|
|
|
|
if (remembered_set_action == OMIT_REMEMBERED_SET &&
|
|
!FLAG_incremental_marking) {
|
|
return;
|
|
}
|
|
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
cmp(value, Operand(address, 0));
|
|
j(equal, &ok, Label::kNear);
|
|
int3();
|
|
bind(&ok);
|
|
}
|
|
|
|
// Count number of write barriers in generated code.
|
|
isolate()->counters()->write_barriers_static()->Increment();
|
|
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
|
|
|
|
// First, check if a write barrier is even needed. The tests below
|
|
// catch stores of Smis and stores into young gen.
|
|
Label done;
|
|
|
|
if (smi_check == INLINE_SMI_CHECK) {
|
|
// Skip barrier if writing a smi.
|
|
JumpIfSmi(value, &done, Label::kNear);
|
|
}
|
|
|
|
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
|
|
CheckPageFlag(value,
|
|
value, // Used as scratch.
|
|
MemoryChunk::kPointersToHereAreInterestingMask,
|
|
zero,
|
|
&done,
|
|
Label::kNear);
|
|
}
|
|
CheckPageFlag(object,
|
|
value, // Used as scratch.
|
|
MemoryChunk::kPointersFromHereAreInterestingMask,
|
|
zero,
|
|
&done,
|
|
Label::kNear);
|
|
|
|
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
|
|
fp_mode);
|
|
CallStub(&stub);
|
|
|
|
bind(&done);
|
|
|
|
// Clobber clobbered registers when running with the debug-code flag
|
|
// turned on to provoke errors.
|
|
if (emit_debug_code()) {
|
|
mov(address, Immediate(BitCast<int32_t>(kZapValue)));
|
|
mov(value, Immediate(BitCast<int32_t>(kZapValue)));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::DebugBreak() {
|
|
Move(eax, Immediate(0));
|
|
mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
|
|
CEntryStub ces(isolate(), 1);
|
|
call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Cvtsi2sd(XMMRegister dst, const Operand& src) {
|
|
xorps(dst, dst);
|
|
cvtsi2sd(dst, src);
|
|
}
|
|
|
|
|
|
bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
|
|
static const int kMaxImmediateBits = 17;
|
|
if (!RelocInfo::IsNone(x.rmode_)) return false;
|
|
return !is_intn(x.x_, kMaxImmediateBits);
|
|
}
|
|
|
|
|
|
void MacroAssembler::SafeMove(Register dst, const Immediate& x) {
|
|
if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
|
|
Move(dst, Immediate(x.x_ ^ jit_cookie()));
|
|
xor_(dst, jit_cookie());
|
|
} else {
|
|
Move(dst, x);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SafePush(const Immediate& x) {
|
|
if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
|
|
push(Immediate(x.x_ ^ jit_cookie()));
|
|
xor_(Operand(esp, 0), Immediate(jit_cookie()));
|
|
} else {
|
|
push(x);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::CmpObjectType(Register heap_object,
|
|
InstanceType type,
|
|
Register map) {
|
|
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
|
|
CmpInstanceType(map, type);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
|
|
cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
|
|
static_cast<int8_t>(type));
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckFastElements(Register map,
|
|
Label* fail,
|
|
Label::Distance distance) {
|
|
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
|
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
|
STATIC_ASSERT(FAST_ELEMENTS == 2);
|
|
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
|
cmpb(FieldOperand(map, Map::kBitField2Offset),
|
|
Map::kMaximumBitField2FastHoleyElementValue);
|
|
j(above, fail, distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckFastObjectElements(Register map,
|
|
Label* fail,
|
|
Label::Distance distance) {
|
|
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
|
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
|
STATIC_ASSERT(FAST_ELEMENTS == 2);
|
|
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
|
|
cmpb(FieldOperand(map, Map::kBitField2Offset),
|
|
Map::kMaximumBitField2FastHoleySmiElementValue);
|
|
j(below_equal, fail, distance);
|
|
cmpb(FieldOperand(map, Map::kBitField2Offset),
|
|
Map::kMaximumBitField2FastHoleyElementValue);
|
|
j(above, fail, distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckFastSmiElements(Register map,
|
|
Label* fail,
|
|
Label::Distance distance) {
|
|
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
|
|
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
|
|
cmpb(FieldOperand(map, Map::kBitField2Offset),
|
|
Map::kMaximumBitField2FastHoleySmiElementValue);
|
|
j(above, fail, distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::StoreNumberToDoubleElements(
|
|
Register maybe_number,
|
|
Register elements,
|
|
Register key,
|
|
Register scratch1,
|
|
XMMRegister scratch2,
|
|
Label* fail,
|
|
int elements_offset) {
|
|
Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
|
|
JumpIfSmi(maybe_number, &smi_value, Label::kNear);
|
|
|
|
CheckMap(maybe_number,
|
|
isolate()->factory()->heap_number_map(),
|
|
fail,
|
|
DONT_DO_SMI_CHECK);
|
|
|
|
// Double value, canonicalize NaN.
|
|
uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
|
|
cmp(FieldOperand(maybe_number, offset),
|
|
Immediate(kNaNOrInfinityLowerBoundUpper32));
|
|
j(greater_equal, &maybe_nan, Label::kNear);
|
|
|
|
bind(¬_nan);
|
|
ExternalReference canonical_nan_reference =
|
|
ExternalReference::address_of_canonical_non_hole_nan();
|
|
movsd(scratch2, FieldOperand(maybe_number, HeapNumber::kValueOffset));
|
|
bind(&have_double_value);
|
|
movsd(FieldOperand(elements, key, times_4,
|
|
FixedDoubleArray::kHeaderSize - elements_offset),
|
|
scratch2);
|
|
jmp(&done);
|
|
|
|
bind(&maybe_nan);
|
|
// Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
|
|
// it's an Infinity, and the non-NaN code path applies.
|
|
j(greater, &is_nan, Label::kNear);
|
|
cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
|
|
j(zero, ¬_nan);
|
|
bind(&is_nan);
|
|
movsd(scratch2, Operand::StaticVariable(canonical_nan_reference));
|
|
jmp(&have_double_value, Label::kNear);
|
|
|
|
bind(&smi_value);
|
|
// Value is a smi. Convert to a double and store.
|
|
// Preserve original value.
|
|
mov(scratch1, maybe_number);
|
|
SmiUntag(scratch1);
|
|
Cvtsi2sd(scratch2, scratch1);
|
|
movsd(FieldOperand(elements, key, times_4,
|
|
FixedDoubleArray::kHeaderSize - elements_offset),
|
|
scratch2);
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
|
|
cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckMap(Register obj,
|
|
Handle<Map> map,
|
|
Label* fail,
|
|
SmiCheckType smi_check_type) {
|
|
if (smi_check_type == DO_SMI_CHECK) {
|
|
JumpIfSmi(obj, fail);
|
|
}
|
|
|
|
CompareMap(obj, map);
|
|
j(not_equal, fail);
|
|
}
|
|
|
|
|
|
void MacroAssembler::DispatchMap(Register obj,
|
|
Register unused,
|
|
Handle<Map> map,
|
|
Handle<Code> success,
|
|
SmiCheckType smi_check_type) {
|
|
Label fail;
|
|
if (smi_check_type == DO_SMI_CHECK) {
|
|
JumpIfSmi(obj, &fail);
|
|
}
|
|
cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
|
|
j(equal, success);
|
|
|
|
bind(&fail);
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::IsObjectStringType(Register heap_object,
|
|
Register map,
|
|
Register instance_type) {
|
|
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
|
|
movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
|
|
STATIC_ASSERT(kNotStringTag != 0);
|
|
test(instance_type, Immediate(kIsNotStringMask));
|
|
return zero;
|
|
}
|
|
|
|
|
|
Condition MacroAssembler::IsObjectNameType(Register heap_object,
|
|
Register map,
|
|
Register instance_type) {
|
|
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
|
|
movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
|
|
cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE));
|
|
return below_equal;
|
|
}
|
|
|
|
|
|
void MacroAssembler::IsObjectJSObjectType(Register heap_object,
|
|
Register map,
|
|
Register scratch,
|
|
Label* fail) {
|
|
mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
|
|
IsInstanceJSObjectType(map, scratch, fail);
|
|
}
|
|
|
|
|
|
void MacroAssembler::IsInstanceJSObjectType(Register map,
|
|
Register scratch,
|
|
Label* fail) {
|
|
movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
|
|
sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
|
|
cmp(scratch,
|
|
LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
|
|
j(above, fail);
|
|
}
|
|
|
|
|
|
void MacroAssembler::FCmp() {
|
|
fucomip();
|
|
fstp(0);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertNumber(Register object) {
|
|
if (emit_debug_code()) {
|
|
Label ok;
|
|
JumpIfSmi(object, &ok);
|
|
cmp(FieldOperand(object, HeapObject::kMapOffset),
|
|
isolate()->factory()->heap_number_map());
|
|
Check(equal, kOperandNotANumber);
|
|
bind(&ok);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertSmi(Register object) {
|
|
if (emit_debug_code()) {
|
|
test(object, Immediate(kSmiTagMask));
|
|
Check(equal, kOperandIsNotASmi);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertString(Register object) {
|
|
if (emit_debug_code()) {
|
|
test(object, Immediate(kSmiTagMask));
|
|
Check(not_equal, kOperandIsASmiAndNotAString);
|
|
push(object);
|
|
mov(object, FieldOperand(object, HeapObject::kMapOffset));
|
|
CmpInstanceType(object, FIRST_NONSTRING_TYPE);
|
|
pop(object);
|
|
Check(below, kOperandIsNotAString);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertName(Register object) {
|
|
if (emit_debug_code()) {
|
|
test(object, Immediate(kSmiTagMask));
|
|
Check(not_equal, kOperandIsASmiAndNotAName);
|
|
push(object);
|
|
mov(object, FieldOperand(object, HeapObject::kMapOffset));
|
|
CmpInstanceType(object, LAST_NAME_TYPE);
|
|
pop(object);
|
|
Check(below_equal, kOperandIsNotAName);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
|
|
if (emit_debug_code()) {
|
|
Label done_checking;
|
|
AssertNotSmi(object);
|
|
cmp(object, isolate()->factory()->undefined_value());
|
|
j(equal, &done_checking);
|
|
cmp(FieldOperand(object, 0),
|
|
Immediate(isolate()->factory()->allocation_site_map()));
|
|
Assert(equal, kExpectedUndefinedOrCell);
|
|
bind(&done_checking);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertNotSmi(Register object) {
|
|
if (emit_debug_code()) {
|
|
test(object, Immediate(kSmiTagMask));
|
|
Check(not_equal, kOperandIsASmi);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::StubPrologue() {
|
|
push(ebp); // Caller's frame pointer.
|
|
mov(ebp, esp);
|
|
push(esi); // Callee's context.
|
|
push(Immediate(Smi::FromInt(StackFrame::STUB)));
|
|
}
|
|
|
|
|
|
void MacroAssembler::Prologue(bool code_pre_aging) {
|
|
PredictableCodeSizeScope predictible_code_size_scope(this,
|
|
kNoCodeAgeSequenceLength);
|
|
if (code_pre_aging) {
|
|
// Pre-age the code.
|
|
call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
|
|
RelocInfo::CODE_AGE_SEQUENCE);
|
|
Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
|
|
} else {
|
|
push(ebp); // Caller's frame pointer.
|
|
mov(ebp, esp);
|
|
push(esi); // Callee's context.
|
|
push(edi); // Callee's JS function.
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterFrame(StackFrame::Type type) {
|
|
push(ebp);
|
|
mov(ebp, esp);
|
|
push(esi);
|
|
push(Immediate(Smi::FromInt(type)));
|
|
push(Immediate(CodeObject()));
|
|
if (emit_debug_code()) {
|
|
cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
|
|
Check(not_equal, kCodeObjectNotProperlyPatched);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
|
|
if (emit_debug_code()) {
|
|
cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
|
|
Immediate(Smi::FromInt(type)));
|
|
Check(equal, kStackFrameTypesMustMatch);
|
|
}
|
|
leave();
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterExitFramePrologue() {
|
|
// Set up the frame structure on the stack.
|
|
ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
|
|
ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
|
|
ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize);
|
|
push(ebp);
|
|
mov(ebp, esp);
|
|
|
|
// Reserve room for entry stack pointer and push the code object.
|
|
ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize);
|
|
push(Immediate(0)); // Saved entry sp, patched before call.
|
|
push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot.
|
|
|
|
// Save the frame pointer and the context in top.
|
|
ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
|
|
ExternalReference context_address(Isolate::kContextAddress, isolate());
|
|
mov(Operand::StaticVariable(c_entry_fp_address), ebp);
|
|
mov(Operand::StaticVariable(context_address), esi);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
|
|
// Optionally save all XMM registers.
|
|
if (save_doubles) {
|
|
int space = XMMRegister::kMaxNumRegisters * kDoubleSize +
|
|
argc * kPointerSize;
|
|
sub(esp, Immediate(space));
|
|
const int offset = -2 * kPointerSize;
|
|
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
|
|
XMMRegister reg = XMMRegister::from_code(i);
|
|
movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg);
|
|
}
|
|
} else {
|
|
sub(esp, Immediate(argc * kPointerSize));
|
|
}
|
|
|
|
// Get the required frame alignment for the OS.
|
|
const int kFrameAlignment = OS::ActivationFrameAlignment();
|
|
if (kFrameAlignment > 0) {
|
|
ASSERT(IsPowerOf2(kFrameAlignment));
|
|
and_(esp, -kFrameAlignment);
|
|
}
|
|
|
|
// Patch the saved entry sp.
|
|
mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterExitFrame(bool save_doubles) {
|
|
EnterExitFramePrologue();
|
|
|
|
// Set up argc and argv in callee-saved registers.
|
|
int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
|
|
mov(edi, eax);
|
|
lea(esi, Operand(ebp, eax, times_4, offset));
|
|
|
|
// Reserve space for argc, argv and isolate.
|
|
EnterExitFrameEpilogue(3, save_doubles);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnterApiExitFrame(int argc) {
|
|
EnterExitFramePrologue();
|
|
EnterExitFrameEpilogue(argc, false);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveExitFrame(bool save_doubles) {
|
|
// Optionally restore all XMM registers.
|
|
if (save_doubles) {
|
|
const int offset = -2 * kPointerSize;
|
|
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
|
|
XMMRegister reg = XMMRegister::from_code(i);
|
|
movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize)));
|
|
}
|
|
}
|
|
|
|
// Get the return address from the stack and restore the frame pointer.
|
|
mov(ecx, Operand(ebp, 1 * kPointerSize));
|
|
mov(ebp, Operand(ebp, 0 * kPointerSize));
|
|
|
|
// Pop the arguments and the receiver from the caller stack.
|
|
lea(esp, Operand(esi, 1 * kPointerSize));
|
|
|
|
// Push the return address to get ready to return.
|
|
push(ecx);
|
|
|
|
LeaveExitFrameEpilogue(true);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
|
|
// Restore current context from top and clear it in debug mode.
|
|
ExternalReference context_address(Isolate::kContextAddress, isolate());
|
|
if (restore_context) {
|
|
mov(esi, Operand::StaticVariable(context_address));
|
|
}
|
|
#ifdef DEBUG
|
|
mov(Operand::StaticVariable(context_address), Immediate(0));
|
|
#endif
|
|
|
|
// Clear the top frame.
|
|
ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
|
|
isolate());
|
|
mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
|
|
}
|
|
|
|
|
|
void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
|
|
mov(esp, ebp);
|
|
pop(ebp);
|
|
|
|
LeaveExitFrameEpilogue(restore_context);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
|
|
int handler_index) {
|
|
// Adjust this code if not the case.
|
|
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
|
|
|
|
// We will build up the handler from the bottom by pushing on the stack.
|
|
// First push the frame pointer and context.
|
|
if (kind == StackHandler::JS_ENTRY) {
|
|
// The frame pointer does not point to a JS frame so we save NULL for
|
|
// ebp. We expect the code throwing an exception to check ebp before
|
|
// dereferencing it to restore the context.
|
|
push(Immediate(0)); // NULL frame pointer.
|
|
push(Immediate(Smi::FromInt(0))); // No context.
|
|
} else {
|
|
push(ebp);
|
|
push(esi);
|
|
}
|
|
// Push the state and the code object.
|
|
unsigned state =
|
|
StackHandler::IndexField::encode(handler_index) |
|
|
StackHandler::KindField::encode(kind);
|
|
push(Immediate(state));
|
|
Push(CodeObject());
|
|
|
|
// Link the current handler as the next handler.
|
|
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
|
|
push(Operand::StaticVariable(handler_address));
|
|
// Set this new handler as the current one.
|
|
mov(Operand::StaticVariable(handler_address), esp);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PopTryHandler() {
|
|
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
|
|
pop(Operand::StaticVariable(handler_address));
|
|
add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpToHandlerEntry() {
|
|
// Compute the handler entry address and jump to it. The handler table is
|
|
// a fixed array of (smi-tagged) code offsets.
|
|
// eax = exception, edi = code object, edx = state.
|
|
mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
|
|
shr(edx, StackHandler::kKindWidth);
|
|
mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
|
|
SmiUntag(edx);
|
|
lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
|
|
jmp(edi);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Throw(Register value) {
|
|
// Adjust this code if not the case.
|
|
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
|
|
|
|
// The exception is expected in eax.
|
|
if (!value.is(eax)) {
|
|
mov(eax, value);
|
|
}
|
|
// Drop the stack pointer to the top of the top handler.
|
|
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
|
|
mov(esp, Operand::StaticVariable(handler_address));
|
|
// Restore the next handler.
|
|
pop(Operand::StaticVariable(handler_address));
|
|
|
|
// Remove the code object and state, compute the handler address in edi.
|
|
pop(edi); // Code object.
|
|
pop(edx); // Index and state.
|
|
|
|
// Restore the context and frame pointer.
|
|
pop(esi); // Context.
|
|
pop(ebp); // Frame pointer.
|
|
|
|
// If the handler is a JS frame, restore the context to the frame.
|
|
// (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
|
|
// ebp or esi.
|
|
Label skip;
|
|
test(esi, esi);
|
|
j(zero, &skip, Label::kNear);
|
|
mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
|
|
bind(&skip);
|
|
|
|
JumpToHandlerEntry();
|
|
}
|
|
|
|
|
|
void MacroAssembler::ThrowUncatchable(Register value) {
|
|
// Adjust this code if not the case.
|
|
STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
|
|
STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
|
|
STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
|
|
|
|
// The exception is expected in eax.
|
|
if (!value.is(eax)) {
|
|
mov(eax, value);
|
|
}
|
|
// Drop the stack pointer to the top of the top stack handler.
|
|
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
|
|
mov(esp, Operand::StaticVariable(handler_address));
|
|
|
|
// Unwind the handlers until the top ENTRY handler is found.
|
|
Label fetch_next, check_kind;
|
|
jmp(&check_kind, Label::kNear);
|
|
bind(&fetch_next);
|
|
mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));
|
|
|
|
bind(&check_kind);
|
|
STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
|
|
test(Operand(esp, StackHandlerConstants::kStateOffset),
|
|
Immediate(StackHandler::KindField::kMask));
|
|
j(not_zero, &fetch_next);
|
|
|
|
// Set the top handler address to next handler past the top ENTRY handler.
|
|
pop(Operand::StaticVariable(handler_address));
|
|
|
|
// Remove the code object and state, compute the handler address in edi.
|
|
pop(edi); // Code object.
|
|
pop(edx); // Index and state.
|
|
|
|
// Clear the context pointer and frame pointer (0 was saved in the handler).
|
|
pop(esi);
|
|
pop(ebp);
|
|
|
|
JumpToHandlerEntry();
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* miss) {
|
|
Label same_contexts;
|
|
|
|
ASSERT(!holder_reg.is(scratch1));
|
|
ASSERT(!holder_reg.is(scratch2));
|
|
ASSERT(!scratch1.is(scratch2));
|
|
|
|
// Load current lexical context from the stack frame.
|
|
mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset));
|
|
|
|
// When generating debug code, make sure the lexical context is set.
|
|
if (emit_debug_code()) {
|
|
cmp(scratch1, Immediate(0));
|
|
Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
|
|
}
|
|
// Load the native context of the current context.
|
|
int offset =
|
|
Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
|
|
mov(scratch1, FieldOperand(scratch1, offset));
|
|
mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset));
|
|
|
|
// Check the context is a native context.
|
|
if (emit_debug_code()) {
|
|
// Read the first word and compare to native_context_map.
|
|
cmp(FieldOperand(scratch1, HeapObject::kMapOffset),
|
|
isolate()->factory()->native_context_map());
|
|
Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
|
|
}
|
|
|
|
// Check if both contexts are the same.
|
|
cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
|
|
j(equal, &same_contexts);
|
|
|
|
// Compare security tokens, save holder_reg on the stack so we can use it
|
|
// as a temporary register.
|
|
//
|
|
// Check that the security token in the calling global object is
|
|
// compatible with the security token in the receiving global
|
|
// object.
|
|
mov(scratch2,
|
|
FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
|
|
|
|
// Check the context is a native context.
|
|
if (emit_debug_code()) {
|
|
cmp(scratch2, isolate()->factory()->null_value());
|
|
Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
|
|
|
|
// Read the first word and compare to native_context_map(),
|
|
cmp(FieldOperand(scratch2, HeapObject::kMapOffset),
|
|
isolate()->factory()->native_context_map());
|
|
Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
|
|
}
|
|
|
|
int token_offset = Context::kHeaderSize +
|
|
Context::SECURITY_TOKEN_INDEX * kPointerSize;
|
|
mov(scratch1, FieldOperand(scratch1, token_offset));
|
|
cmp(scratch1, FieldOperand(scratch2, token_offset));
|
|
j(not_equal, miss);
|
|
|
|
bind(&same_contexts);
|
|
}
|
|
|
|
|
|
// Compute the hash code from the untagged key. This must be kept in sync with
|
|
// ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
|
|
// code-stub-hydrogen.cc
|
|
//
|
|
// Note: r0 will contain hash code
|
|
void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
|
|
// Xor original key with a seed.
|
|
if (serializer_enabled()) {
|
|
ExternalReference roots_array_start =
|
|
ExternalReference::roots_array_start(isolate());
|
|
mov(scratch, Immediate(Heap::kHashSeedRootIndex));
|
|
mov(scratch,
|
|
Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
|
|
SmiUntag(scratch);
|
|
xor_(r0, scratch);
|
|
} else {
|
|
int32_t seed = isolate()->heap()->HashSeed();
|
|
xor_(r0, Immediate(seed));
|
|
}
|
|
|
|
// hash = ~hash + (hash << 15);
|
|
mov(scratch, r0);
|
|
not_(r0);
|
|
shl(scratch, 15);
|
|
add(r0, scratch);
|
|
// hash = hash ^ (hash >> 12);
|
|
mov(scratch, r0);
|
|
shr(scratch, 12);
|
|
xor_(r0, scratch);
|
|
// hash = hash + (hash << 2);
|
|
lea(r0, Operand(r0, r0, times_4, 0));
|
|
// hash = hash ^ (hash >> 4);
|
|
mov(scratch, r0);
|
|
shr(scratch, 4);
|
|
xor_(r0, scratch);
|
|
// hash = hash * 2057;
|
|
imul(r0, r0, 2057);
|
|
// hash = hash ^ (hash >> 16);
|
|
mov(scratch, r0);
|
|
shr(scratch, 16);
|
|
xor_(r0, scratch);
|
|
}
|
|
|
|
|
|
|
|
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
|
|
Register elements,
|
|
Register key,
|
|
Register r0,
|
|
Register r1,
|
|
Register r2,
|
|
Register result) {
|
|
// Register use:
|
|
//
|
|
// elements - holds the slow-case elements of the receiver and is unchanged.
|
|
//
|
|
// key - holds the smi key on entry and is unchanged.
|
|
//
|
|
// Scratch registers:
|
|
//
|
|
// r0 - holds the untagged key on entry and holds the hash once computed.
|
|
//
|
|
// r1 - used to hold the capacity mask of the dictionary
|
|
//
|
|
// r2 - used for the index into the dictionary.
|
|
//
|
|
// result - holds the result on exit if the load succeeds and we fall through.
|
|
|
|
Label done;
|
|
|
|
GetNumberHash(r0, r1);
|
|
|
|
// Compute capacity mask.
|
|
mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
|
|
shr(r1, kSmiTagSize); // convert smi to int
|
|
dec(r1);
|
|
|
|
// Generate an unrolled loop that performs a few probes before giving up.
|
|
for (int i = 0; i < kNumberDictionaryProbes; i++) {
|
|
// Use r2 for index calculations and keep the hash intact in r0.
|
|
mov(r2, r0);
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
if (i > 0) {
|
|
add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
|
|
}
|
|
and_(r2, r1);
|
|
|
|
// Scale the index by multiplying by the entry size.
|
|
ASSERT(SeededNumberDictionary::kEntrySize == 3);
|
|
lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
|
|
|
|
// Check if the key matches.
|
|
cmp(key, FieldOperand(elements,
|
|
r2,
|
|
times_pointer_size,
|
|
SeededNumberDictionary::kElementsStartOffset));
|
|
if (i != (kNumberDictionaryProbes - 1)) {
|
|
j(equal, &done);
|
|
} else {
|
|
j(not_equal, miss);
|
|
}
|
|
}
|
|
|
|
bind(&done);
|
|
// Check that the value is a normal propety.
|
|
const int kDetailsOffset =
|
|
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
|
|
ASSERT_EQ(NORMAL, 0);
|
|
test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
|
|
Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
|
|
j(not_zero, miss);
|
|
|
|
// Get the value at the masked, scaled index.
|
|
const int kValueOffset =
|
|
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
|
|
mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadAllocationTopHelper(Register result,
|
|
Register scratch,
|
|
AllocationFlags flags) {
|
|
ExternalReference allocation_top =
|
|
AllocationUtils::GetAllocationTopReference(isolate(), flags);
|
|
|
|
// Just return if allocation top is already known.
|
|
if ((flags & RESULT_CONTAINS_TOP) != 0) {
|
|
// No use of scratch if allocation top is provided.
|
|
ASSERT(scratch.is(no_reg));
|
|
#ifdef DEBUG
|
|
// Assert that result actually contains top on entry.
|
|
cmp(result, Operand::StaticVariable(allocation_top));
|
|
Check(equal, kUnexpectedAllocationTop);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// Move address of new object to result. Use scratch register if available.
|
|
if (scratch.is(no_reg)) {
|
|
mov(result, Operand::StaticVariable(allocation_top));
|
|
} else {
|
|
mov(scratch, Immediate(allocation_top));
|
|
mov(result, Operand(scratch, 0));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
|
|
Register scratch,
|
|
AllocationFlags flags) {
|
|
if (emit_debug_code()) {
|
|
test(result_end, Immediate(kObjectAlignmentMask));
|
|
Check(zero, kUnalignedAllocationInNewSpace);
|
|
}
|
|
|
|
ExternalReference allocation_top =
|
|
AllocationUtils::GetAllocationTopReference(isolate(), flags);
|
|
|
|
// Update new top. Use scratch if available.
|
|
if (scratch.is(no_reg)) {
|
|
mov(Operand::StaticVariable(allocation_top), result_end);
|
|
} else {
|
|
mov(Operand(scratch, 0), result_end);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Allocate(int object_size,
|
|
Register result,
|
|
Register result_end,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
AllocationFlags flags) {
|
|
ASSERT((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
|
|
ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
|
|
if (!FLAG_inline_new) {
|
|
if (emit_debug_code()) {
|
|
// Trash the registers to simulate an allocation failure.
|
|
mov(result, Immediate(0x7091));
|
|
if (result_end.is_valid()) {
|
|
mov(result_end, Immediate(0x7191));
|
|
}
|
|
if (scratch.is_valid()) {
|
|
mov(scratch, Immediate(0x7291));
|
|
}
|
|
}
|
|
jmp(gc_required);
|
|
return;
|
|
}
|
|
ASSERT(!result.is(result_end));
|
|
|
|
// Load address of new object into result.
|
|
LoadAllocationTopHelper(result, scratch, flags);
|
|
|
|
ExternalReference allocation_limit =
|
|
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
|
|
|
|
// Align the next allocation. Storing the filler map without checking top is
|
|
// safe in new-space because the limit of the heap is aligned there.
|
|
if ((flags & DOUBLE_ALIGNMENT) != 0) {
|
|
ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
|
|
ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
|
|
Label aligned;
|
|
test(result, Immediate(kDoubleAlignmentMask));
|
|
j(zero, &aligned, Label::kNear);
|
|
if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
|
|
cmp(result, Operand::StaticVariable(allocation_limit));
|
|
j(above_equal, gc_required);
|
|
}
|
|
mov(Operand(result, 0),
|
|
Immediate(isolate()->factory()->one_pointer_filler_map()));
|
|
add(result, Immediate(kDoubleSize / 2));
|
|
bind(&aligned);
|
|
}
|
|
|
|
// Calculate new top and bail out if space is exhausted.
|
|
Register top_reg = result_end.is_valid() ? result_end : result;
|
|
if (!top_reg.is(result)) {
|
|
mov(top_reg, result);
|
|
}
|
|
add(top_reg, Immediate(object_size));
|
|
j(carry, gc_required);
|
|
cmp(top_reg, Operand::StaticVariable(allocation_limit));
|
|
j(above, gc_required);
|
|
|
|
// Update allocation top.
|
|
UpdateAllocationTopHelper(top_reg, scratch, flags);
|
|
|
|
// Tag result if requested.
|
|
bool tag_result = (flags & TAG_OBJECT) != 0;
|
|
if (top_reg.is(result)) {
|
|
if (tag_result) {
|
|
sub(result, Immediate(object_size - kHeapObjectTag));
|
|
} else {
|
|
sub(result, Immediate(object_size));
|
|
}
|
|
} else if (tag_result) {
|
|
ASSERT(kHeapObjectTag == 1);
|
|
inc(result);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Allocate(int header_size,
|
|
ScaleFactor element_size,
|
|
Register element_count,
|
|
RegisterValueType element_count_type,
|
|
Register result,
|
|
Register result_end,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
AllocationFlags flags) {
|
|
ASSERT((flags & SIZE_IN_WORDS) == 0);
|
|
if (!FLAG_inline_new) {
|
|
if (emit_debug_code()) {
|
|
// Trash the registers to simulate an allocation failure.
|
|
mov(result, Immediate(0x7091));
|
|
mov(result_end, Immediate(0x7191));
|
|
if (scratch.is_valid()) {
|
|
mov(scratch, Immediate(0x7291));
|
|
}
|
|
// Register element_count is not modified by the function.
|
|
}
|
|
jmp(gc_required);
|
|
return;
|
|
}
|
|
ASSERT(!result.is(result_end));
|
|
|
|
// Load address of new object into result.
|
|
LoadAllocationTopHelper(result, scratch, flags);
|
|
|
|
ExternalReference allocation_limit =
|
|
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
|
|
|
|
// Align the next allocation. Storing the filler map without checking top is
|
|
// safe in new-space because the limit of the heap is aligned there.
|
|
if ((flags & DOUBLE_ALIGNMENT) != 0) {
|
|
ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
|
|
ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
|
|
Label aligned;
|
|
test(result, Immediate(kDoubleAlignmentMask));
|
|
j(zero, &aligned, Label::kNear);
|
|
if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
|
|
cmp(result, Operand::StaticVariable(allocation_limit));
|
|
j(above_equal, gc_required);
|
|
}
|
|
mov(Operand(result, 0),
|
|
Immediate(isolate()->factory()->one_pointer_filler_map()));
|
|
add(result, Immediate(kDoubleSize / 2));
|
|
bind(&aligned);
|
|
}
|
|
|
|
// Calculate new top and bail out if space is exhausted.
|
|
// We assume that element_count*element_size + header_size does not
|
|
// overflow.
|
|
if (element_count_type == REGISTER_VALUE_IS_SMI) {
|
|
STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
|
|
STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
|
|
STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
|
|
ASSERT(element_size >= times_2);
|
|
ASSERT(kSmiTagSize == 1);
|
|
element_size = static_cast<ScaleFactor>(element_size - 1);
|
|
} else {
|
|
ASSERT(element_count_type == REGISTER_VALUE_IS_INT32);
|
|
}
|
|
lea(result_end, Operand(element_count, element_size, header_size));
|
|
add(result_end, result);
|
|
j(carry, gc_required);
|
|
cmp(result_end, Operand::StaticVariable(allocation_limit));
|
|
j(above, gc_required);
|
|
|
|
if ((flags & TAG_OBJECT) != 0) {
|
|
ASSERT(kHeapObjectTag == 1);
|
|
inc(result);
|
|
}
|
|
|
|
// Update allocation top.
|
|
UpdateAllocationTopHelper(result_end, scratch, flags);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Allocate(Register object_size,
|
|
Register result,
|
|
Register result_end,
|
|
Register scratch,
|
|
Label* gc_required,
|
|
AllocationFlags flags) {
|
|
ASSERT((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
|
|
if (!FLAG_inline_new) {
|
|
if (emit_debug_code()) {
|
|
// Trash the registers to simulate an allocation failure.
|
|
mov(result, Immediate(0x7091));
|
|
mov(result_end, Immediate(0x7191));
|
|
if (scratch.is_valid()) {
|
|
mov(scratch, Immediate(0x7291));
|
|
}
|
|
// object_size is left unchanged by this function.
|
|
}
|
|
jmp(gc_required);
|
|
return;
|
|
}
|
|
ASSERT(!result.is(result_end));
|
|
|
|
// Load address of new object into result.
|
|
LoadAllocationTopHelper(result, scratch, flags);
|
|
|
|
ExternalReference allocation_limit =
|
|
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
|
|
|
|
// Align the next allocation. Storing the filler map without checking top is
|
|
// safe in new-space because the limit of the heap is aligned there.
|
|
if ((flags & DOUBLE_ALIGNMENT) != 0) {
|
|
ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
|
|
ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
|
|
Label aligned;
|
|
test(result, Immediate(kDoubleAlignmentMask));
|
|
j(zero, &aligned, Label::kNear);
|
|
if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
|
|
cmp(result, Operand::StaticVariable(allocation_limit));
|
|
j(above_equal, gc_required);
|
|
}
|
|
mov(Operand(result, 0),
|
|
Immediate(isolate()->factory()->one_pointer_filler_map()));
|
|
add(result, Immediate(kDoubleSize / 2));
|
|
bind(&aligned);
|
|
}
|
|
|
|
// Calculate new top and bail out if space is exhausted.
|
|
if (!object_size.is(result_end)) {
|
|
mov(result_end, object_size);
|
|
}
|
|
add(result_end, result);
|
|
j(carry, gc_required);
|
|
cmp(result_end, Operand::StaticVariable(allocation_limit));
|
|
j(above, gc_required);
|
|
|
|
// Tag result if requested.
|
|
if ((flags & TAG_OBJECT) != 0) {
|
|
ASSERT(kHeapObjectTag == 1);
|
|
inc(result);
|
|
}
|
|
|
|
// Update allocation top.
|
|
UpdateAllocationTopHelper(result_end, scratch, flags);
|
|
}
|
|
|
|
|
|
void MacroAssembler::UndoAllocationInNewSpace(Register object) {
|
|
ExternalReference new_space_allocation_top =
|
|
ExternalReference::new_space_allocation_top_address(isolate());
|
|
|
|
// Make sure the object has no tag before resetting top.
|
|
and_(object, Immediate(~kHeapObjectTagMask));
|
|
#ifdef DEBUG
|
|
cmp(object, Operand::StaticVariable(new_space_allocation_top));
|
|
Check(below, kUndoAllocationOfNonAllocatedMemory);
|
|
#endif
|
|
mov(Operand::StaticVariable(new_space_allocation_top), object);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateHeapNumber(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
// Allocate heap number in new space.
|
|
Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map.
|
|
mov(FieldOperand(result, HeapObject::kMapOffset),
|
|
Immediate(isolate()->factory()->heap_number_map()));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateTwoByteString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* gc_required) {
|
|
// Calculate the number of bytes needed for the characters in the string while
|
|
// observing object alignment.
|
|
ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
|
ASSERT(kShortSize == 2);
|
|
// scratch1 = length * 2 + kObjectAlignmentMask.
|
|
lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
|
|
and_(scratch1, Immediate(~kObjectAlignmentMask));
|
|
|
|
// Allocate two byte string in new space.
|
|
Allocate(SeqTwoByteString::kHeaderSize,
|
|
times_1,
|
|
scratch1,
|
|
REGISTER_VALUE_IS_INT32,
|
|
result,
|
|
scratch2,
|
|
scratch3,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map, length and hash field.
|
|
mov(FieldOperand(result, HeapObject::kMapOffset),
|
|
Immediate(isolate()->factory()->string_map()));
|
|
mov(scratch1, length);
|
|
SmiTag(scratch1);
|
|
mov(FieldOperand(result, String::kLengthOffset), scratch1);
|
|
mov(FieldOperand(result, String::kHashFieldOffset),
|
|
Immediate(String::kEmptyHashField));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateAsciiString(Register result,
|
|
Register length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Register scratch3,
|
|
Label* gc_required) {
|
|
// Calculate the number of bytes needed for the characters in the string while
|
|
// observing object alignment.
|
|
ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
|
mov(scratch1, length);
|
|
ASSERT(kCharSize == 1);
|
|
add(scratch1, Immediate(kObjectAlignmentMask));
|
|
and_(scratch1, Immediate(~kObjectAlignmentMask));
|
|
|
|
// Allocate ASCII string in new space.
|
|
Allocate(SeqOneByteString::kHeaderSize,
|
|
times_1,
|
|
scratch1,
|
|
REGISTER_VALUE_IS_INT32,
|
|
result,
|
|
scratch2,
|
|
scratch3,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map, length and hash field.
|
|
mov(FieldOperand(result, HeapObject::kMapOffset),
|
|
Immediate(isolate()->factory()->ascii_string_map()));
|
|
mov(scratch1, length);
|
|
SmiTag(scratch1);
|
|
mov(FieldOperand(result, String::kLengthOffset), scratch1);
|
|
mov(FieldOperand(result, String::kHashFieldOffset),
|
|
Immediate(String::kEmptyHashField));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateAsciiString(Register result,
|
|
int length,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
ASSERT(length > 0);
|
|
|
|
// Allocate ASCII string in new space.
|
|
Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
|
|
gc_required, TAG_OBJECT);
|
|
|
|
// Set the map, length and hash field.
|
|
mov(FieldOperand(result, HeapObject::kMapOffset),
|
|
Immediate(isolate()->factory()->ascii_string_map()));
|
|
mov(FieldOperand(result, String::kLengthOffset),
|
|
Immediate(Smi::FromInt(length)));
|
|
mov(FieldOperand(result, String::kHashFieldOffset),
|
|
Immediate(String::kEmptyHashField));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateTwoByteConsString(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
// Allocate heap number in new space.
|
|
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map. The other fields are left uninitialized.
|
|
mov(FieldOperand(result, HeapObject::kMapOffset),
|
|
Immediate(isolate()->factory()->cons_string_map()));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateAsciiConsString(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
Allocate(ConsString::kSize,
|
|
result,
|
|
scratch1,
|
|
scratch2,
|
|
gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map. The other fields are left uninitialized.
|
|
mov(FieldOperand(result, HeapObject::kMapOffset),
|
|
Immediate(isolate()->factory()->cons_ascii_string_map()));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
// Allocate heap number in new space.
|
|
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map. The other fields are left uninitialized.
|
|
mov(FieldOperand(result, HeapObject::kMapOffset),
|
|
Immediate(isolate()->factory()->sliced_string_map()));
|
|
}
|
|
|
|
|
|
void MacroAssembler::AllocateAsciiSlicedString(Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* gc_required) {
|
|
// Allocate heap number in new space.
|
|
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
|
|
TAG_OBJECT);
|
|
|
|
// Set the map. The other fields are left uninitialized.
|
|
mov(FieldOperand(result, HeapObject::kMapOffset),
|
|
Immediate(isolate()->factory()->sliced_ascii_string_map()));
|
|
}
|
|
|
|
|
|
// Copy memory, byte-by-byte, from source to destination. Not optimized for
|
|
// long or aligned copies. The contents of scratch and length are destroyed.
|
|
// Source and destination are incremented by length.
|
|
// Many variants of movsb, loop unrolling, word moves, and indexed operands
|
|
// have been tried here already, and this is fastest.
|
|
// A simpler loop is faster on small copies, but 30% slower on large ones.
|
|
// The cld() instruction must have been emitted, to set the direction flag(),
|
|
// before calling this function.
|
|
void MacroAssembler::CopyBytes(Register source,
|
|
Register destination,
|
|
Register length,
|
|
Register scratch) {
|
|
Label short_loop, len4, len8, len12, done, short_string;
|
|
ASSERT(source.is(esi));
|
|
ASSERT(destination.is(edi));
|
|
ASSERT(length.is(ecx));
|
|
cmp(length, Immediate(4));
|
|
j(below, &short_string, Label::kNear);
|
|
|
|
// Because source is 4-byte aligned in our uses of this function,
|
|
// we keep source aligned for the rep_movs call by copying the odd bytes
|
|
// at the end of the ranges.
|
|
mov(scratch, Operand(source, length, times_1, -4));
|
|
mov(Operand(destination, length, times_1, -4), scratch);
|
|
|
|
cmp(length, Immediate(8));
|
|
j(below_equal, &len4, Label::kNear);
|
|
cmp(length, Immediate(12));
|
|
j(below_equal, &len8, Label::kNear);
|
|
cmp(length, Immediate(16));
|
|
j(below_equal, &len12, Label::kNear);
|
|
|
|
mov(scratch, ecx);
|
|
shr(ecx, 2);
|
|
rep_movs();
|
|
and_(scratch, Immediate(0x3));
|
|
add(destination, scratch);
|
|
jmp(&done, Label::kNear);
|
|
|
|
bind(&len12);
|
|
mov(scratch, Operand(source, 8));
|
|
mov(Operand(destination, 8), scratch);
|
|
bind(&len8);
|
|
mov(scratch, Operand(source, 4));
|
|
mov(Operand(destination, 4), scratch);
|
|
bind(&len4);
|
|
mov(scratch, Operand(source, 0));
|
|
mov(Operand(destination, 0), scratch);
|
|
add(destination, length);
|
|
jmp(&done, Label::kNear);
|
|
|
|
bind(&short_string);
|
|
test(length, length);
|
|
j(zero, &done, Label::kNear);
|
|
|
|
bind(&short_loop);
|
|
mov_b(scratch, Operand(source, 0));
|
|
mov_b(Operand(destination, 0), scratch);
|
|
inc(source);
|
|
inc(destination);
|
|
dec(length);
|
|
j(not_zero, &short_loop);
|
|
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
|
|
Register end_offset,
|
|
Register filler) {
|
|
Label loop, entry;
|
|
jmp(&entry);
|
|
bind(&loop);
|
|
mov(Operand(start_offset, 0), filler);
|
|
add(start_offset, Immediate(kPointerSize));
|
|
bind(&entry);
|
|
cmp(start_offset, end_offset);
|
|
j(less, &loop);
|
|
}
|
|
|
|
|
|
void MacroAssembler::BooleanBitTest(Register object,
|
|
int field_offset,
|
|
int bit_index) {
|
|
bit_index += kSmiTagSize + kSmiShiftSize;
|
|
ASSERT(IsPowerOf2(kBitsPerByte));
|
|
int byte_index = bit_index / kBitsPerByte;
|
|
int byte_bit_index = bit_index & (kBitsPerByte - 1);
|
|
test_b(FieldOperand(object, field_offset + byte_index),
|
|
static_cast<byte>(1 << byte_bit_index));
|
|
}
|
|
|
|
|
|
|
|
void MacroAssembler::NegativeZeroTest(Register result,
|
|
Register op,
|
|
Label* then_label) {
|
|
Label ok;
|
|
test(result, result);
|
|
j(not_zero, &ok);
|
|
test(op, op);
|
|
j(sign, then_label);
|
|
bind(&ok);
|
|
}
|
|
|
|
|
|
void MacroAssembler::NegativeZeroTest(Register result,
|
|
Register op1,
|
|
Register op2,
|
|
Register scratch,
|
|
Label* then_label) {
|
|
Label ok;
|
|
test(result, result);
|
|
j(not_zero, &ok);
|
|
mov(scratch, op1);
|
|
or_(scratch, op2);
|
|
j(sign, then_label);
|
|
bind(&ok);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TryGetFunctionPrototype(Register function,
|
|
Register result,
|
|
Register scratch,
|
|
Label* miss,
|
|
bool miss_on_bound_function) {
|
|
// Check that the receiver isn't a smi.
|
|
JumpIfSmi(function, miss);
|
|
|
|
// Check that the function really is a function.
|
|
CmpObjectType(function, JS_FUNCTION_TYPE, result);
|
|
j(not_equal, miss);
|
|
|
|
if (miss_on_bound_function) {
|
|
// If a bound function, go to miss label.
|
|
mov(scratch,
|
|
FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
|
|
BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
|
|
SharedFunctionInfo::kBoundFunction);
|
|
j(not_zero, miss);
|
|
}
|
|
|
|
// Make sure that the function has an instance prototype.
|
|
Label non_instance;
|
|
movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
|
|
test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
|
|
j(not_zero, &non_instance);
|
|
|
|
// Get the prototype or initial map from the function.
|
|
mov(result,
|
|
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
|
|
|
// If the prototype or initial map is the hole, don't return it and
|
|
// simply miss the cache instead. This will allow us to allocate a
|
|
// prototype object on-demand in the runtime system.
|
|
cmp(result, Immediate(isolate()->factory()->the_hole_value()));
|
|
j(equal, miss);
|
|
|
|
// If the function does not have an initial map, we're done.
|
|
Label done;
|
|
CmpObjectType(result, MAP_TYPE, scratch);
|
|
j(not_equal, &done);
|
|
|
|
// Get the prototype from the initial map.
|
|
mov(result, FieldOperand(result, Map::kPrototypeOffset));
|
|
jmp(&done);
|
|
|
|
// Non-instance prototype: Fetch prototype from constructor field
|
|
// in initial map.
|
|
bind(&non_instance);
|
|
mov(result, FieldOperand(result, Map::kConstructorOffset));
|
|
|
|
// All done.
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
|
|
ASSERT(AllowThisStubCall(stub)); // Calls are not allowed in some stubs.
|
|
call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TailCallStub(CodeStub* stub) {
|
|
jmp(stub->GetCode(), RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
void MacroAssembler::StubReturn(int argc) {
|
|
ASSERT(argc >= 1 && generating_stub());
|
|
ret((argc - 1) * kPointerSize);
|
|
}
|
|
|
|
|
|
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
|
|
return has_frame_ || !stub->SometimesSetsUpAFrame();
|
|
}
|
|
|
|
|
|
void MacroAssembler::IndexFromHash(Register hash, Register index) {
|
|
// The assert checks that the constants for the maximum number of digits
|
|
// for an array index cached in the hash field and the number of bits
|
|
// reserved for it does not conflict.
|
|
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
|
|
(1 << String::kArrayIndexValueBits));
|
|
if (!index.is(hash)) {
|
|
mov(index, hash);
|
|
}
|
|
DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallRuntime(const Runtime::Function* f,
|
|
int num_arguments,
|
|
SaveFPRegsMode save_doubles) {
|
|
// If the expected number of arguments of the runtime function is
|
|
// constant, we check that the actual number of arguments match the
|
|
// expectation.
|
|
CHECK(f->nargs < 0 || f->nargs == num_arguments);
|
|
|
|
// TODO(1236192): Most runtime routines don't need the number of
|
|
// arguments passed in because it is constant. At some point we
|
|
// should remove this need and make the runtime routine entry code
|
|
// smarter.
|
|
Move(eax, Immediate(num_arguments));
|
|
mov(ebx, Immediate(ExternalReference(f, isolate())));
|
|
CEntryStub ces(isolate(), 1, save_doubles);
|
|
CallStub(&ces);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallExternalReference(ExternalReference ref,
|
|
int num_arguments) {
|
|
mov(eax, Immediate(num_arguments));
|
|
mov(ebx, Immediate(ref));
|
|
|
|
CEntryStub stub(isolate(), 1);
|
|
CallStub(&stub);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
|
|
int num_arguments,
|
|
int result_size) {
|
|
// TODO(1236192): Most runtime routines don't need the number of
|
|
// arguments passed in because it is constant. At some point we
|
|
// should remove this need and make the runtime routine entry code
|
|
// smarter.
|
|
Move(eax, Immediate(num_arguments));
|
|
JumpToExternalReference(ext);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
|
|
int num_arguments,
|
|
int result_size) {
|
|
TailCallExternalReference(ExternalReference(fid, isolate()),
|
|
num_arguments,
|
|
result_size);
|
|
}
|
|
|
|
|
|
Operand ApiParameterOperand(int index) {
|
|
return Operand(esp, index * kPointerSize);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PrepareCallApiFunction(int argc) {
|
|
EnterApiExitFrame(argc);
|
|
if (emit_debug_code()) {
|
|
mov(esi, Immediate(BitCast<int32_t>(kZapValue)));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallApiFunctionAndReturn(
|
|
Register function_address,
|
|
ExternalReference thunk_ref,
|
|
Operand thunk_last_arg,
|
|
int stack_space,
|
|
Operand return_value_operand,
|
|
Operand* context_restore_operand) {
|
|
ExternalReference next_address =
|
|
ExternalReference::handle_scope_next_address(isolate());
|
|
ExternalReference limit_address =
|
|
ExternalReference::handle_scope_limit_address(isolate());
|
|
ExternalReference level_address =
|
|
ExternalReference::handle_scope_level_address(isolate());
|
|
|
|
ASSERT(edx.is(function_address));
|
|
// Allocate HandleScope in callee-save registers.
|
|
mov(ebx, Operand::StaticVariable(next_address));
|
|
mov(edi, Operand::StaticVariable(limit_address));
|
|
add(Operand::StaticVariable(level_address), Immediate(1));
|
|
|
|
if (FLAG_log_timer_events) {
|
|
FrameScope frame(this, StackFrame::MANUAL);
|
|
PushSafepointRegisters();
|
|
PrepareCallCFunction(1, eax);
|
|
mov(Operand(esp, 0),
|
|
Immediate(ExternalReference::isolate_address(isolate())));
|
|
CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
|
|
PopSafepointRegisters();
|
|
}
|
|
|
|
|
|
Label profiler_disabled;
|
|
Label end_profiler_check;
|
|
mov(eax, Immediate(ExternalReference::is_profiling_address(isolate())));
|
|
cmpb(Operand(eax, 0), 0);
|
|
j(zero, &profiler_disabled);
|
|
|
|
// Additional parameter is the address of the actual getter function.
|
|
mov(thunk_last_arg, function_address);
|
|
// Call the api function.
|
|
mov(eax, Immediate(thunk_ref));
|
|
call(eax);
|
|
jmp(&end_profiler_check);
|
|
|
|
bind(&profiler_disabled);
|
|
// Call the api function.
|
|
call(function_address);
|
|
bind(&end_profiler_check);
|
|
|
|
if (FLAG_log_timer_events) {
|
|
FrameScope frame(this, StackFrame::MANUAL);
|
|
PushSafepointRegisters();
|
|
PrepareCallCFunction(1, eax);
|
|
mov(Operand(esp, 0),
|
|
Immediate(ExternalReference::isolate_address(isolate())));
|
|
CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
|
|
PopSafepointRegisters();
|
|
}
|
|
|
|
Label prologue;
|
|
// Load the value from ReturnValue
|
|
mov(eax, return_value_operand);
|
|
|
|
Label promote_scheduled_exception;
|
|
Label exception_handled;
|
|
Label delete_allocated_handles;
|
|
Label leave_exit_frame;
|
|
|
|
bind(&prologue);
|
|
// No more valid handles (the result handle was the last one). Restore
|
|
// previous handle scope.
|
|
mov(Operand::StaticVariable(next_address), ebx);
|
|
sub(Operand::StaticVariable(level_address), Immediate(1));
|
|
Assert(above_equal, kInvalidHandleScopeLevel);
|
|
cmp(edi, Operand::StaticVariable(limit_address));
|
|
j(not_equal, &delete_allocated_handles);
|
|
bind(&leave_exit_frame);
|
|
|
|
// Check if the function scheduled an exception.
|
|
ExternalReference scheduled_exception_address =
|
|
ExternalReference::scheduled_exception_address(isolate());
|
|
cmp(Operand::StaticVariable(scheduled_exception_address),
|
|
Immediate(isolate()->factory()->the_hole_value()));
|
|
j(not_equal, &promote_scheduled_exception);
|
|
bind(&exception_handled);
|
|
|
|
#if ENABLE_EXTRA_CHECKS
|
|
// Check if the function returned a valid JavaScript value.
|
|
Label ok;
|
|
Register return_value = eax;
|
|
Register map = ecx;
|
|
|
|
JumpIfSmi(return_value, &ok, Label::kNear);
|
|
mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
|
|
|
|
CmpInstanceType(map, FIRST_NONSTRING_TYPE);
|
|
j(below, &ok, Label::kNear);
|
|
|
|
CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
|
|
j(above_equal, &ok, Label::kNear);
|
|
|
|
cmp(map, isolate()->factory()->heap_number_map());
|
|
j(equal, &ok, Label::kNear);
|
|
|
|
cmp(return_value, isolate()->factory()->undefined_value());
|
|
j(equal, &ok, Label::kNear);
|
|
|
|
cmp(return_value, isolate()->factory()->true_value());
|
|
j(equal, &ok, Label::kNear);
|
|
|
|
cmp(return_value, isolate()->factory()->false_value());
|
|
j(equal, &ok, Label::kNear);
|
|
|
|
cmp(return_value, isolate()->factory()->null_value());
|
|
j(equal, &ok, Label::kNear);
|
|
|
|
Abort(kAPICallReturnedInvalidObject);
|
|
|
|
bind(&ok);
|
|
#endif
|
|
|
|
bool restore_context = context_restore_operand != NULL;
|
|
if (restore_context) {
|
|
mov(esi, *context_restore_operand);
|
|
}
|
|
LeaveApiExitFrame(!restore_context);
|
|
ret(stack_space * kPointerSize);
|
|
|
|
bind(&promote_scheduled_exception);
|
|
{
|
|
FrameScope frame(this, StackFrame::INTERNAL);
|
|
CallRuntime(Runtime::kPromoteScheduledException, 0);
|
|
}
|
|
jmp(&exception_handled);
|
|
|
|
// HandleScope limit has changed. Delete allocated extensions.
|
|
ExternalReference delete_extensions =
|
|
ExternalReference::delete_handle_scope_extensions(isolate());
|
|
bind(&delete_allocated_handles);
|
|
mov(Operand::StaticVariable(limit_address), edi);
|
|
mov(edi, eax);
|
|
mov(Operand(esp, 0),
|
|
Immediate(ExternalReference::isolate_address(isolate())));
|
|
mov(eax, Immediate(delete_extensions));
|
|
call(eax);
|
|
mov(eax, edi);
|
|
jmp(&leave_exit_frame);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
|
|
// Set the entry point and jump to the C entry runtime stub.
|
|
mov(ebx, Immediate(ext));
|
|
CEntryStub ces(isolate(), 1);
|
|
jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
Handle<Code> code_constant,
|
|
const Operand& code_operand,
|
|
Label* done,
|
|
bool* definitely_mismatches,
|
|
InvokeFlag flag,
|
|
Label::Distance done_near,
|
|
const CallWrapper& call_wrapper) {
|
|
bool definitely_matches = false;
|
|
*definitely_mismatches = false;
|
|
Label invoke;
|
|
if (expected.is_immediate()) {
|
|
ASSERT(actual.is_immediate());
|
|
if (expected.immediate() == actual.immediate()) {
|
|
definitely_matches = true;
|
|
} else {
|
|
mov(eax, actual.immediate());
|
|
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
|
|
if (expected.immediate() == sentinel) {
|
|
// Don't worry about adapting arguments for builtins that
|
|
// don't want that done. Skip adaption code by making it look
|
|
// like we have a match between expected and actual number of
|
|
// arguments.
|
|
definitely_matches = true;
|
|
} else {
|
|
*definitely_mismatches = true;
|
|
mov(ebx, expected.immediate());
|
|
}
|
|
}
|
|
} else {
|
|
if (actual.is_immediate()) {
|
|
// Expected is in register, actual is immediate. This is the
|
|
// case when we invoke function values without going through the
|
|
// IC mechanism.
|
|
cmp(expected.reg(), actual.immediate());
|
|
j(equal, &invoke);
|
|
ASSERT(expected.reg().is(ebx));
|
|
mov(eax, actual.immediate());
|
|
} else if (!expected.reg().is(actual.reg())) {
|
|
// Both expected and actual are in (different) registers. This
|
|
// is the case when we invoke functions using call and apply.
|
|
cmp(expected.reg(), actual.reg());
|
|
j(equal, &invoke);
|
|
ASSERT(actual.reg().is(eax));
|
|
ASSERT(expected.reg().is(ebx));
|
|
}
|
|
}
|
|
|
|
if (!definitely_matches) {
|
|
Handle<Code> adaptor =
|
|
isolate()->builtins()->ArgumentsAdaptorTrampoline();
|
|
if (!code_constant.is_null()) {
|
|
mov(edx, Immediate(code_constant));
|
|
add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
|
|
} else if (!code_operand.is_reg(edx)) {
|
|
mov(edx, code_operand);
|
|
}
|
|
|
|
if (flag == CALL_FUNCTION) {
|
|
call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
|
|
call(adaptor, RelocInfo::CODE_TARGET);
|
|
call_wrapper.AfterCall();
|
|
if (!*definitely_mismatches) {
|
|
jmp(done, done_near);
|
|
}
|
|
} else {
|
|
jmp(adaptor, RelocInfo::CODE_TARGET);
|
|
}
|
|
bind(&invoke);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeCode(const Operand& code,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper) {
|
|
// You can't call a function without a valid frame.
|
|
ASSERT(flag == JUMP_FUNCTION || has_frame());
|
|
|
|
Label done;
|
|
bool definitely_mismatches = false;
|
|
InvokePrologue(expected, actual, Handle<Code>::null(), code,
|
|
&done, &definitely_mismatches, flag, Label::kNear,
|
|
call_wrapper);
|
|
if (!definitely_mismatches) {
|
|
if (flag == CALL_FUNCTION) {
|
|
call_wrapper.BeforeCall(CallSize(code));
|
|
call(code);
|
|
call_wrapper.AfterCall();
|
|
} else {
|
|
ASSERT(flag == JUMP_FUNCTION);
|
|
jmp(code);
|
|
}
|
|
bind(&done);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeFunction(Register fun,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper) {
|
|
// You can't call a function without a valid frame.
|
|
ASSERT(flag == JUMP_FUNCTION || has_frame());
|
|
|
|
ASSERT(fun.is(edi));
|
|
mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
|
|
mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
|
|
mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
|
|
SmiUntag(ebx);
|
|
|
|
ParameterCount expected(ebx);
|
|
InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
|
|
expected, actual, flag, call_wrapper);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeFunction(Register fun,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper) {
|
|
// You can't call a function without a valid frame.
|
|
ASSERT(flag == JUMP_FUNCTION || has_frame());
|
|
|
|
ASSERT(fun.is(edi));
|
|
mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
|
|
|
|
InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
|
|
expected, actual, flag, call_wrapper);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
|
|
const ParameterCount& expected,
|
|
const ParameterCount& actual,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper) {
|
|
LoadHeapObject(edi, function);
|
|
InvokeFunction(edi, expected, actual, flag, call_wrapper);
|
|
}
|
|
|
|
|
|
void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
|
|
InvokeFlag flag,
|
|
const CallWrapper& call_wrapper) {
|
|
// You can't call a builtin without a valid frame.
|
|
ASSERT(flag == JUMP_FUNCTION || has_frame());
|
|
|
|
// Rely on the assertion to check that the number of provided
|
|
// arguments match the expected number of arguments. Fake a
|
|
// parameter count to avoid emitting code to do the check.
|
|
ParameterCount expected(0);
|
|
GetBuiltinFunction(edi, id);
|
|
InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
|
|
expected, expected, flag, call_wrapper);
|
|
}
|
|
|
|
|
|
void MacroAssembler::GetBuiltinFunction(Register target,
|
|
Builtins::JavaScript id) {
|
|
// Load the JavaScript builtin function from the builtins object.
|
|
mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
|
|
mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
|
|
mov(target, FieldOperand(target,
|
|
JSBuiltinsObject::OffsetOfFunctionWithId(id)));
|
|
}
|
|
|
|
|
|
void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
|
|
ASSERT(!target.is(edi));
|
|
// Load the JavaScript builtin function from the builtins object.
|
|
GetBuiltinFunction(edi, id);
|
|
// Load the code entry point from the function into the target register.
|
|
mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
|
|
if (context_chain_length > 0) {
|
|
// Move up the chain of contexts to the context containing the slot.
|
|
mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
|
for (int i = 1; i < context_chain_length; i++) {
|
|
mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
|
}
|
|
} else {
|
|
// Slot is in the current function context. Move it into the
|
|
// destination register in case we store into it (the write barrier
|
|
// cannot be allowed to destroy the context in esi).
|
|
mov(dst, esi);
|
|
}
|
|
|
|
// We should not have found a with context by walking the context chain
|
|
// (i.e., the static scope chain and runtime context chain do not agree).
|
|
// A variable occurring in such a scope should have slot type LOOKUP and
|
|
// not CONTEXT.
|
|
if (emit_debug_code()) {
|
|
cmp(FieldOperand(dst, HeapObject::kMapOffset),
|
|
isolate()->factory()->with_context_map());
|
|
Check(not_equal, kVariableResolvedToWithContext);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadTransitionedArrayMapConditional(
|
|
ElementsKind expected_kind,
|
|
ElementsKind transitioned_kind,
|
|
Register map_in_out,
|
|
Register scratch,
|
|
Label* no_map_match) {
|
|
// Load the global or builtins object from the current context.
|
|
mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
|
|
mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
|
|
|
|
// Check that the function's map is the same as the expected cached map.
|
|
mov(scratch, Operand(scratch,
|
|
Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
|
|
|
|
size_t offset = expected_kind * kPointerSize +
|
|
FixedArrayBase::kHeaderSize;
|
|
cmp(map_in_out, FieldOperand(scratch, offset));
|
|
j(not_equal, no_map_match);
|
|
|
|
// Use the transitioned cached map.
|
|
offset = transitioned_kind * kPointerSize +
|
|
FixedArrayBase::kHeaderSize;
|
|
mov(map_in_out, FieldOperand(scratch, offset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadGlobalFunction(int index, Register function) {
|
|
// Load the global or builtins object from the current context.
|
|
mov(function,
|
|
Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
|
|
// Load the native context from the global or builtins object.
|
|
mov(function,
|
|
FieldOperand(function, GlobalObject::kNativeContextOffset));
|
|
// Load the function from the native context.
|
|
mov(function, Operand(function, Context::SlotOffset(index)));
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
|
|
Register map) {
|
|
// Load the initial map. The global functions all have initial maps.
|
|
mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
|
|
if (emit_debug_code()) {
|
|
Label ok, fail;
|
|
CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
|
|
jmp(&ok);
|
|
bind(&fail);
|
|
Abort(kGlobalFunctionsMustHaveInitialMap);
|
|
bind(&ok);
|
|
}
|
|
}
|
|
|
|
|
|
// Store the value in register src in the safepoint register stack
|
|
// slot for register dst.
|
|
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
|
|
mov(SafepointRegisterSlot(dst), src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
|
|
mov(SafepointRegisterSlot(dst), src);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
|
|
mov(dst, SafepointRegisterSlot(src));
|
|
}
|
|
|
|
|
|
Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
|
|
return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
|
|
}
|
|
|
|
|
|
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
|
|
// The registers are pushed starting with the lowest encoding,
|
|
// which means that lowest encodings are furthest away from
|
|
// the stack pointer.
|
|
ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
|
|
return kNumSafepointRegisters - reg_code - 1;
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadHeapObject(Register result,
|
|
Handle<HeapObject> object) {
|
|
AllowDeferredHandleDereference embedding_raw_address;
|
|
if (isolate()->heap()->InNewSpace(*object)) {
|
|
Handle<Cell> cell = isolate()->factory()->NewCell(object);
|
|
mov(result, Operand::ForCell(cell));
|
|
} else {
|
|
mov(result, object);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
|
|
AllowDeferredHandleDereference using_raw_address;
|
|
if (isolate()->heap()->InNewSpace(*object)) {
|
|
Handle<Cell> cell = isolate()->factory()->NewCell(object);
|
|
cmp(reg, Operand::ForCell(cell));
|
|
} else {
|
|
cmp(reg, object);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
|
|
AllowDeferredHandleDereference using_raw_address;
|
|
if (isolate()->heap()->InNewSpace(*object)) {
|
|
Handle<Cell> cell = isolate()->factory()->NewCell(object);
|
|
push(Operand::ForCell(cell));
|
|
} else {
|
|
Push(object);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Ret() {
|
|
ret(0);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
|
|
if (is_uint16(bytes_dropped)) {
|
|
ret(bytes_dropped);
|
|
} else {
|
|
pop(scratch);
|
|
add(esp, Immediate(bytes_dropped));
|
|
push(scratch);
|
|
ret(0);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Drop(int stack_elements) {
|
|
if (stack_elements > 0) {
|
|
add(esp, Immediate(stack_elements * kPointerSize));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(Register dst, Register src) {
|
|
if (!dst.is(src)) {
|
|
mov(dst, src);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(Register dst, const Immediate& x) {
|
|
if (x.is_zero()) {
|
|
xor_(dst, dst); // Shorter than mov of 32-bit immediate 0.
|
|
} else {
|
|
mov(dst, x);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(const Operand& dst, const Immediate& x) {
|
|
mov(dst, x);
|
|
}
|
|
|
|
|
|
void MacroAssembler::Move(XMMRegister dst, double val) {
|
|
// TODO(titzer): recognize double constants with ExternalReferences.
|
|
uint64_t int_val = BitCast<uint64_t, double>(val);
|
|
if (int_val == 0) {
|
|
xorps(dst, dst);
|
|
} else {
|
|
int32_t lower = static_cast<int32_t>(int_val);
|
|
int32_t upper = static_cast<int32_t>(int_val >> kBitsPerInt);
|
|
push(Immediate(upper));
|
|
push(Immediate(lower));
|
|
movsd(dst, Operand(esp, 0));
|
|
add(esp, Immediate(kDoubleSize));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
|
|
ASSERT(value > 0);
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
Operand operand = Operand::StaticVariable(ExternalReference(counter));
|
|
if (value == 1) {
|
|
inc(operand);
|
|
} else {
|
|
add(operand, Immediate(value));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
|
|
ASSERT(value > 0);
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
Operand operand = Operand::StaticVariable(ExternalReference(counter));
|
|
if (value == 1) {
|
|
dec(operand);
|
|
} else {
|
|
sub(operand, Immediate(value));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::IncrementCounter(Condition cc,
|
|
StatsCounter* counter,
|
|
int value) {
|
|
ASSERT(value > 0);
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
Label skip;
|
|
j(NegateCondition(cc), &skip);
|
|
pushfd();
|
|
IncrementCounter(counter, value);
|
|
popfd();
|
|
bind(&skip);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::DecrementCounter(Condition cc,
|
|
StatsCounter* counter,
|
|
int value) {
|
|
ASSERT(value > 0);
|
|
if (FLAG_native_code_counters && counter->Enabled()) {
|
|
Label skip;
|
|
j(NegateCondition(cc), &skip);
|
|
pushfd();
|
|
DecrementCounter(counter, value);
|
|
popfd();
|
|
bind(&skip);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
|
|
if (emit_debug_code()) Check(cc, reason);
|
|
}
|
|
|
|
|
|
void MacroAssembler::AssertFastElements(Register elements) {
|
|
if (emit_debug_code()) {
|
|
Factory* factory = isolate()->factory();
|
|
Label ok;
|
|
cmp(FieldOperand(elements, HeapObject::kMapOffset),
|
|
Immediate(factory->fixed_array_map()));
|
|
j(equal, &ok);
|
|
cmp(FieldOperand(elements, HeapObject::kMapOffset),
|
|
Immediate(factory->fixed_double_array_map()));
|
|
j(equal, &ok);
|
|
cmp(FieldOperand(elements, HeapObject::kMapOffset),
|
|
Immediate(factory->fixed_cow_array_map()));
|
|
j(equal, &ok);
|
|
Abort(kJSObjectWithFastElementsMapHasSlowElements);
|
|
bind(&ok);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Check(Condition cc, BailoutReason reason) {
|
|
Label L;
|
|
j(cc, &L);
|
|
Abort(reason);
|
|
// will not return here
|
|
bind(&L);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckStackAlignment() {
|
|
int frame_alignment = OS::ActivationFrameAlignment();
|
|
int frame_alignment_mask = frame_alignment - 1;
|
|
if (frame_alignment > kPointerSize) {
|
|
ASSERT(IsPowerOf2(frame_alignment));
|
|
Label alignment_as_expected;
|
|
test(esp, Immediate(frame_alignment_mask));
|
|
j(zero, &alignment_as_expected);
|
|
// Abort if stack is not aligned.
|
|
int3();
|
|
bind(&alignment_as_expected);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::Abort(BailoutReason reason) {
|
|
#ifdef DEBUG
|
|
const char* msg = GetBailoutReason(reason);
|
|
if (msg != NULL) {
|
|
RecordComment("Abort message: ");
|
|
RecordComment(msg);
|
|
}
|
|
|
|
if (FLAG_trap_on_abort) {
|
|
int3();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(reason))));
|
|
// Disable stub call restrictions to always allow calls to abort.
|
|
if (!has_frame_) {
|
|
// We don't actually want to generate a pile of code for this, so just
|
|
// claim there is a stack frame, without generating one.
|
|
FrameScope scope(this, StackFrame::NONE);
|
|
CallRuntime(Runtime::kAbort, 1);
|
|
} else {
|
|
CallRuntime(Runtime::kAbort, 1);
|
|
}
|
|
// will not return here
|
|
int3();
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadInstanceDescriptors(Register map,
|
|
Register descriptors) {
|
|
mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
|
|
}
|
|
|
|
|
|
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
|
|
mov(dst, FieldOperand(map, Map::kBitField3Offset));
|
|
DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LoadPowerOf2(XMMRegister dst,
|
|
Register scratch,
|
|
int power) {
|
|
ASSERT(is_uintn(power + HeapNumber::kExponentBias,
|
|
HeapNumber::kExponentBits));
|
|
mov(scratch, Immediate(power + HeapNumber::kExponentBias));
|
|
movd(dst, scratch);
|
|
psllq(dst, HeapNumber::kMantissaBits);
|
|
}
|
|
|
|
|
|
void MacroAssembler::LookupNumberStringCache(Register object,
|
|
Register result,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* not_found) {
|
|
// Use of registers. Register result is used as a temporary.
|
|
Register number_string_cache = result;
|
|
Register mask = scratch1;
|
|
Register scratch = scratch2;
|
|
|
|
// Load the number string cache.
|
|
LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
|
|
// Make the hash mask from the length of the number string cache. It
|
|
// contains two elements (number and string) for each cache entry.
|
|
mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
|
|
shr(mask, kSmiTagSize + 1); // Untag length and divide it by two.
|
|
sub(mask, Immediate(1)); // Make mask.
|
|
|
|
// Calculate the entry in the number string cache. The hash value in the
|
|
// number string cache for smis is just the smi value, and the hash for
|
|
// doubles is the xor of the upper and lower words. See
|
|
// Heap::GetNumberStringCache.
|
|
Label smi_hash_calculated;
|
|
Label load_result_from_cache;
|
|
Label not_smi;
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
JumpIfNotSmi(object, ¬_smi, Label::kNear);
|
|
mov(scratch, object);
|
|
SmiUntag(scratch);
|
|
jmp(&smi_hash_calculated, Label::kNear);
|
|
bind(¬_smi);
|
|
cmp(FieldOperand(object, HeapObject::kMapOffset),
|
|
isolate()->factory()->heap_number_map());
|
|
j(not_equal, not_found);
|
|
STATIC_ASSERT(8 == kDoubleSize);
|
|
mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
|
|
xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
|
|
// Object is heap number and hash is now in scratch. Calculate cache index.
|
|
and_(scratch, mask);
|
|
Register index = scratch;
|
|
Register probe = mask;
|
|
mov(probe,
|
|
FieldOperand(number_string_cache,
|
|
index,
|
|
times_twice_pointer_size,
|
|
FixedArray::kHeaderSize));
|
|
JumpIfSmi(probe, not_found);
|
|
movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
|
|
ucomisd(xmm0, FieldOperand(probe, HeapNumber::kValueOffset));
|
|
j(parity_even, not_found); // Bail out if NaN is involved.
|
|
j(not_equal, not_found); // The cache did not contain this value.
|
|
jmp(&load_result_from_cache, Label::kNear);
|
|
|
|
bind(&smi_hash_calculated);
|
|
// Object is smi and hash is now in scratch. Calculate cache index.
|
|
and_(scratch, mask);
|
|
// Check if the entry is the smi we are looking for.
|
|
cmp(object,
|
|
FieldOperand(number_string_cache,
|
|
index,
|
|
times_twice_pointer_size,
|
|
FixedArray::kHeaderSize));
|
|
j(not_equal, not_found);
|
|
|
|
// Get the result from the cache.
|
|
bind(&load_result_from_cache);
|
|
mov(result,
|
|
FieldOperand(number_string_cache,
|
|
index,
|
|
times_twice_pointer_size,
|
|
FixedArray::kHeaderSize + kPointerSize));
|
|
IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
|
|
Register instance_type,
|
|
Register scratch,
|
|
Label* failure) {
|
|
if (!scratch.is(instance_type)) {
|
|
mov(scratch, instance_type);
|
|
}
|
|
and_(scratch,
|
|
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
|
|
cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag);
|
|
j(not_equal, failure);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1,
|
|
Register object2,
|
|
Register scratch1,
|
|
Register scratch2,
|
|
Label* failure) {
|
|
// Check that both objects are not smis.
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
mov(scratch1, object1);
|
|
and_(scratch1, object2);
|
|
JumpIfSmi(scratch1, failure);
|
|
|
|
// Load instance type for both strings.
|
|
mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
|
|
mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
|
|
movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
|
|
movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
|
|
|
|
// Check that both are flat ASCII strings.
|
|
const int kFlatAsciiStringMask =
|
|
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
|
|
const int kFlatAsciiStringTag =
|
|
kStringTag | kOneByteStringTag | kSeqStringTag;
|
|
// Interleave bits from both instance types and compare them in one check.
|
|
ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
|
|
and_(scratch1, kFlatAsciiStringMask);
|
|
and_(scratch2, kFlatAsciiStringMask);
|
|
lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
|
|
cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3));
|
|
j(not_equal, failure);
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfNotUniqueName(Operand operand,
|
|
Label* not_unique_name,
|
|
Label::Distance distance) {
|
|
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
|
|
Label succeed;
|
|
test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
|
|
j(zero, &succeed);
|
|
cmpb(operand, static_cast<uint8_t>(SYMBOL_TYPE));
|
|
j(not_equal, not_unique_name, distance);
|
|
|
|
bind(&succeed);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
|
|
Register index,
|
|
Register value,
|
|
uint32_t encoding_mask) {
|
|
Label is_object;
|
|
JumpIfNotSmi(string, &is_object, Label::kNear);
|
|
Abort(kNonObject);
|
|
bind(&is_object);
|
|
|
|
push(value);
|
|
mov(value, FieldOperand(string, HeapObject::kMapOffset));
|
|
movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));
|
|
|
|
and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
|
|
cmp(value, Immediate(encoding_mask));
|
|
pop(value);
|
|
Check(equal, kUnexpectedStringType);
|
|
|
|
// The index is assumed to be untagged coming in, tag it to compare with the
|
|
// string length without using a temp register, it is restored at the end of
|
|
// this function.
|
|
SmiTag(index);
|
|
Check(no_overflow, kIndexIsTooLarge);
|
|
|
|
cmp(index, FieldOperand(string, String::kLengthOffset));
|
|
Check(less, kIndexIsTooLarge);
|
|
|
|
cmp(index, Immediate(Smi::FromInt(0)));
|
|
Check(greater_equal, kIndexIsNegative);
|
|
|
|
// Restore the index
|
|
SmiUntag(index);
|
|
}
|
|
|
|
|
|
void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
|
|
int frame_alignment = OS::ActivationFrameAlignment();
|
|
if (frame_alignment != 0) {
|
|
// Make stack end at alignment and make room for num_arguments words
|
|
// and the original value of esp.
|
|
mov(scratch, esp);
|
|
sub(esp, Immediate((num_arguments + 1) * kPointerSize));
|
|
ASSERT(IsPowerOf2(frame_alignment));
|
|
and_(esp, -frame_alignment);
|
|
mov(Operand(esp, num_arguments * kPointerSize), scratch);
|
|
} else {
|
|
sub(esp, Immediate(num_arguments * kPointerSize));
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallCFunction(ExternalReference function,
|
|
int num_arguments) {
|
|
// Trashing eax is ok as it will be the return value.
|
|
mov(eax, Immediate(function));
|
|
CallCFunction(eax, num_arguments);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CallCFunction(Register function,
|
|
int num_arguments) {
|
|
ASSERT(has_frame());
|
|
// Check stack alignment.
|
|
if (emit_debug_code()) {
|
|
CheckStackAlignment();
|
|
}
|
|
|
|
call(function);
|
|
if (OS::ActivationFrameAlignment() != 0) {
|
|
mov(esp, Operand(esp, num_arguments * kPointerSize));
|
|
} else {
|
|
add(esp, Immediate(num_arguments * kPointerSize));
|
|
}
|
|
}
|
|
|
|
|
|
bool AreAliased(Register r1, Register r2, Register r3, Register r4) {
|
|
if (r1.is(r2)) return true;
|
|
if (r1.is(r3)) return true;
|
|
if (r1.is(r4)) return true;
|
|
if (r2.is(r3)) return true;
|
|
if (r2.is(r4)) return true;
|
|
if (r3.is(r4)) return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
CodePatcher::CodePatcher(byte* address, int size)
|
|
: address_(address),
|
|
size_(size),
|
|
masm_(NULL, address, size + Assembler::kGap) {
|
|
// Create a new macro assembler pointing to the address of the code to patch.
|
|
// The size is adjusted with kGap on order for the assembler to generate size
|
|
// bytes of instructions without failing with buffer size constraints.
|
|
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
|
|
}
|
|
|
|
|
|
CodePatcher::~CodePatcher() {
|
|
// Indicate that code has changed.
|
|
CPU::FlushICache(address_, size_);
|
|
|
|
// Check that the code was patched as expected.
|
|
ASSERT(masm_.pc_ == address_ + size_);
|
|
ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckPageFlag(
|
|
Register object,
|
|
Register scratch,
|
|
int mask,
|
|
Condition cc,
|
|
Label* condition_met,
|
|
Label::Distance condition_met_distance) {
|
|
ASSERT(cc == zero || cc == not_zero);
|
|
if (scratch.is(object)) {
|
|
and_(scratch, Immediate(~Page::kPageAlignmentMask));
|
|
} else {
|
|
mov(scratch, Immediate(~Page::kPageAlignmentMask));
|
|
and_(scratch, object);
|
|
}
|
|
if (mask < (1 << kBitsPerByte)) {
|
|
test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
|
|
static_cast<uint8_t>(mask));
|
|
} else {
|
|
test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
|
|
}
|
|
j(cc, condition_met, condition_met_distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckPageFlagForMap(
|
|
Handle<Map> map,
|
|
int mask,
|
|
Condition cc,
|
|
Label* condition_met,
|
|
Label::Distance condition_met_distance) {
|
|
ASSERT(cc == zero || cc == not_zero);
|
|
Page* page = Page::FromAddress(map->address());
|
|
ExternalReference reference(ExternalReference::page_flags(page));
|
|
// The inlined static address check of the page's flags relies
|
|
// on maps never being compacted.
|
|
ASSERT(!isolate()->heap()->mark_compact_collector()->
|
|
IsOnEvacuationCandidate(*map));
|
|
if (mask < (1 << kBitsPerByte)) {
|
|
test_b(Operand::StaticVariable(reference), static_cast<uint8_t>(mask));
|
|
} else {
|
|
test(Operand::StaticVariable(reference), Immediate(mask));
|
|
}
|
|
j(cc, condition_met, condition_met_distance);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
|
|
Register scratch,
|
|
Label* if_deprecated) {
|
|
if (map->CanBeDeprecated()) {
|
|
mov(scratch, map);
|
|
mov(scratch, FieldOperand(scratch, Map::kBitField3Offset));
|
|
and_(scratch, Immediate(Map::Deprecated::kMask));
|
|
j(not_zero, if_deprecated);
|
|
}
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfBlack(Register object,
|
|
Register scratch0,
|
|
Register scratch1,
|
|
Label* on_black,
|
|
Label::Distance on_black_near) {
|
|
HasColor(object, scratch0, scratch1,
|
|
on_black, on_black_near,
|
|
1, 0); // kBlackBitPattern.
|
|
ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
|
|
}
|
|
|
|
|
|
void MacroAssembler::HasColor(Register object,
|
|
Register bitmap_scratch,
|
|
Register mask_scratch,
|
|
Label* has_color,
|
|
Label::Distance has_color_distance,
|
|
int first_bit,
|
|
int second_bit) {
|
|
ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
|
|
|
|
GetMarkBits(object, bitmap_scratch, mask_scratch);
|
|
|
|
Label other_color, word_boundary;
|
|
test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
|
j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
|
|
add(mask_scratch, mask_scratch); // Shift left 1 by adding.
|
|
j(zero, &word_boundary, Label::kNear);
|
|
test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
|
j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
|
|
jmp(&other_color, Label::kNear);
|
|
|
|
bind(&word_boundary);
|
|
test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1);
|
|
|
|
j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
|
|
bind(&other_color);
|
|
}
|
|
|
|
|
|
void MacroAssembler::GetMarkBits(Register addr_reg,
|
|
Register bitmap_reg,
|
|
Register mask_reg) {
|
|
ASSERT(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
|
|
mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
|
|
and_(bitmap_reg, addr_reg);
|
|
mov(ecx, addr_reg);
|
|
int shift =
|
|
Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
|
|
shr(ecx, shift);
|
|
and_(ecx,
|
|
(Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
|
|
|
|
add(bitmap_reg, ecx);
|
|
mov(ecx, addr_reg);
|
|
shr(ecx, kPointerSizeLog2);
|
|
and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
|
|
mov(mask_reg, Immediate(1));
|
|
shl_cl(mask_reg);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnsureNotWhite(
|
|
Register value,
|
|
Register bitmap_scratch,
|
|
Register mask_scratch,
|
|
Label* value_is_white_and_not_data,
|
|
Label::Distance distance) {
|
|
ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
|
|
GetMarkBits(value, bitmap_scratch, mask_scratch);
|
|
|
|
// If the value is black or grey we don't need to do anything.
|
|
ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
|
|
ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
|
|
ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
|
|
ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
|
|
|
|
Label done;
|
|
|
|
// Since both black and grey have a 1 in the first position and white does
|
|
// not have a 1 there we only need to check one bit.
|
|
test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
|
j(not_zero, &done, Label::kNear);
|
|
|
|
if (emit_debug_code()) {
|
|
// Check for impossible bit pattern.
|
|
Label ok;
|
|
push(mask_scratch);
|
|
// shl. May overflow making the check conservative.
|
|
add(mask_scratch, mask_scratch);
|
|
test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
|
|
j(zero, &ok, Label::kNear);
|
|
int3();
|
|
bind(&ok);
|
|
pop(mask_scratch);
|
|
}
|
|
|
|
// Value is white. We check whether it is data that doesn't need scanning.
|
|
// Currently only checks for HeapNumber and non-cons strings.
|
|
Register map = ecx; // Holds map while checking type.
|
|
Register length = ecx; // Holds length of object after checking type.
|
|
Label not_heap_number;
|
|
Label is_data_object;
|
|
|
|
// Check for heap-number
|
|
mov(map, FieldOperand(value, HeapObject::kMapOffset));
|
|
cmp(map, isolate()->factory()->heap_number_map());
|
|
j(not_equal, ¬_heap_number, Label::kNear);
|
|
mov(length, Immediate(HeapNumber::kSize));
|
|
jmp(&is_data_object, Label::kNear);
|
|
|
|
bind(¬_heap_number);
|
|
// Check for strings.
|
|
ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
|
|
ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
|
|
// If it's a string and it's not a cons string then it's an object containing
|
|
// no GC pointers.
|
|
Register instance_type = ecx;
|
|
movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
|
|
test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask);
|
|
j(not_zero, value_is_white_and_not_data);
|
|
// It's a non-indirect (non-cons and non-slice) string.
|
|
// If it's external, the length is just ExternalString::kSize.
|
|
// Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
|
|
Label not_external;
|
|
// External strings are the only ones with the kExternalStringTag bit
|
|
// set.
|
|
ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
|
|
ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
|
|
test_b(instance_type, kExternalStringTag);
|
|
j(zero, ¬_external, Label::kNear);
|
|
mov(length, Immediate(ExternalString::kSize));
|
|
jmp(&is_data_object, Label::kNear);
|
|
|
|
bind(¬_external);
|
|
// Sequential string, either ASCII or UC16.
|
|
ASSERT(kOneByteStringTag == 0x04);
|
|
and_(length, Immediate(kStringEncodingMask));
|
|
xor_(length, Immediate(kStringEncodingMask));
|
|
add(length, Immediate(0x04));
|
|
// Value now either 4 (if ASCII) or 8 (if UC16), i.e., char-size shifted
|
|
// by 2. If we multiply the string length as smi by this, it still
|
|
// won't overflow a 32-bit value.
|
|
ASSERT_EQ(SeqOneByteString::kMaxSize, SeqTwoByteString::kMaxSize);
|
|
ASSERT(SeqOneByteString::kMaxSize <=
|
|
static_cast<int>(0xffffffffu >> (2 + kSmiTagSize)));
|
|
imul(length, FieldOperand(value, String::kLengthOffset));
|
|
shr(length, 2 + kSmiTagSize + kSmiShiftSize);
|
|
add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
|
|
and_(length, Immediate(~kObjectAlignmentMask));
|
|
|
|
bind(&is_data_object);
|
|
// Value is a data object, and it is white. Mark it black. Since we know
|
|
// that the object is white we can make it black by flipping one bit.
|
|
or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
|
|
|
|
and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
|
|
add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset),
|
|
length);
|
|
if (emit_debug_code()) {
|
|
mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
|
|
cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset));
|
|
Check(less_equal, kLiveBytesCountOverflowChunkSize);
|
|
}
|
|
|
|
bind(&done);
|
|
}
|
|
|
|
|
|
void MacroAssembler::EnumLength(Register dst, Register map) {
|
|
STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
|
|
mov(dst, FieldOperand(map, Map::kBitField3Offset));
|
|
and_(dst, Immediate(Map::EnumLengthBits::kMask));
|
|
SmiTag(dst);
|
|
}
|
|
|
|
|
|
void MacroAssembler::CheckEnumCache(Label* call_runtime) {
|
|
Label next, start;
|
|
mov(ecx, eax);
|
|
|
|
// Check if the enum length field is properly initialized, indicating that
|
|
// there is an enum cache.
|
|
mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
|
|
|
|
EnumLength(edx, ebx);
|
|
cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
|
|
j(equal, call_runtime);
|
|
|
|
jmp(&start);
|
|
|
|
bind(&next);
|
|
mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
|
|
|
|
// For all objects but the receiver, check that the cache is empty.
|
|
EnumLength(edx, ebx);
|
|
cmp(edx, Immediate(Smi::FromInt(0)));
|
|
j(not_equal, call_runtime);
|
|
|
|
bind(&start);
|
|
|
|
// Check that there are no elements. Register rcx contains the current JS
|
|
// object we've reached through the prototype chain.
|
|
Label no_elements;
|
|
mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
|
|
cmp(ecx, isolate()->factory()->empty_fixed_array());
|
|
j(equal, &no_elements);
|
|
|
|
// Second chance, the object may be using the empty slow element dictionary.
|
|
cmp(ecx, isolate()->factory()->empty_slow_element_dictionary());
|
|
j(not_equal, call_runtime);
|
|
|
|
bind(&no_elements);
|
|
mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
|
|
cmp(ecx, isolate()->factory()->null_value());
|
|
j(not_equal, &next);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TestJSArrayForAllocationMemento(
|
|
Register receiver_reg,
|
|
Register scratch_reg,
|
|
Label* no_memento_found) {
|
|
ExternalReference new_space_start =
|
|
ExternalReference::new_space_start(isolate());
|
|
ExternalReference new_space_allocation_top =
|
|
ExternalReference::new_space_allocation_top_address(isolate());
|
|
|
|
lea(scratch_reg, Operand(receiver_reg,
|
|
JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
|
|
cmp(scratch_reg, Immediate(new_space_start));
|
|
j(less, no_memento_found);
|
|
cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
|
|
j(greater, no_memento_found);
|
|
cmp(MemOperand(scratch_reg, -AllocationMemento::kSize),
|
|
Immediate(isolate()->factory()->allocation_memento_map()));
|
|
}
|
|
|
|
|
|
void MacroAssembler::JumpIfDictionaryInPrototypeChain(
|
|
Register object,
|
|
Register scratch0,
|
|
Register scratch1,
|
|
Label* found) {
|
|
ASSERT(!scratch1.is(scratch0));
|
|
Factory* factory = isolate()->factory();
|
|
Register current = scratch0;
|
|
Label loop_again;
|
|
|
|
// scratch contained elements pointer.
|
|
mov(current, object);
|
|
|
|
// Loop based on the map going up the prototype chain.
|
|
bind(&loop_again);
|
|
mov(current, FieldOperand(current, HeapObject::kMapOffset));
|
|
mov(scratch1, FieldOperand(current, Map::kBitField2Offset));
|
|
DecodeField<Map::ElementsKindBits>(scratch1);
|
|
cmp(scratch1, Immediate(DICTIONARY_ELEMENTS));
|
|
j(equal, found);
|
|
mov(current, FieldOperand(current, Map::kPrototypeOffset));
|
|
cmp(current, Immediate(factory->null_value()));
|
|
j(not_equal, &loop_again);
|
|
}
|
|
|
|
|
|
void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
|
|
ASSERT(!dividend.is(eax));
|
|
ASSERT(!dividend.is(edx));
|
|
MultiplierAndShift ms(divisor);
|
|
mov(eax, Immediate(ms.multiplier()));
|
|
imul(dividend);
|
|
if (divisor > 0 && ms.multiplier() < 0) add(edx, dividend);
|
|
if (divisor < 0 && ms.multiplier() > 0) sub(edx, dividend);
|
|
if (ms.shift() > 0) sar(edx, ms.shift());
|
|
mov(eax, dividend);
|
|
shr(eax, 31);
|
|
add(edx, eax);
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_TARGET_ARCH_IA32
|