2380eff265
Blink has migrated to use the new style visitors. BUG= R=dcarney@chromium.org, svenpanne@chromium.org Review URL: https://codereview.chromium.org/16360005 Patch from Marja Hölttä <marja@chromium.org>. git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14936 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
6286 lines
192 KiB
C++
6286 lines
192 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
/** \mainpage V8 API Reference Guide
|
|
*
|
|
* V8 is Google's open source JavaScript engine.
|
|
*
|
|
* This set of documents provides reference material generated from the
|
|
* V8 header file, include/v8.h.
|
|
*
|
|
* For other documentation see http://code.google.com/apis/v8/
|
|
*/
|
|
|
|
#ifndef V8_H_
|
|
#define V8_H_
|
|
|
|
#include "v8stdint.h"
|
|
|
|
#ifdef _WIN32
|
|
|
|
// Setup for Windows DLL export/import. When building the V8 DLL the
|
|
// BUILDING_V8_SHARED needs to be defined. When building a program which uses
|
|
// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
|
|
// static library or building a program which uses the V8 static library neither
|
|
// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
|
|
#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
|
|
#error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
|
|
build configuration to ensure that at most one of these is set
|
|
#endif
|
|
|
|
#ifdef BUILDING_V8_SHARED
|
|
#define V8EXPORT __declspec(dllexport)
|
|
#elif USING_V8_SHARED
|
|
#define V8EXPORT __declspec(dllimport)
|
|
#else
|
|
#define V8EXPORT
|
|
#endif // BUILDING_V8_SHARED
|
|
|
|
#else // _WIN32
|
|
|
|
// Setup for Linux shared library export.
|
|
#if defined(__GNUC__) && ((__GNUC__ >= 4) || \
|
|
(__GNUC__ == 3 && __GNUC_MINOR__ >= 3)) && defined(V8_SHARED)
|
|
#ifdef BUILDING_V8_SHARED
|
|
#define V8EXPORT __attribute__ ((visibility("default")))
|
|
#else
|
|
#define V8EXPORT
|
|
#endif
|
|
#else
|
|
#define V8EXPORT
|
|
#endif
|
|
|
|
#endif // _WIN32
|
|
|
|
#if defined(__GNUC__) && !defined(DEBUG)
|
|
#define V8_INLINE(declarator) inline __attribute__((always_inline)) declarator
|
|
#elif defined(_MSC_VER) && !defined(DEBUG)
|
|
#define V8_INLINE(declarator) __forceinline declarator
|
|
#else
|
|
#define V8_INLINE(declarator) inline declarator
|
|
#endif
|
|
|
|
#if defined(__GNUC__) && !V8_DISABLE_DEPRECATIONS
|
|
#define V8_DEPRECATED(declarator) declarator __attribute__ ((deprecated))
|
|
#elif defined(_MSC_VER) && !V8_DISABLE_DEPRECATIONS
|
|
#define V8_DEPRECATED(declarator) __declspec(deprecated) declarator
|
|
#else
|
|
#define V8_DEPRECATED(declarator) declarator
|
|
#endif
|
|
|
|
#if __GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))
|
|
#define V8_UNLIKELY(condition) __builtin_expect((condition), 0)
|
|
#define V8_LIKELY(condition) __builtin_expect((condition), 1)
|
|
#else
|
|
#define V8_UNLIKELY(condition) (condition)
|
|
#define V8_LIKELY(condition) (condition)
|
|
#endif
|
|
|
|
/**
|
|
* The v8 JavaScript engine.
|
|
*/
|
|
namespace v8 {
|
|
|
|
class AccessorInfo;
|
|
class AccessorSignature;
|
|
class Array;
|
|
class Boolean;
|
|
class BooleanObject;
|
|
class Context;
|
|
class CpuProfiler;
|
|
class Data;
|
|
class Date;
|
|
class DeclaredAccessorDescriptor;
|
|
class External;
|
|
class Function;
|
|
class FunctionTemplate;
|
|
class HeapProfiler;
|
|
class ImplementationUtilities;
|
|
class Int32;
|
|
class Integer;
|
|
class Isolate;
|
|
class LocalContext;
|
|
class Number;
|
|
class NumberObject;
|
|
class Object;
|
|
class ObjectOperationDescriptor;
|
|
class ObjectTemplate;
|
|
class Primitive;
|
|
class RawOperationDescriptor;
|
|
class Signature;
|
|
class StackFrame;
|
|
class StackTrace;
|
|
class String;
|
|
class StringObject;
|
|
class Symbol;
|
|
class SymbolObject;
|
|
class Uint32;
|
|
class Utils;
|
|
class Value;
|
|
template <class T> class Handle;
|
|
template <class T> class Local;
|
|
template <class T> class Persistent;
|
|
class FunctionTemplate;
|
|
class ObjectTemplate;
|
|
class Data;
|
|
class AccessorInfo;
|
|
template<typename T> class PropertyCallbackInfo;
|
|
class StackTrace;
|
|
class StackFrame;
|
|
class Isolate;
|
|
class DeclaredAccessorDescriptor;
|
|
class ObjectOperationDescriptor;
|
|
class RawOperationDescriptor;
|
|
|
|
namespace internal {
|
|
class Arguments;
|
|
class Heap;
|
|
class HeapObject;
|
|
class Isolate;
|
|
class Object;
|
|
template<typename T>
|
|
class CustomArguments;
|
|
class PropertyCallbackArguments;
|
|
class FunctionCallbackArguments;
|
|
}
|
|
|
|
|
|
/**
|
|
* General purpose unique identifier.
|
|
*/
|
|
class UniqueId {
|
|
public:
|
|
explicit UniqueId(intptr_t data)
|
|
: data_(data) {}
|
|
|
|
bool operator==(const UniqueId& other) const {
|
|
return data_ == other.data_;
|
|
}
|
|
|
|
bool operator!=(const UniqueId& other) const {
|
|
return data_ != other.data_;
|
|
}
|
|
|
|
bool operator<(const UniqueId& other) const {
|
|
return data_ < other.data_;
|
|
}
|
|
|
|
private:
|
|
intptr_t data_;
|
|
};
|
|
|
|
|
|
// --- Weak Handles ---
|
|
|
|
|
|
/**
|
|
* A weak reference callback function.
|
|
*
|
|
* This callback should either explicitly invoke Dispose on |object| if
|
|
* V8 wrapper is not needed anymore, or 'revive' it by invocation of MakeWeak.
|
|
*
|
|
* \param object the weak global object to be reclaimed by the garbage collector
|
|
* \param parameter the value passed in when making the weak global object
|
|
*/
|
|
template<typename T, typename P>
|
|
class WeakReferenceCallbacks {
|
|
public:
|
|
typedef void (*Revivable)(Isolate* isolate,
|
|
Persistent<T>* object,
|
|
P* parameter);
|
|
};
|
|
|
|
// --- Handles ---
|
|
|
|
#define TYPE_CHECK(T, S) \
|
|
while (false) { \
|
|
*(static_cast<T* volatile*>(0)) = static_cast<S*>(0); \
|
|
}
|
|
|
|
|
|
#define V8_USE_UNSAFE_HANDLES
|
|
|
|
/**
|
|
* An object reference managed by the v8 garbage collector.
|
|
*
|
|
* All objects returned from v8 have to be tracked by the garbage
|
|
* collector so that it knows that the objects are still alive. Also,
|
|
* because the garbage collector may move objects, it is unsafe to
|
|
* point directly to an object. Instead, all objects are stored in
|
|
* handles which are known by the garbage collector and updated
|
|
* whenever an object moves. Handles should always be passed by value
|
|
* (except in cases like out-parameters) and they should never be
|
|
* allocated on the heap.
|
|
*
|
|
* There are two types of handles: local and persistent handles.
|
|
* Local handles are light-weight and transient and typically used in
|
|
* local operations. They are managed by HandleScopes. Persistent
|
|
* handles can be used when storing objects across several independent
|
|
* operations and have to be explicitly deallocated when they're no
|
|
* longer used.
|
|
*
|
|
* It is safe to extract the object stored in the handle by
|
|
* dereferencing the handle (for instance, to extract the Object* from
|
|
* a Handle<Object>); the value will still be governed by a handle
|
|
* behind the scenes and the same rules apply to these values as to
|
|
* their handles.
|
|
*/
|
|
template <class T> class Handle {
|
|
public:
|
|
/**
|
|
* Creates an empty handle.
|
|
*/
|
|
V8_INLINE(Handle()) : val_(0) {}
|
|
|
|
#ifdef V8_USE_UNSAFE_HANDLES
|
|
/**
|
|
* Creates a new handle for the specified value.
|
|
*/
|
|
V8_INLINE(explicit Handle(T* val)) : val_(val) {}
|
|
#endif
|
|
|
|
/**
|
|
* Creates a handle for the contents of the specified handle. This
|
|
* constructor allows you to pass handles as arguments by value and
|
|
* to assign between handles. However, if you try to assign between
|
|
* incompatible handles, for instance from a Handle<String> to a
|
|
* Handle<Number> it will cause a compile-time error. Assigning
|
|
* between compatible handles, for instance assigning a
|
|
* Handle<String> to a variable declared as Handle<Value>, is legal
|
|
* because String is a subclass of Value.
|
|
*/
|
|
template <class S> V8_INLINE(Handle(Handle<S> that))
|
|
: val_(reinterpret_cast<T*>(*that)) {
|
|
/**
|
|
* This check fails when trying to convert between incompatible
|
|
* handles. For example, converting from a Handle<String> to a
|
|
* Handle<Number>.
|
|
*/
|
|
TYPE_CHECK(T, S);
|
|
}
|
|
|
|
/**
|
|
* Returns true if the handle is empty.
|
|
*/
|
|
V8_INLINE(bool IsEmpty() const) { return val_ == 0; }
|
|
|
|
/**
|
|
* Sets the handle to be empty. IsEmpty() will then return true.
|
|
*/
|
|
V8_INLINE(void Clear()) { val_ = 0; }
|
|
|
|
V8_INLINE(T* operator->() const) { return val_; }
|
|
|
|
V8_INLINE(T* operator*() const) { return val_; }
|
|
|
|
/**
|
|
* Checks whether two handles are the same.
|
|
* Returns true if both are empty, or if the objects
|
|
* to which they refer are identical.
|
|
* The handles' references are not checked.
|
|
*/
|
|
template <class S> V8_INLINE(bool operator==(const Handle<S> that) const) {
|
|
internal::Object** a = reinterpret_cast<internal::Object**>(**this);
|
|
internal::Object** b = reinterpret_cast<internal::Object**>(*that);
|
|
if (a == 0) return b == 0;
|
|
if (b == 0) return false;
|
|
return *a == *b;
|
|
}
|
|
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
template <class S> V8_INLINE(
|
|
bool operator==(const Persistent<S>& that) const) {
|
|
internal::Object** a = reinterpret_cast<internal::Object**>(**this);
|
|
internal::Object** b = reinterpret_cast<internal::Object**>(*that);
|
|
if (a == 0) return b == 0;
|
|
if (b == 0) return false;
|
|
return *a == *b;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Checks whether two handles are different.
|
|
* Returns true if only one of the handles is empty, or if
|
|
* the objects to which they refer are different.
|
|
* The handles' references are not checked.
|
|
*/
|
|
template <class S> V8_INLINE(bool operator!=(Handle<S> that) const) {
|
|
return !operator==(that);
|
|
}
|
|
|
|
template <class S> V8_INLINE(static Handle<T> Cast(Handle<S> that)) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
// If we're going to perform the type check then we have to check
|
|
// that the handle isn't empty before doing the checked cast.
|
|
if (that.IsEmpty()) return Handle<T>();
|
|
#endif
|
|
return Handle<T>(T::Cast(*that));
|
|
}
|
|
|
|
template <class S> V8_INLINE(Handle<S> As()) {
|
|
return Handle<S>::Cast(*this);
|
|
}
|
|
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
V8_INLINE(static Handle<T> New(Isolate* isolate, Handle<T> that)) {
|
|
return New(isolate, that.val_);
|
|
}
|
|
// TODO(dcarney): remove before cutover
|
|
V8_INLINE(static Handle<T> New(Isolate* isolate, const Persistent<T>& that)) {
|
|
return New(isolate, that.val_);
|
|
}
|
|
|
|
#ifndef V8_ALLOW_ACCESS_TO_RAW_HANDLE_CONSTRUCTOR
|
|
|
|
private:
|
|
#endif
|
|
/**
|
|
* Creates a new handle for the specified value.
|
|
*/
|
|
V8_INLINE(explicit Handle(T* val)) : val_(val) {}
|
|
#endif
|
|
|
|
private:
|
|
template<class F> friend class Persistent;
|
|
template<class F> friend class Local;
|
|
friend class Arguments;
|
|
template<class F> friend class FunctionCallbackInfo;
|
|
template<class F> friend class PropertyCallbackInfo;
|
|
friend class String;
|
|
friend class Object;
|
|
friend class AccessorInfo;
|
|
friend Handle<Primitive> Undefined(Isolate* isolate);
|
|
friend Handle<Primitive> Null(Isolate* isolate);
|
|
friend Handle<Boolean> True(Isolate* isolate);
|
|
friend Handle<Boolean> False(Isolate* isolate);
|
|
friend class Context;
|
|
friend class InternalHandleHelper;
|
|
friend class LocalContext;
|
|
friend class HandleScope;
|
|
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
V8_INLINE(static Handle<T> New(Isolate* isolate, T* that));
|
|
#endif
|
|
|
|
T* val_;
|
|
};
|
|
|
|
|
|
/**
|
|
* A light-weight stack-allocated object handle. All operations
|
|
* that return objects from within v8 return them in local handles. They
|
|
* are created within HandleScopes, and all local handles allocated within a
|
|
* handle scope are destroyed when the handle scope is destroyed. Hence it
|
|
* is not necessary to explicitly deallocate local handles.
|
|
*/
|
|
// TODO(dcarney): deprecate entire class
|
|
template <class T> class Local : public Handle<T> {
|
|
public:
|
|
V8_INLINE(Local());
|
|
template <class S> V8_INLINE(Local(Local<S> that))
|
|
: Handle<T>(reinterpret_cast<T*>(*that)) {
|
|
/**
|
|
* This check fails when trying to convert between incompatible
|
|
* handles. For example, converting from a Handle<String> to a
|
|
* Handle<Number>.
|
|
*/
|
|
TYPE_CHECK(T, S);
|
|
}
|
|
|
|
|
|
#ifdef V8_USE_UNSAFE_HANDLES
|
|
template <class S> V8_INLINE(Local(S* that) : Handle<T>(that)) { }
|
|
#endif
|
|
|
|
template <class S> V8_INLINE(static Local<T> Cast(Local<S> that)) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
// If we're going to perform the type check then we have to check
|
|
// that the handle isn't empty before doing the checked cast.
|
|
if (that.IsEmpty()) return Local<T>();
|
|
#endif
|
|
return Local<T>(T::Cast(*that));
|
|
}
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
template <class S> V8_INLINE(Local(Handle<S> that))
|
|
: Handle<T>(reinterpret_cast<T*>(*that)) {
|
|
TYPE_CHECK(T, S);
|
|
}
|
|
#endif
|
|
|
|
template <class S> V8_INLINE(Local<S> As()) {
|
|
return Local<S>::Cast(*this);
|
|
}
|
|
|
|
/**
|
|
* Create a local handle for the content of another handle.
|
|
* The referee is kept alive by the local handle even when
|
|
* the original handle is destroyed/disposed.
|
|
*/
|
|
V8_INLINE(static Local<T> New(Handle<T> that));
|
|
V8_INLINE(static Local<T> New(Isolate* isolate, Handle<T> that));
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
// TODO(dcarney): remove before cutover
|
|
V8_INLINE(static Local<T> New(Isolate* isolate, const Persistent<T>& that));
|
|
|
|
#ifndef V8_ALLOW_ACCESS_TO_RAW_HANDLE_CONSTRUCTOR
|
|
|
|
private:
|
|
#endif
|
|
template <class S> V8_INLINE(Local(S* that) : Handle<T>(that)) { }
|
|
#endif
|
|
|
|
private:
|
|
template<class F> friend class Persistent;
|
|
template<class F> friend class Handle;
|
|
friend class Arguments;
|
|
template<class F> friend class FunctionCallbackInfo;
|
|
template<class F> friend class PropertyCallbackInfo;
|
|
friend class String;
|
|
friend class Object;
|
|
friend class AccessorInfo;
|
|
friend class Context;
|
|
friend class InternalHandleHelper;
|
|
friend class LocalContext;
|
|
friend class HandleScope;
|
|
|
|
V8_INLINE(static Local<T> New(Isolate* isolate, T* that));
|
|
};
|
|
|
|
/**
|
|
* An object reference that is independent of any handle scope. Where
|
|
* a Local handle only lives as long as the HandleScope in which it was
|
|
* allocated, a Persistent handle remains valid until it is explicitly
|
|
* disposed.
|
|
*
|
|
* A persistent handle contains a reference to a storage cell within
|
|
* the v8 engine which holds an object value and which is updated by
|
|
* the garbage collector whenever the object is moved. A new storage
|
|
* cell can be created using Persistent::New and existing handles can
|
|
* be disposed using Persistent::Dispose. Since persistent handles
|
|
* are passed by value you may have many persistent handle objects
|
|
* that point to the same storage cell. For instance, if you pass a
|
|
* persistent handle as an argument to a function you will not get two
|
|
* different storage cells but rather two references to the same
|
|
* storage cell.
|
|
*/
|
|
template <class T> class Persistent // NOLINT
|
|
#ifdef V8_USE_UNSAFE_HANDLES
|
|
: public Handle<T> {
|
|
#else
|
|
{ // NOLINT
|
|
#endif
|
|
public:
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
V8_INLINE(Persistent()) : val_(0) { }
|
|
V8_INLINE(~Persistent()) {
|
|
// TODO(dcarney): add this back before cutover.
|
|
// Dispose();
|
|
}
|
|
V8_INLINE(bool IsEmpty() const) { return val_ == 0; }
|
|
// TODO(dcarney): remove somehow before cutover
|
|
// The handle should either be 0, or a pointer to a live cell.
|
|
V8_INLINE(void Clear()) { val_ = 0; }
|
|
|
|
/**
|
|
* A constructor that creates a new global cell pointing to that. In contrast
|
|
* to the copy constructor, this creates a new persistent handle which needs
|
|
* to be separately disposed.
|
|
*/
|
|
template <class S> V8_INLINE(Persistent(Isolate* isolate, Handle<S> that))
|
|
: val_(*New(isolate, that)) { }
|
|
|
|
template <class S> V8_INLINE(Persistent(Isolate* isolate,
|
|
Persistent<S>& that)) // NOLINT
|
|
: val_(*New(isolate, that)) { }
|
|
|
|
#else
|
|
/**
|
|
* Creates an empty persistent handle that doesn't point to any
|
|
* storage cell.
|
|
*/
|
|
V8_INLINE(Persistent()) : Handle<T>() { }
|
|
|
|
/**
|
|
* Creates a persistent handle for the same storage cell as the
|
|
* specified handle. This constructor allows you to pass persistent
|
|
* handles as arguments by value and to assign between persistent
|
|
* handles. However, attempting to assign between incompatible
|
|
* persistent handles, for instance from a Persistent<String> to a
|
|
* Persistent<Number> will cause a compile-time error. Assigning
|
|
* between compatible persistent handles, for instance assigning a
|
|
* Persistent<String> to a variable declared as Persistent<Value>,
|
|
* is allowed as String is a subclass of Value.
|
|
*/
|
|
template <class S> V8_INLINE(Persistent(Persistent<S> that))
|
|
: Handle<T>(reinterpret_cast<T*>(*that)) {
|
|
/**
|
|
* This check fails when trying to convert between incompatible
|
|
* handles. For example, converting from a Handle<String> to a
|
|
* Handle<Number>.
|
|
*/
|
|
TYPE_CHECK(T, S);
|
|
}
|
|
|
|
template <class S> V8_INLINE(Persistent(S* that)) : Handle<T>(that) { }
|
|
|
|
/**
|
|
* A constructor that creates a new global cell pointing to that. In contrast
|
|
* to the copy constructor, this creates a new persistent handle which needs
|
|
* to be separately disposed.
|
|
*/
|
|
template <class S> V8_INLINE(Persistent(Isolate* isolate, Handle<S> that))
|
|
: Handle<T>(New(isolate, that)) { }
|
|
|
|
/**
|
|
* "Casts" a plain handle which is known to be a persistent handle
|
|
* to a persistent handle.
|
|
*/
|
|
template <class S> explicit V8_INLINE(Persistent(Handle<S> that))
|
|
: Handle<T>(*that) { }
|
|
|
|
#endif
|
|
|
|
#ifdef V8_USE_UNSAFE_HANDLES
|
|
template <class S> V8_INLINE(static Persistent<T> Cast(Persistent<S> that)) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
// If we're going to perform the type check then we have to check
|
|
// that the handle isn't empty before doing the checked cast.
|
|
if (that.IsEmpty()) return Persistent<T>();
|
|
#endif
|
|
return Persistent<T>(T::Cast(*that));
|
|
}
|
|
|
|
template <class S> V8_INLINE(Persistent<S> As()) {
|
|
return Persistent<S>::Cast(*this);
|
|
}
|
|
|
|
#else
|
|
template <class S>
|
|
V8_INLINE(static Persistent<T>& Cast(Persistent<S>& that)) { // NOLINT
|
|
#ifdef V8_ENABLE_CHECKS
|
|
// If we're going to perform the type check then we have to check
|
|
// that the handle isn't empty before doing the checked cast.
|
|
if (!that.IsEmpty()) T::Cast(*that);
|
|
#endif
|
|
return reinterpret_cast<Persistent<T>&>(that);
|
|
}
|
|
|
|
template <class S> V8_INLINE(Persistent<S>& As()) { // NOLINT
|
|
return Persistent<S>::Cast(*this);
|
|
}
|
|
#endif
|
|
|
|
V8_DEPRECATED(static Persistent<T> New(Handle<T> that));
|
|
|
|
/**
|
|
* Creates a new persistent handle for an existing local or persistent handle.
|
|
*/
|
|
// TODO(dcarney): remove before cutover
|
|
V8_INLINE(static Persistent<T> New(Isolate* isolate, Handle<T> that));
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
// TODO(dcarney): remove before cutover
|
|
V8_INLINE(static Persistent<T> New(Isolate* isolate, Persistent<T> that));
|
|
#endif
|
|
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
template <class S> V8_INLINE(
|
|
bool operator==(const Persistent<S>& that) const) {
|
|
internal::Object** a = reinterpret_cast<internal::Object**>(**this);
|
|
internal::Object** b = reinterpret_cast<internal::Object**>(*that);
|
|
if (a == 0) return b == 0;
|
|
if (b == 0) return false;
|
|
return *a == *b;
|
|
}
|
|
|
|
template <class S> V8_INLINE(bool operator==(const Handle<S> that) const) {
|
|
internal::Object** a = reinterpret_cast<internal::Object**>(**this);
|
|
internal::Object** b = reinterpret_cast<internal::Object**>(*that);
|
|
if (a == 0) return b == 0;
|
|
if (b == 0) return false;
|
|
return *a == *b;
|
|
}
|
|
#endif
|
|
|
|
V8_INLINE(void Dispose());
|
|
|
|
/**
|
|
* Releases the storage cell referenced by this persistent handle.
|
|
* Does not remove the reference to the cell from any handles.
|
|
* This handle's reference, and any other references to the storage
|
|
* cell remain and IsEmpty will still return false.
|
|
*/
|
|
// TODO(dcarney): deprecate
|
|
V8_INLINE(void Dispose(Isolate* isolate)) { Dispose(); }
|
|
|
|
/**
|
|
* Make the reference to this object weak. When only weak handles
|
|
* refer to the object, the garbage collector will perform a
|
|
* callback to the given V8::NearDeathCallback function, passing
|
|
* it the object reference and the given parameters.
|
|
*/
|
|
template<typename S, typename P>
|
|
V8_INLINE(void MakeWeak(
|
|
P* parameters,
|
|
typename WeakReferenceCallbacks<S, P>::Revivable callback));
|
|
|
|
template<typename P>
|
|
V8_INLINE(void MakeWeak(
|
|
P* parameters,
|
|
typename WeakReferenceCallbacks<T, P>::Revivable callback));
|
|
|
|
// TODO(dcarney): deprecate
|
|
template<typename S, typename P>
|
|
V8_INLINE(void MakeWeak(
|
|
Isolate* isolate,
|
|
P* parameters,
|
|
typename WeakReferenceCallbacks<S, P>::Revivable callback)) {
|
|
MakeWeak<S, P>(parameters, callback);
|
|
}
|
|
|
|
// TODO(dcarney): deprecate
|
|
template<typename P>
|
|
V8_INLINE(void MakeWeak(
|
|
Isolate* isolate,
|
|
P* parameters,
|
|
typename WeakReferenceCallbacks<T, P>::Revivable callback)) {
|
|
MakeWeak<P>(parameters, callback);
|
|
}
|
|
|
|
V8_INLINE(void ClearWeak());
|
|
|
|
// TODO(dcarney): deprecate
|
|
V8_INLINE(void ClearWeak(Isolate* isolate)) { ClearWeak(); }
|
|
|
|
/**
|
|
* Marks the reference to this object independent. Garbage collector is free
|
|
* to ignore any object groups containing this object. Weak callback for an
|
|
* independent handle should not assume that it will be preceded by a global
|
|
* GC prologue callback or followed by a global GC epilogue callback.
|
|
*/
|
|
V8_INLINE(void MarkIndependent());
|
|
|
|
// TODO(dcarney): deprecate
|
|
V8_INLINE(void MarkIndependent(Isolate* isolate)) { MarkIndependent(); }
|
|
|
|
/**
|
|
* Marks the reference to this object partially dependent. Partially dependent
|
|
* handles only depend on other partially dependent handles and these
|
|
* dependencies are provided through object groups. It provides a way to build
|
|
* smaller object groups for young objects that represent only a subset of all
|
|
* external dependencies. This mark is automatically cleared after each
|
|
* garbage collection.
|
|
*/
|
|
V8_INLINE(void MarkPartiallyDependent());
|
|
|
|
// TODO(dcarney): deprecate
|
|
V8_INLINE(void MarkPartiallyDependent(Isolate* isolate)) {
|
|
MarkPartiallyDependent();
|
|
}
|
|
|
|
V8_INLINE(bool IsIndependent() const);
|
|
|
|
// TODO(dcarney): deprecate
|
|
V8_INLINE(bool IsIndependent(Isolate* isolate) const) {
|
|
return IsIndependent();
|
|
}
|
|
|
|
/** Checks if the handle holds the only reference to an object. */
|
|
V8_INLINE(bool IsNearDeath() const);
|
|
|
|
// TODO(dcarney): deprecate
|
|
V8_INLINE(bool IsNearDeath(Isolate* isolate) const) { return IsNearDeath(); }
|
|
|
|
/** Returns true if the handle's reference is weak. */
|
|
V8_INLINE(bool IsWeak() const);
|
|
|
|
// TODO(dcarney): deprecate
|
|
V8_INLINE(bool IsWeak(Isolate* isolate) const) { return IsWeak(); }
|
|
|
|
/**
|
|
* Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
|
|
* description in v8-profiler.h for details.
|
|
*/
|
|
V8_INLINE(void SetWrapperClassId(uint16_t class_id));
|
|
|
|
// TODO(dcarney): deprecate
|
|
V8_INLINE(void SetWrapperClassId(Isolate* isolate, uint16_t class_id)) {
|
|
SetWrapperClassId(class_id);
|
|
}
|
|
|
|
/**
|
|
* Returns the class ID previously assigned to this handle or 0 if no class ID
|
|
* was previously assigned.
|
|
*/
|
|
V8_INLINE(uint16_t WrapperClassId() const);
|
|
|
|
// TODO(dcarney): deprecate
|
|
V8_INLINE(uint16_t WrapperClassId(Isolate* isolate) const) {
|
|
return WrapperClassId();
|
|
}
|
|
|
|
/**
|
|
* Disposes the current contents of the handle and replaces it.
|
|
*/
|
|
V8_INLINE(void Reset(Isolate* isolate, const Handle<T>& other));
|
|
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
V8_INLINE(void Reset(Isolate* isolate, const Persistent<T>& other));
|
|
#endif
|
|
|
|
/**
|
|
* Returns the underlying raw pointer and clears the handle. The caller is
|
|
* responsible of eventually destroying the underlying object (by creating a
|
|
* Persistent handle which points to it and Disposing it). In the future,
|
|
* destructing a Persistent will also Dispose it. With this function, the
|
|
* embedder can let the Persistent go out of scope without it getting
|
|
* disposed.
|
|
*/
|
|
V8_INLINE(T* ClearAndLeak());
|
|
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
|
|
private:
|
|
// TODO(dcarney): make unlinkable before cutover
|
|
V8_INLINE(Persistent(const Persistent& that)) : val_(that.val_) {}
|
|
// TODO(dcarney): make unlinkable before cutover
|
|
V8_INLINE(Persistent& operator=(const Persistent& that)) { // NOLINT
|
|
this->val_ = that.val_;
|
|
return *this;
|
|
}
|
|
|
|
public:
|
|
#ifndef V8_ALLOW_ACCESS_TO_RAW_HANDLE_CONSTRUCTOR
|
|
|
|
private:
|
|
#endif
|
|
// TODO(dcarney): remove before cutover
|
|
template <class S> V8_INLINE(Persistent(S* that)) : val_(that) { }
|
|
// TODO(dcarney): remove before cutover
|
|
template <class S> V8_INLINE(Persistent(Persistent<S> that))
|
|
: val_(*that) {
|
|
TYPE_CHECK(T, S);
|
|
}
|
|
// TODO(dcarney): remove before cutover
|
|
V8_INLINE(T* operator*() const) { return val_; }
|
|
|
|
private:
|
|
// TODO(dcarney): remove before cutover
|
|
V8_INLINE(T* operator->() const) { return val_; }
|
|
public:
|
|
#endif
|
|
|
|
private:
|
|
template<class F> friend class Handle;
|
|
template<class F> friend class Local;
|
|
friend class ImplementationUtilities;
|
|
friend class ObjectTemplate;
|
|
friend class Context;
|
|
friend class InternalHandleHelper;
|
|
friend class LocalContext;
|
|
|
|
V8_INLINE(static Persistent<T> New(Isolate* isolate, T* that));
|
|
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
T* val_;
|
|
#endif
|
|
};
|
|
|
|
|
|
/**
|
|
* A stack-allocated class that governs a number of local handles.
|
|
* After a handle scope has been created, all local handles will be
|
|
* allocated within that handle scope until either the handle scope is
|
|
* deleted or another handle scope is created. If there is already a
|
|
* handle scope and a new one is created, all allocations will take
|
|
* place in the new handle scope until it is deleted. After that,
|
|
* new handles will again be allocated in the original handle scope.
|
|
*
|
|
* After the handle scope of a local handle has been deleted the
|
|
* garbage collector will no longer track the object stored in the
|
|
* handle and may deallocate it. The behavior of accessing a handle
|
|
* for which the handle scope has been deleted is undefined.
|
|
*/
|
|
class V8EXPORT HandleScope {
|
|
public:
|
|
// TODO(svenpanne) Deprecate me when Chrome is fixed!
|
|
HandleScope();
|
|
|
|
HandleScope(Isolate* isolate);
|
|
|
|
~HandleScope();
|
|
|
|
/**
|
|
* Closes the handle scope and returns the value as a handle in the
|
|
* previous scope, which is the new current scope after the call.
|
|
*/
|
|
template <class T> Local<T> Close(Handle<T> value);
|
|
|
|
/**
|
|
* Counts the number of allocated handles.
|
|
*/
|
|
static int NumberOfHandles();
|
|
|
|
/**
|
|
* Creates a new handle with the given value.
|
|
*/
|
|
static internal::Object** CreateHandle(internal::Object* value);
|
|
static internal::Object** CreateHandle(internal::Isolate* isolate,
|
|
internal::Object* value);
|
|
// Faster version, uses HeapObject to obtain the current Isolate.
|
|
static internal::Object** CreateHandle(internal::HeapObject* value);
|
|
|
|
private:
|
|
// Make it hard to create heap-allocated or illegal handle scopes by
|
|
// disallowing certain operations.
|
|
HandleScope(const HandleScope&);
|
|
void operator=(const HandleScope&);
|
|
void* operator new(size_t size);
|
|
void operator delete(void*, size_t);
|
|
|
|
// This Data class is accessible internally as HandleScopeData through a
|
|
// typedef in the ImplementationUtilities class.
|
|
class V8EXPORT Data {
|
|
public:
|
|
internal::Object** next;
|
|
internal::Object** limit;
|
|
int level;
|
|
V8_INLINE(void Initialize()) {
|
|
next = limit = NULL;
|
|
level = 0;
|
|
}
|
|
};
|
|
|
|
void Initialize(Isolate* isolate);
|
|
void Leave();
|
|
|
|
internal::Isolate* isolate_;
|
|
internal::Object** prev_next_;
|
|
internal::Object** prev_limit_;
|
|
|
|
// Allow for the active closing of HandleScopes which allows to pass a handle
|
|
// from the HandleScope being closed to the next top most HandleScope.
|
|
bool is_closed_;
|
|
internal::Object** RawClose(internal::Object** value);
|
|
|
|
friend class ImplementationUtilities;
|
|
};
|
|
|
|
|
|
// --- Special objects ---
|
|
|
|
|
|
/**
|
|
* The superclass of values and API object templates.
|
|
*/
|
|
class V8EXPORT Data {
|
|
private:
|
|
Data();
|
|
};
|
|
|
|
|
|
/**
|
|
* Pre-compilation data that can be associated with a script. This
|
|
* data can be calculated for a script in advance of actually
|
|
* compiling it, and can be stored between compilations. When script
|
|
* data is given to the compile method compilation will be faster.
|
|
*/
|
|
class V8EXPORT ScriptData { // NOLINT
|
|
public:
|
|
virtual ~ScriptData() { }
|
|
|
|
/**
|
|
* Pre-compiles the specified script (context-independent).
|
|
*
|
|
* \param input Pointer to UTF-8 script source code.
|
|
* \param length Length of UTF-8 script source code.
|
|
*/
|
|
static ScriptData* PreCompile(const char* input, int length);
|
|
|
|
/**
|
|
* Pre-compiles the specified script (context-independent).
|
|
*
|
|
* NOTE: Pre-compilation using this method cannot happen on another thread
|
|
* without using Lockers.
|
|
*
|
|
* \param source Script source code.
|
|
*/
|
|
static ScriptData* PreCompile(Handle<String> source);
|
|
|
|
/**
|
|
* Load previous pre-compilation data.
|
|
*
|
|
* \param data Pointer to data returned by a call to Data() of a previous
|
|
* ScriptData. Ownership is not transferred.
|
|
* \param length Length of data.
|
|
*/
|
|
static ScriptData* New(const char* data, int length);
|
|
|
|
/**
|
|
* Returns the length of Data().
|
|
*/
|
|
virtual int Length() = 0;
|
|
|
|
/**
|
|
* Returns a serialized representation of this ScriptData that can later be
|
|
* passed to New(). NOTE: Serialized data is platform-dependent.
|
|
*/
|
|
virtual const char* Data() = 0;
|
|
|
|
/**
|
|
* Returns true if the source code could not be parsed.
|
|
*/
|
|
virtual bool HasError() = 0;
|
|
};
|
|
|
|
|
|
/**
|
|
* The origin, within a file, of a script.
|
|
*/
|
|
class ScriptOrigin {
|
|
public:
|
|
V8_INLINE(ScriptOrigin(
|
|
Handle<Value> resource_name,
|
|
Handle<Integer> resource_line_offset = Handle<Integer>(),
|
|
Handle<Integer> resource_column_offset = Handle<Integer>()))
|
|
: resource_name_(resource_name),
|
|
resource_line_offset_(resource_line_offset),
|
|
resource_column_offset_(resource_column_offset) { }
|
|
V8_INLINE(Handle<Value> ResourceName() const);
|
|
V8_INLINE(Handle<Integer> ResourceLineOffset() const);
|
|
V8_INLINE(Handle<Integer> ResourceColumnOffset() const);
|
|
private:
|
|
Handle<Value> resource_name_;
|
|
Handle<Integer> resource_line_offset_;
|
|
Handle<Integer> resource_column_offset_;
|
|
};
|
|
|
|
|
|
/**
|
|
* A compiled JavaScript script.
|
|
*/
|
|
class V8EXPORT Script {
|
|
public:
|
|
/**
|
|
* Compiles the specified script (context-independent).
|
|
*
|
|
* \param source Script source code.
|
|
* \param origin Script origin, owned by caller, no references are kept
|
|
* when New() returns
|
|
* \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
|
|
* using pre_data speeds compilation if it's done multiple times.
|
|
* Owned by caller, no references are kept when New() returns.
|
|
* \param script_data Arbitrary data associated with script. Using
|
|
* this has same effect as calling SetData(), but allows data to be
|
|
* available to compile event handlers.
|
|
* \return Compiled script object (context independent; when run it
|
|
* will use the currently entered context).
|
|
*/
|
|
static Local<Script> New(Handle<String> source,
|
|
ScriptOrigin* origin = NULL,
|
|
ScriptData* pre_data = NULL,
|
|
Handle<String> script_data = Handle<String>());
|
|
|
|
/**
|
|
* Compiles the specified script using the specified file name
|
|
* object (typically a string) as the script's origin.
|
|
*
|
|
* \param source Script source code.
|
|
* \param file_name file name object (typically a string) to be used
|
|
* as the script's origin.
|
|
* \return Compiled script object (context independent; when run it
|
|
* will use the currently entered context).
|
|
*/
|
|
static Local<Script> New(Handle<String> source,
|
|
Handle<Value> file_name);
|
|
|
|
/**
|
|
* Compiles the specified script (bound to current context).
|
|
*
|
|
* \param source Script source code.
|
|
* \param origin Script origin, owned by caller, no references are kept
|
|
* when Compile() returns
|
|
* \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
|
|
* using pre_data speeds compilation if it's done multiple times.
|
|
* Owned by caller, no references are kept when Compile() returns.
|
|
* \param script_data Arbitrary data associated with script. Using
|
|
* this has same effect as calling SetData(), but makes data available
|
|
* earlier (i.e. to compile event handlers).
|
|
* \return Compiled script object, bound to the context that was active
|
|
* when this function was called. When run it will always use this
|
|
* context.
|
|
*/
|
|
static Local<Script> Compile(Handle<String> source,
|
|
ScriptOrigin* origin = NULL,
|
|
ScriptData* pre_data = NULL,
|
|
Handle<String> script_data = Handle<String>());
|
|
|
|
/**
|
|
* Compiles the specified script using the specified file name
|
|
* object (typically a string) as the script's origin.
|
|
*
|
|
* \param source Script source code.
|
|
* \param file_name File name to use as script's origin
|
|
* \param script_data Arbitrary data associated with script. Using
|
|
* this has same effect as calling SetData(), but makes data available
|
|
* earlier (i.e. to compile event handlers).
|
|
* \return Compiled script object, bound to the context that was active
|
|
* when this function was called. When run it will always use this
|
|
* context.
|
|
*/
|
|
static Local<Script> Compile(Handle<String> source,
|
|
Handle<Value> file_name,
|
|
Handle<String> script_data = Handle<String>());
|
|
|
|
/**
|
|
* Runs the script returning the resulting value. If the script is
|
|
* context independent (created using ::New) it will be run in the
|
|
* currently entered context. If it is context specific (created
|
|
* using ::Compile) it will be run in the context in which it was
|
|
* compiled.
|
|
*/
|
|
Local<Value> Run();
|
|
|
|
/**
|
|
* Returns the script id value.
|
|
*/
|
|
Local<Value> Id();
|
|
|
|
/**
|
|
* Associate an additional data object with the script. This is mainly used
|
|
* with the debugger as this data object is only available through the
|
|
* debugger API.
|
|
*/
|
|
void SetData(Handle<String> data);
|
|
|
|
/**
|
|
* Returns the name value of one Script.
|
|
*/
|
|
Handle<Value> GetScriptName();
|
|
|
|
/**
|
|
* Returns zero based line number of the code_pos location in the script.
|
|
* -1 will be returned if no information available.
|
|
*/
|
|
int GetLineNumber(int code_pos);
|
|
};
|
|
|
|
|
|
/**
|
|
* An error message.
|
|
*/
|
|
class V8EXPORT Message {
|
|
public:
|
|
Local<String> Get() const;
|
|
Local<String> GetSourceLine() const;
|
|
|
|
/**
|
|
* Returns the resource name for the script from where the function causing
|
|
* the error originates.
|
|
*/
|
|
Handle<Value> GetScriptResourceName() const;
|
|
|
|
/**
|
|
* Returns the resource data for the script from where the function causing
|
|
* the error originates.
|
|
*/
|
|
Handle<Value> GetScriptData() const;
|
|
|
|
/**
|
|
* Exception stack trace. By default stack traces are not captured for
|
|
* uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
|
|
* to change this option.
|
|
*/
|
|
Handle<StackTrace> GetStackTrace() const;
|
|
|
|
/**
|
|
* Returns the number, 1-based, of the line where the error occurred.
|
|
*/
|
|
int GetLineNumber() const;
|
|
|
|
/**
|
|
* Returns the index within the script of the first character where
|
|
* the error occurred.
|
|
*/
|
|
int GetStartPosition() const;
|
|
|
|
/**
|
|
* Returns the index within the script of the last character where
|
|
* the error occurred.
|
|
*/
|
|
int GetEndPosition() const;
|
|
|
|
/**
|
|
* Returns the index within the line of the first character where
|
|
* the error occurred.
|
|
*/
|
|
int GetStartColumn() const;
|
|
|
|
/**
|
|
* Returns the index within the line of the last character where
|
|
* the error occurred.
|
|
*/
|
|
int GetEndColumn() const;
|
|
|
|
// TODO(1245381): Print to a string instead of on a FILE.
|
|
static void PrintCurrentStackTrace(FILE* out);
|
|
|
|
static const int kNoLineNumberInfo = 0;
|
|
static const int kNoColumnInfo = 0;
|
|
};
|
|
|
|
|
|
/**
|
|
* Representation of a JavaScript stack trace. The information collected is a
|
|
* snapshot of the execution stack and the information remains valid after
|
|
* execution continues.
|
|
*/
|
|
class V8EXPORT StackTrace {
|
|
public:
|
|
/**
|
|
* Flags that determine what information is placed captured for each
|
|
* StackFrame when grabbing the current stack trace.
|
|
*/
|
|
enum StackTraceOptions {
|
|
kLineNumber = 1,
|
|
kColumnOffset = 1 << 1 | kLineNumber,
|
|
kScriptName = 1 << 2,
|
|
kFunctionName = 1 << 3,
|
|
kIsEval = 1 << 4,
|
|
kIsConstructor = 1 << 5,
|
|
kScriptNameOrSourceURL = 1 << 6,
|
|
kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
|
|
kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
|
|
};
|
|
|
|
/**
|
|
* Returns a StackFrame at a particular index.
|
|
*/
|
|
Local<StackFrame> GetFrame(uint32_t index) const;
|
|
|
|
/**
|
|
* Returns the number of StackFrames.
|
|
*/
|
|
int GetFrameCount() const;
|
|
|
|
/**
|
|
* Returns StackTrace as a v8::Array that contains StackFrame objects.
|
|
*/
|
|
Local<Array> AsArray();
|
|
|
|
/**
|
|
* Grab a snapshot of the current JavaScript execution stack.
|
|
*
|
|
* \param frame_limit The maximum number of stack frames we want to capture.
|
|
* \param options Enumerates the set of things we will capture for each
|
|
* StackFrame.
|
|
*/
|
|
static Local<StackTrace> CurrentStackTrace(
|
|
int frame_limit,
|
|
StackTraceOptions options = kOverview);
|
|
};
|
|
|
|
|
|
/**
|
|
* A single JavaScript stack frame.
|
|
*/
|
|
class V8EXPORT StackFrame {
|
|
public:
|
|
/**
|
|
* Returns the number, 1-based, of the line for the associate function call.
|
|
* This method will return Message::kNoLineNumberInfo if it is unable to
|
|
* retrieve the line number, or if kLineNumber was not passed as an option
|
|
* when capturing the StackTrace.
|
|
*/
|
|
int GetLineNumber() const;
|
|
|
|
/**
|
|
* Returns the 1-based column offset on the line for the associated function
|
|
* call.
|
|
* This method will return Message::kNoColumnInfo if it is unable to retrieve
|
|
* the column number, or if kColumnOffset was not passed as an option when
|
|
* capturing the StackTrace.
|
|
*/
|
|
int GetColumn() const;
|
|
|
|
/**
|
|
* Returns the name of the resource that contains the script for the
|
|
* function for this StackFrame.
|
|
*/
|
|
Local<String> GetScriptName() const;
|
|
|
|
/**
|
|
* Returns the name of the resource that contains the script for the
|
|
* function for this StackFrame or sourceURL value if the script name
|
|
* is undefined and its source ends with //# sourceURL=... string or
|
|
* deprecated //@ sourceURL=... string.
|
|
*/
|
|
Local<String> GetScriptNameOrSourceURL() const;
|
|
|
|
/**
|
|
* Returns the name of the function associated with this stack frame.
|
|
*/
|
|
Local<String> GetFunctionName() const;
|
|
|
|
/**
|
|
* Returns whether or not the associated function is compiled via a call to
|
|
* eval().
|
|
*/
|
|
bool IsEval() const;
|
|
|
|
/**
|
|
* Returns whether or not the associated function is called as a
|
|
* constructor via "new".
|
|
*/
|
|
bool IsConstructor() const;
|
|
};
|
|
|
|
|
|
// --- Value ---
|
|
|
|
|
|
/**
|
|
* The superclass of all JavaScript values and objects.
|
|
*/
|
|
class V8EXPORT Value : public Data {
|
|
public:
|
|
/**
|
|
* Returns true if this value is the undefined value. See ECMA-262
|
|
* 4.3.10.
|
|
*/
|
|
V8_INLINE(bool IsUndefined() const);
|
|
|
|
/**
|
|
* Returns true if this value is the null value. See ECMA-262
|
|
* 4.3.11.
|
|
*/
|
|
V8_INLINE(bool IsNull() const);
|
|
|
|
/**
|
|
* Returns true if this value is true.
|
|
*/
|
|
bool IsTrue() const;
|
|
|
|
/**
|
|
* Returns true if this value is false.
|
|
*/
|
|
bool IsFalse() const;
|
|
|
|
/**
|
|
* Returns true if this value is an instance of the String type.
|
|
* See ECMA-262 8.4.
|
|
*/
|
|
V8_INLINE(bool IsString() const);
|
|
|
|
/**
|
|
* Returns true if this value is a symbol.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsSymbol() const;
|
|
|
|
/**
|
|
* Returns true if this value is a function.
|
|
*/
|
|
bool IsFunction() const;
|
|
|
|
/**
|
|
* Returns true if this value is an array.
|
|
*/
|
|
bool IsArray() const;
|
|
|
|
/**
|
|
* Returns true if this value is an object.
|
|
*/
|
|
bool IsObject() const;
|
|
|
|
/**
|
|
* Returns true if this value is boolean.
|
|
*/
|
|
bool IsBoolean() const;
|
|
|
|
/**
|
|
* Returns true if this value is a number.
|
|
*/
|
|
bool IsNumber() const;
|
|
|
|
/**
|
|
* Returns true if this value is external.
|
|
*/
|
|
bool IsExternal() const;
|
|
|
|
/**
|
|
* Returns true if this value is a 32-bit signed integer.
|
|
*/
|
|
bool IsInt32() const;
|
|
|
|
/**
|
|
* Returns true if this value is a 32-bit unsigned integer.
|
|
*/
|
|
bool IsUint32() const;
|
|
|
|
/**
|
|
* Returns true if this value is a Date.
|
|
*/
|
|
bool IsDate() const;
|
|
|
|
/**
|
|
* Returns true if this value is a Boolean object.
|
|
*/
|
|
bool IsBooleanObject() const;
|
|
|
|
/**
|
|
* Returns true if this value is a Number object.
|
|
*/
|
|
bool IsNumberObject() const;
|
|
|
|
/**
|
|
* Returns true if this value is a String object.
|
|
*/
|
|
bool IsStringObject() const;
|
|
|
|
/**
|
|
* Returns true if this value is a Symbol object.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsSymbolObject() const;
|
|
|
|
/**
|
|
* Returns true if this value is a NativeError.
|
|
*/
|
|
bool IsNativeError() const;
|
|
|
|
/**
|
|
* Returns true if this value is a RegExp.
|
|
*/
|
|
bool IsRegExp() const;
|
|
|
|
|
|
/**
|
|
* Returns true if this value is an ArrayBuffer.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsArrayBuffer() const;
|
|
|
|
/**
|
|
* Returns true if this value is one of TypedArrays.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsTypedArray() const;
|
|
|
|
/**
|
|
* Returns true if this value is an Uint8Array.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsUint8Array() const;
|
|
|
|
/**
|
|
* Returns true if this value is an Uint8ClampedArray.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsUint8ClampedArray() const;
|
|
|
|
/**
|
|
* Returns true if this value is an Int8Array.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsInt8Array() const;
|
|
|
|
/**
|
|
* Returns true if this value is an Uint16Array.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsUint16Array() const;
|
|
|
|
/**
|
|
* Returns true if this value is an Int16Array.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsInt16Array() const;
|
|
|
|
/**
|
|
* Returns true if this value is an Uint32Array.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsUint32Array() const;
|
|
|
|
/**
|
|
* Returns true if this value is an Int32Array.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsInt32Array() const;
|
|
|
|
/**
|
|
* Returns true if this value is a Float32Array.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsFloat32Array() const;
|
|
|
|
/**
|
|
* Returns true if this value is a Float64Array.
|
|
* This is an experimental feature.
|
|
*/
|
|
bool IsFloat64Array() const;
|
|
|
|
Local<Boolean> ToBoolean() const;
|
|
Local<Number> ToNumber() const;
|
|
Local<String> ToString() const;
|
|
Local<String> ToDetailString() const;
|
|
Local<Object> ToObject() const;
|
|
Local<Integer> ToInteger() const;
|
|
Local<Uint32> ToUint32() const;
|
|
Local<Int32> ToInt32() const;
|
|
|
|
/**
|
|
* Attempts to convert a string to an array index.
|
|
* Returns an empty handle if the conversion fails.
|
|
*/
|
|
Local<Uint32> ToArrayIndex() const;
|
|
|
|
bool BooleanValue() const;
|
|
double NumberValue() const;
|
|
int64_t IntegerValue() const;
|
|
uint32_t Uint32Value() const;
|
|
int32_t Int32Value() const;
|
|
|
|
/** JS == */
|
|
bool Equals(Handle<Value> that) const;
|
|
bool StrictEquals(Handle<Value> that) const;
|
|
|
|
private:
|
|
V8_INLINE(bool QuickIsUndefined() const);
|
|
V8_INLINE(bool QuickIsNull() const);
|
|
V8_INLINE(bool QuickIsString() const);
|
|
bool FullIsUndefined() const;
|
|
bool FullIsNull() const;
|
|
bool FullIsString() const;
|
|
};
|
|
|
|
|
|
/**
|
|
* The superclass of primitive values. See ECMA-262 4.3.2.
|
|
*/
|
|
class V8EXPORT Primitive : public Value { };
|
|
|
|
|
|
/**
|
|
* A primitive boolean value (ECMA-262, 4.3.14). Either the true
|
|
* or false value.
|
|
*/
|
|
class V8EXPORT Boolean : public Primitive {
|
|
public:
|
|
bool Value() const;
|
|
V8_INLINE(static Handle<Boolean> New(bool value));
|
|
};
|
|
|
|
|
|
/**
|
|
* A JavaScript string value (ECMA-262, 4.3.17).
|
|
*/
|
|
class V8EXPORT String : public Primitive {
|
|
public:
|
|
enum Encoding {
|
|
UNKNOWN_ENCODING = 0x1,
|
|
TWO_BYTE_ENCODING = 0x0,
|
|
ASCII_ENCODING = 0x4,
|
|
ONE_BYTE_ENCODING = 0x4
|
|
};
|
|
/**
|
|
* Returns the number of characters in this string.
|
|
*/
|
|
int Length() const;
|
|
|
|
/**
|
|
* Returns the number of bytes in the UTF-8 encoded
|
|
* representation of this string.
|
|
*/
|
|
int Utf8Length() const;
|
|
|
|
/**
|
|
* This function is no longer useful.
|
|
*/
|
|
V8_DEPRECATED(V8_INLINE(bool MayContainNonAscii()) const) { return true; }
|
|
|
|
/**
|
|
* Returns whether this string contains only one byte data.
|
|
*/
|
|
bool IsOneByte() const;
|
|
|
|
/**
|
|
* Write the contents of the string to an external buffer.
|
|
* If no arguments are given, expects the buffer to be large
|
|
* enough to hold the entire string and NULL terminator. Copies
|
|
* the contents of the string and the NULL terminator into the
|
|
* buffer.
|
|
*
|
|
* WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
|
|
* before the end of the buffer.
|
|
*
|
|
* Copies up to length characters into the output buffer.
|
|
* Only null-terminates if there is enough space in the buffer.
|
|
*
|
|
* \param buffer The buffer into which the string will be copied.
|
|
* \param start The starting position within the string at which
|
|
* copying begins.
|
|
* \param length The number of characters to copy from the string. For
|
|
* WriteUtf8 the number of bytes in the buffer.
|
|
* \param nchars_ref The number of characters written, can be NULL.
|
|
* \param options Various options that might affect performance of this or
|
|
* subsequent operations.
|
|
* \return The number of characters copied to the buffer excluding the null
|
|
* terminator. For WriteUtf8: The number of bytes copied to the buffer
|
|
* including the null terminator (if written).
|
|
*/
|
|
enum WriteOptions {
|
|
NO_OPTIONS = 0,
|
|
HINT_MANY_WRITES_EXPECTED = 1,
|
|
NO_NULL_TERMINATION = 2,
|
|
PRESERVE_ASCII_NULL = 4
|
|
};
|
|
|
|
// 16-bit character codes.
|
|
int Write(uint16_t* buffer,
|
|
int start = 0,
|
|
int length = -1,
|
|
int options = NO_OPTIONS) const;
|
|
// ASCII characters.
|
|
V8_DEPRECATED(int WriteAscii(char* buffer,
|
|
int start = 0,
|
|
int length = -1,
|
|
int options = NO_OPTIONS) const);
|
|
// One byte characters.
|
|
int WriteOneByte(uint8_t* buffer,
|
|
int start = 0,
|
|
int length = -1,
|
|
int options = NO_OPTIONS) const;
|
|
// UTF-8 encoded characters.
|
|
int WriteUtf8(char* buffer,
|
|
int length = -1,
|
|
int* nchars_ref = NULL,
|
|
int options = NO_OPTIONS) const;
|
|
|
|
/**
|
|
* A zero length string.
|
|
*/
|
|
static v8::Local<v8::String> Empty();
|
|
V8_INLINE(static v8::Local<v8::String> Empty(Isolate* isolate));
|
|
|
|
/**
|
|
* Returns true if the string is external
|
|
*/
|
|
bool IsExternal() const;
|
|
|
|
/**
|
|
* Returns true if the string is both external and ASCII
|
|
*/
|
|
bool IsExternalAscii() const;
|
|
|
|
class V8EXPORT ExternalStringResourceBase { // NOLINT
|
|
public:
|
|
virtual ~ExternalStringResourceBase() {}
|
|
|
|
protected:
|
|
ExternalStringResourceBase() {}
|
|
|
|
/**
|
|
* Internally V8 will call this Dispose method when the external string
|
|
* resource is no longer needed. The default implementation will use the
|
|
* delete operator. This method can be overridden in subclasses to
|
|
* control how allocated external string resources are disposed.
|
|
*/
|
|
virtual void Dispose() { delete this; }
|
|
|
|
private:
|
|
// Disallow copying and assigning.
|
|
ExternalStringResourceBase(const ExternalStringResourceBase&);
|
|
void operator=(const ExternalStringResourceBase&);
|
|
|
|
friend class v8::internal::Heap;
|
|
};
|
|
|
|
/**
|
|
* An ExternalStringResource is a wrapper around a two-byte string
|
|
* buffer that resides outside V8's heap. Implement an
|
|
* ExternalStringResource to manage the life cycle of the underlying
|
|
* buffer. Note that the string data must be immutable.
|
|
*/
|
|
class V8EXPORT ExternalStringResource
|
|
: public ExternalStringResourceBase {
|
|
public:
|
|
/**
|
|
* Override the destructor to manage the life cycle of the underlying
|
|
* buffer.
|
|
*/
|
|
virtual ~ExternalStringResource() {}
|
|
|
|
/**
|
|
* The string data from the underlying buffer.
|
|
*/
|
|
virtual const uint16_t* data() const = 0;
|
|
|
|
/**
|
|
* The length of the string. That is, the number of two-byte characters.
|
|
*/
|
|
virtual size_t length() const = 0;
|
|
|
|
protected:
|
|
ExternalStringResource() {}
|
|
};
|
|
|
|
/**
|
|
* An ExternalAsciiStringResource is a wrapper around an ASCII
|
|
* string buffer that resides outside V8's heap. Implement an
|
|
* ExternalAsciiStringResource to manage the life cycle of the
|
|
* underlying buffer. Note that the string data must be immutable
|
|
* and that the data must be strict (7-bit) ASCII, not Latin-1 or
|
|
* UTF-8, which would require special treatment internally in the
|
|
* engine and, in the case of UTF-8, do not allow efficient indexing.
|
|
* Use String::New or convert to 16 bit data for non-ASCII.
|
|
*/
|
|
|
|
class V8EXPORT ExternalAsciiStringResource
|
|
: public ExternalStringResourceBase {
|
|
public:
|
|
/**
|
|
* Override the destructor to manage the life cycle of the underlying
|
|
* buffer.
|
|
*/
|
|
virtual ~ExternalAsciiStringResource() {}
|
|
/** The string data from the underlying buffer.*/
|
|
virtual const char* data() const = 0;
|
|
/** The number of ASCII characters in the string.*/
|
|
virtual size_t length() const = 0;
|
|
protected:
|
|
ExternalAsciiStringResource() {}
|
|
};
|
|
|
|
typedef ExternalAsciiStringResource ExternalOneByteStringResource;
|
|
|
|
/**
|
|
* If the string is an external string, return the ExternalStringResourceBase
|
|
* regardless of the encoding, otherwise return NULL. The encoding of the
|
|
* string is returned in encoding_out.
|
|
*/
|
|
V8_INLINE(ExternalStringResourceBase* GetExternalStringResourceBase(
|
|
Encoding* encoding_out) const);
|
|
|
|
/**
|
|
* Get the ExternalStringResource for an external string. Returns
|
|
* NULL if IsExternal() doesn't return true.
|
|
*/
|
|
V8_INLINE(ExternalStringResource* GetExternalStringResource() const);
|
|
|
|
/**
|
|
* Get the ExternalAsciiStringResource for an external ASCII string.
|
|
* Returns NULL if IsExternalAscii() doesn't return true.
|
|
*/
|
|
const ExternalAsciiStringResource* GetExternalAsciiStringResource() const;
|
|
|
|
V8_INLINE(static String* Cast(v8::Value* obj));
|
|
|
|
// TODO(dcarney): deprecate
|
|
/**
|
|
* Allocates a new string from either UTF-8 encoded or ASCII data.
|
|
* The second parameter 'length' gives the buffer length. If omitted,
|
|
* the function calls 'strlen' to determine the buffer length.
|
|
*/
|
|
V8_INLINE(static Local<String> New(const char* data, int length = -1));
|
|
|
|
// TODO(dcarney): deprecate
|
|
/** Allocates a new string from 16-bit character codes.*/
|
|
V8_INLINE(static Local<String> New(const uint16_t* data, int length = -1));
|
|
|
|
// TODO(dcarney): deprecate
|
|
/**
|
|
* Creates an internalized string (historically called a "symbol",
|
|
* not to be confused with ES6 symbols). Returns one if it exists already.
|
|
*/
|
|
V8_INLINE(static Local<String> NewSymbol(const char* data, int length = -1));
|
|
|
|
enum NewStringType {
|
|
kNormalString, kInternalizedString, kUndetectableString
|
|
};
|
|
|
|
/** Allocates a new string from UTF-8 data.*/
|
|
static Local<String> NewFromUtf8(Isolate* isolate,
|
|
const char* data,
|
|
NewStringType type = kNormalString,
|
|
int length = -1);
|
|
|
|
/** Allocates a new string from Latin-1 data.*/
|
|
static Local<String> NewFromOneByte(
|
|
Isolate* isolate,
|
|
const uint8_t* data,
|
|
NewStringType type = kNormalString,
|
|
int length = -1);
|
|
|
|
/** Allocates a new string from UTF-16 data.*/
|
|
static Local<String> NewFromTwoByte(
|
|
Isolate* isolate,
|
|
const uint16_t* data,
|
|
NewStringType type = kNormalString,
|
|
int length = -1);
|
|
|
|
/**
|
|
* Creates a new string by concatenating the left and the right strings
|
|
* passed in as parameters.
|
|
*/
|
|
static Local<String> Concat(Handle<String> left, Handle<String> right);
|
|
|
|
/**
|
|
* Creates a new external string using the data defined in the given
|
|
* resource. When the external string is no longer live on V8's heap the
|
|
* resource will be disposed by calling its Dispose method. The caller of
|
|
* this function should not otherwise delete or modify the resource. Neither
|
|
* should the underlying buffer be deallocated or modified except through the
|
|
* destructor of the external string resource.
|
|
*/
|
|
static Local<String> NewExternal(ExternalStringResource* resource);
|
|
|
|
/**
|
|
* Associate an external string resource with this string by transforming it
|
|
* in place so that existing references to this string in the JavaScript heap
|
|
* will use the external string resource. The external string resource's
|
|
* character contents need to be equivalent to this string.
|
|
* Returns true if the string has been changed to be an external string.
|
|
* The string is not modified if the operation fails. See NewExternal for
|
|
* information on the lifetime of the resource.
|
|
*/
|
|
bool MakeExternal(ExternalStringResource* resource);
|
|
|
|
/**
|
|
* Creates a new external string using the ASCII data defined in the given
|
|
* resource. When the external string is no longer live on V8's heap the
|
|
* resource will be disposed by calling its Dispose method. The caller of
|
|
* this function should not otherwise delete or modify the resource. Neither
|
|
* should the underlying buffer be deallocated or modified except through the
|
|
* destructor of the external string resource.
|
|
*/
|
|
static Local<String> NewExternal(ExternalAsciiStringResource* resource);
|
|
|
|
/**
|
|
* Associate an external string resource with this string by transforming it
|
|
* in place so that existing references to this string in the JavaScript heap
|
|
* will use the external string resource. The external string resource's
|
|
* character contents need to be equivalent to this string.
|
|
* Returns true if the string has been changed to be an external string.
|
|
* The string is not modified if the operation fails. See NewExternal for
|
|
* information on the lifetime of the resource.
|
|
*/
|
|
bool MakeExternal(ExternalAsciiStringResource* resource);
|
|
|
|
/**
|
|
* Returns true if this string can be made external.
|
|
*/
|
|
bool CanMakeExternal();
|
|
|
|
// TODO(dcarney): deprecate
|
|
/** Creates an undetectable string from the supplied ASCII or UTF-8 data.*/
|
|
V8_INLINE(
|
|
static Local<String> NewUndetectable(const char* data, int length = -1));
|
|
|
|
// TODO(dcarney): deprecate
|
|
/** Creates an undetectable string from the supplied 16-bit character codes.*/
|
|
V8_INLINE(static Local<String> NewUndetectable(
|
|
const uint16_t* data, int length = -1));
|
|
|
|
/**
|
|
* Converts an object to a UTF-8-encoded character array. Useful if
|
|
* you want to print the object. If conversion to a string fails
|
|
* (e.g. due to an exception in the toString() method of the object)
|
|
* then the length() method returns 0 and the * operator returns
|
|
* NULL.
|
|
*/
|
|
class V8EXPORT Utf8Value {
|
|
public:
|
|
explicit Utf8Value(Handle<v8::Value> obj);
|
|
~Utf8Value();
|
|
char* operator*() { return str_; }
|
|
const char* operator*() const { return str_; }
|
|
int length() const { return length_; }
|
|
private:
|
|
char* str_;
|
|
int length_;
|
|
|
|
// Disallow copying and assigning.
|
|
Utf8Value(const Utf8Value&);
|
|
void operator=(const Utf8Value&);
|
|
};
|
|
|
|
/**
|
|
* Converts an object to an ASCII string.
|
|
* Useful if you want to print the object.
|
|
* If conversion to a string fails (eg. due to an exception in the toString()
|
|
* method of the object) then the length() method returns 0 and the * operator
|
|
* returns NULL.
|
|
*/
|
|
class V8EXPORT AsciiValue {
|
|
public:
|
|
// TODO(dcarney): deprecate
|
|
explicit AsciiValue(Handle<v8::Value> obj);
|
|
~AsciiValue();
|
|
char* operator*() { return str_; }
|
|
const char* operator*() const { return str_; }
|
|
int length() const { return length_; }
|
|
private:
|
|
char* str_;
|
|
int length_;
|
|
|
|
// Disallow copying and assigning.
|
|
AsciiValue(const AsciiValue&);
|
|
void operator=(const AsciiValue&);
|
|
};
|
|
|
|
/**
|
|
* Converts an object to a two-byte string.
|
|
* If conversion to a string fails (eg. due to an exception in the toString()
|
|
* method of the object) then the length() method returns 0 and the * operator
|
|
* returns NULL.
|
|
*/
|
|
class V8EXPORT Value {
|
|
public:
|
|
explicit Value(Handle<v8::Value> obj);
|
|
~Value();
|
|
uint16_t* operator*() { return str_; }
|
|
const uint16_t* operator*() const { return str_; }
|
|
int length() const { return length_; }
|
|
private:
|
|
uint16_t* str_;
|
|
int length_;
|
|
|
|
// Disallow copying and assigning.
|
|
Value(const Value&);
|
|
void operator=(const Value&);
|
|
};
|
|
|
|
private:
|
|
void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
|
|
Encoding encoding) const;
|
|
void VerifyExternalStringResource(ExternalStringResource* val) const;
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A JavaScript symbol (ECMA-262 edition 6)
|
|
*
|
|
* This is an experimental feature. Use at your own risk.
|
|
*/
|
|
class V8EXPORT Symbol : public Primitive {
|
|
public:
|
|
// Returns the print name string of the symbol, or undefined if none.
|
|
Local<Value> Name() const;
|
|
|
|
// Create a symbol without a print name.
|
|
static Local<Symbol> New(Isolate* isolate);
|
|
|
|
// Create a symbol with a print name.
|
|
static Local<Symbol> New(Isolate *isolate, const char* data, int length = -1);
|
|
|
|
V8_INLINE(static Symbol* Cast(v8::Value* obj));
|
|
private:
|
|
Symbol();
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A JavaScript number value (ECMA-262, 4.3.20)
|
|
*/
|
|
class V8EXPORT Number : public Primitive {
|
|
public:
|
|
double Value() const;
|
|
static Local<Number> New(double value);
|
|
static Local<Number> New(Isolate* isolate, double value);
|
|
V8_INLINE(static Number* Cast(v8::Value* obj));
|
|
private:
|
|
Number();
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A JavaScript value representing a signed integer.
|
|
*/
|
|
class V8EXPORT Integer : public Number {
|
|
public:
|
|
static Local<Integer> New(int32_t value);
|
|
static Local<Integer> NewFromUnsigned(uint32_t value);
|
|
static Local<Integer> New(int32_t value, Isolate*);
|
|
static Local<Integer> NewFromUnsigned(uint32_t value, Isolate*);
|
|
int64_t Value() const;
|
|
V8_INLINE(static Integer* Cast(v8::Value* obj));
|
|
private:
|
|
Integer();
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A JavaScript value representing a 32-bit signed integer.
|
|
*/
|
|
class V8EXPORT Int32 : public Integer {
|
|
public:
|
|
int32_t Value() const;
|
|
private:
|
|
Int32();
|
|
};
|
|
|
|
|
|
/**
|
|
* A JavaScript value representing a 32-bit unsigned integer.
|
|
*/
|
|
class V8EXPORT Uint32 : public Integer {
|
|
public:
|
|
uint32_t Value() const;
|
|
private:
|
|
Uint32();
|
|
};
|
|
|
|
|
|
enum PropertyAttribute {
|
|
None = 0,
|
|
ReadOnly = 1 << 0,
|
|
DontEnum = 1 << 1,
|
|
DontDelete = 1 << 2
|
|
};
|
|
|
|
enum ExternalArrayType {
|
|
kExternalByteArray = 1,
|
|
kExternalUnsignedByteArray,
|
|
kExternalShortArray,
|
|
kExternalUnsignedShortArray,
|
|
kExternalIntArray,
|
|
kExternalUnsignedIntArray,
|
|
kExternalFloatArray,
|
|
kExternalDoubleArray,
|
|
kExternalPixelArray
|
|
};
|
|
|
|
/**
|
|
* Accessor[Getter|Setter] are used as callback functions when
|
|
* setting|getting a particular property. See Object and ObjectTemplate's
|
|
* method SetAccessor.
|
|
*/
|
|
typedef Handle<Value> (*AccessorGetter)(Local<String> property,
|
|
const AccessorInfo& info);
|
|
typedef void (*AccessorGetterCallback)(
|
|
Local<String> property,
|
|
const PropertyCallbackInfo<Value>& info);
|
|
|
|
|
|
typedef void (*AccessorSetter)(Local<String> property,
|
|
Local<Value> value,
|
|
const AccessorInfo& info);
|
|
typedef void (*AccessorSetterCallback)(
|
|
Local<String> property,
|
|
Local<Value> value,
|
|
const PropertyCallbackInfo<void>& info);
|
|
|
|
|
|
/**
|
|
* Access control specifications.
|
|
*
|
|
* Some accessors should be accessible across contexts. These
|
|
* accessors have an explicit access control parameter which specifies
|
|
* the kind of cross-context access that should be allowed.
|
|
*
|
|
* Additionally, for security, accessors can prohibit overwriting by
|
|
* accessors defined in JavaScript. For objects that have such
|
|
* accessors either locally or in their prototype chain it is not
|
|
* possible to overwrite the accessor by using __defineGetter__ or
|
|
* __defineSetter__ from JavaScript code.
|
|
*/
|
|
enum AccessControl {
|
|
DEFAULT = 0,
|
|
ALL_CAN_READ = 1,
|
|
ALL_CAN_WRITE = 1 << 1,
|
|
PROHIBITS_OVERWRITING = 1 << 2
|
|
};
|
|
|
|
|
|
/**
|
|
* A JavaScript object (ECMA-262, 4.3.3)
|
|
*/
|
|
class V8EXPORT Object : public Value {
|
|
public:
|
|
bool Set(Handle<Value> key,
|
|
Handle<Value> value,
|
|
PropertyAttribute attribs = None);
|
|
|
|
bool Set(uint32_t index, Handle<Value> value);
|
|
|
|
// Sets a local property on this object bypassing interceptors and
|
|
// overriding accessors or read-only properties.
|
|
//
|
|
// Note that if the object has an interceptor the property will be set
|
|
// locally, but since the interceptor takes precedence the local property
|
|
// will only be returned if the interceptor doesn't return a value.
|
|
//
|
|
// Note also that this only works for named properties.
|
|
bool ForceSet(Handle<Value> key,
|
|
Handle<Value> value,
|
|
PropertyAttribute attribs = None);
|
|
|
|
Local<Value> Get(Handle<Value> key);
|
|
|
|
Local<Value> Get(uint32_t index);
|
|
|
|
/**
|
|
* Gets the property attributes of a property which can be None or
|
|
* any combination of ReadOnly, DontEnum and DontDelete. Returns
|
|
* None when the property doesn't exist.
|
|
*/
|
|
PropertyAttribute GetPropertyAttributes(Handle<Value> key);
|
|
|
|
bool Has(Handle<Value> key);
|
|
|
|
bool Delete(Handle<Value> key);
|
|
|
|
// Delete a property on this object bypassing interceptors and
|
|
// ignoring dont-delete attributes.
|
|
bool ForceDelete(Handle<Value> key);
|
|
|
|
bool Has(uint32_t index);
|
|
|
|
bool Delete(uint32_t index);
|
|
|
|
// TODO(dcarney): deprecate
|
|
bool SetAccessor(Handle<String> name,
|
|
AccessorGetter getter,
|
|
AccessorSetter setter = 0,
|
|
Handle<Value> data = Handle<Value>(),
|
|
AccessControl settings = DEFAULT,
|
|
PropertyAttribute attribute = None);
|
|
bool SetAccessor(Handle<String> name,
|
|
AccessorGetterCallback getter,
|
|
AccessorSetterCallback setter = 0,
|
|
Handle<Value> data = Handle<Value>(),
|
|
AccessControl settings = DEFAULT,
|
|
PropertyAttribute attribute = None);
|
|
|
|
// This function is not yet stable and should not be used at this time.
|
|
bool SetAccessor(Handle<String> name,
|
|
Handle<DeclaredAccessorDescriptor> descriptor,
|
|
AccessControl settings = DEFAULT,
|
|
PropertyAttribute attribute = None);
|
|
|
|
/**
|
|
* Returns an array containing the names of the enumerable properties
|
|
* of this object, including properties from prototype objects. The
|
|
* array returned by this method contains the same values as would
|
|
* be enumerated by a for-in statement over this object.
|
|
*/
|
|
Local<Array> GetPropertyNames();
|
|
|
|
/**
|
|
* This function has the same functionality as GetPropertyNames but
|
|
* the returned array doesn't contain the names of properties from
|
|
* prototype objects.
|
|
*/
|
|
Local<Array> GetOwnPropertyNames();
|
|
|
|
/**
|
|
* Get the prototype object. This does not skip objects marked to
|
|
* be skipped by __proto__ and it does not consult the security
|
|
* handler.
|
|
*/
|
|
Local<Value> GetPrototype();
|
|
|
|
/**
|
|
* Set the prototype object. This does not skip objects marked to
|
|
* be skipped by __proto__ and it does not consult the security
|
|
* handler.
|
|
*/
|
|
bool SetPrototype(Handle<Value> prototype);
|
|
|
|
/**
|
|
* Finds an instance of the given function template in the prototype
|
|
* chain.
|
|
*/
|
|
Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl);
|
|
|
|
/**
|
|
* Call builtin Object.prototype.toString on this object.
|
|
* This is different from Value::ToString() that may call
|
|
* user-defined toString function. This one does not.
|
|
*/
|
|
Local<String> ObjectProtoToString();
|
|
|
|
/**
|
|
* Returns the function invoked as a constructor for this object.
|
|
* May be the null value.
|
|
*/
|
|
Local<Value> GetConstructor();
|
|
|
|
/**
|
|
* Returns the name of the function invoked as a constructor for this object.
|
|
*/
|
|
Local<String> GetConstructorName();
|
|
|
|
/** Gets the number of internal fields for this Object. */
|
|
int InternalFieldCount();
|
|
|
|
/** Gets the value from an internal field. */
|
|
V8_INLINE(Local<Value> GetInternalField(int index));
|
|
|
|
/** Sets the value in an internal field. */
|
|
void SetInternalField(int index, Handle<Value> value);
|
|
|
|
/**
|
|
* Gets a 2-byte-aligned native pointer from an internal field. This field
|
|
* must have been set by SetAlignedPointerInInternalField, everything else
|
|
* leads to undefined behavior.
|
|
*/
|
|
V8_INLINE(void* GetAlignedPointerFromInternalField(int index));
|
|
|
|
/**
|
|
* Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
|
|
* a field, GetAlignedPointerFromInternalField must be used, everything else
|
|
* leads to undefined behavior.
|
|
*/
|
|
void SetAlignedPointerInInternalField(int index, void* value);
|
|
|
|
// Testers for local properties.
|
|
bool HasOwnProperty(Handle<String> key);
|
|
bool HasRealNamedProperty(Handle<String> key);
|
|
bool HasRealIndexedProperty(uint32_t index);
|
|
bool HasRealNamedCallbackProperty(Handle<String> key);
|
|
|
|
/**
|
|
* If result.IsEmpty() no real property was located in the prototype chain.
|
|
* This means interceptors in the prototype chain are not called.
|
|
*/
|
|
Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key);
|
|
|
|
/**
|
|
* If result.IsEmpty() no real property was located on the object or
|
|
* in the prototype chain.
|
|
* This means interceptors in the prototype chain are not called.
|
|
*/
|
|
Local<Value> GetRealNamedProperty(Handle<String> key);
|
|
|
|
/** Tests for a named lookup interceptor.*/
|
|
bool HasNamedLookupInterceptor();
|
|
|
|
/** Tests for an index lookup interceptor.*/
|
|
bool HasIndexedLookupInterceptor();
|
|
|
|
/**
|
|
* Turns on access check on the object if the object is an instance of
|
|
* a template that has access check callbacks. If an object has no
|
|
* access check info, the object cannot be accessed by anyone.
|
|
*/
|
|
void TurnOnAccessCheck();
|
|
|
|
/**
|
|
* Returns the identity hash for this object. The current implementation
|
|
* uses a hidden property on the object to store the identity hash.
|
|
*
|
|
* The return value will never be 0. Also, it is not guaranteed to be
|
|
* unique.
|
|
*/
|
|
int GetIdentityHash();
|
|
|
|
/**
|
|
* Access hidden properties on JavaScript objects. These properties are
|
|
* hidden from the executing JavaScript and only accessible through the V8
|
|
* C++ API. Hidden properties introduced by V8 internally (for example the
|
|
* identity hash) are prefixed with "v8::".
|
|
*/
|
|
bool SetHiddenValue(Handle<String> key, Handle<Value> value);
|
|
Local<Value> GetHiddenValue(Handle<String> key);
|
|
bool DeleteHiddenValue(Handle<String> key);
|
|
|
|
/**
|
|
* Returns true if this is an instance of an api function (one
|
|
* created from a function created from a function template) and has
|
|
* been modified since it was created. Note that this method is
|
|
* conservative and may return true for objects that haven't actually
|
|
* been modified.
|
|
*/
|
|
bool IsDirty();
|
|
|
|
/**
|
|
* Clone this object with a fast but shallow copy. Values will point
|
|
* to the same values as the original object.
|
|
*/
|
|
Local<Object> Clone();
|
|
|
|
/**
|
|
* Returns the context in which the object was created.
|
|
*/
|
|
Local<Context> CreationContext();
|
|
|
|
/**
|
|
* Set the backing store of the indexed properties to be managed by the
|
|
* embedding layer. Access to the indexed properties will follow the rules
|
|
* spelled out in CanvasPixelArray.
|
|
* Note: The embedding program still owns the data and needs to ensure that
|
|
* the backing store is preserved while V8 has a reference.
|
|
*/
|
|
void SetIndexedPropertiesToPixelData(uint8_t* data, int length);
|
|
bool HasIndexedPropertiesInPixelData();
|
|
uint8_t* GetIndexedPropertiesPixelData();
|
|
int GetIndexedPropertiesPixelDataLength();
|
|
|
|
/**
|
|
* Set the backing store of the indexed properties to be managed by the
|
|
* embedding layer. Access to the indexed properties will follow the rules
|
|
* spelled out for the CanvasArray subtypes in the WebGL specification.
|
|
* Note: The embedding program still owns the data and needs to ensure that
|
|
* the backing store is preserved while V8 has a reference.
|
|
*/
|
|
void SetIndexedPropertiesToExternalArrayData(void* data,
|
|
ExternalArrayType array_type,
|
|
int number_of_elements);
|
|
bool HasIndexedPropertiesInExternalArrayData();
|
|
void* GetIndexedPropertiesExternalArrayData();
|
|
ExternalArrayType GetIndexedPropertiesExternalArrayDataType();
|
|
int GetIndexedPropertiesExternalArrayDataLength();
|
|
|
|
/**
|
|
* Checks whether a callback is set by the
|
|
* ObjectTemplate::SetCallAsFunctionHandler method.
|
|
* When an Object is callable this method returns true.
|
|
*/
|
|
bool IsCallable();
|
|
|
|
/**
|
|
* Call an Object as a function if a callback is set by the
|
|
* ObjectTemplate::SetCallAsFunctionHandler method.
|
|
*/
|
|
Local<Value> CallAsFunction(Handle<Object> recv,
|
|
int argc,
|
|
Handle<Value> argv[]);
|
|
|
|
/**
|
|
* Call an Object as a constructor if a callback is set by the
|
|
* ObjectTemplate::SetCallAsFunctionHandler method.
|
|
* Note: This method behaves like the Function::NewInstance method.
|
|
*/
|
|
Local<Value> CallAsConstructor(int argc, Handle<Value> argv[]);
|
|
|
|
static Local<Object> New();
|
|
V8_INLINE(static Object* Cast(Value* obj));
|
|
|
|
private:
|
|
Object();
|
|
static void CheckCast(Value* obj);
|
|
Local<Value> SlowGetInternalField(int index);
|
|
void* SlowGetAlignedPointerFromInternalField(int index);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of the built-in array constructor (ECMA-262, 15.4.2).
|
|
*/
|
|
class V8EXPORT Array : public Object {
|
|
public:
|
|
uint32_t Length() const;
|
|
|
|
/**
|
|
* Clones an element at index |index|. Returns an empty
|
|
* handle if cloning fails (for any reason).
|
|
*/
|
|
Local<Object> CloneElementAt(uint32_t index);
|
|
|
|
/**
|
|
* Creates a JavaScript array with the given length. If the length
|
|
* is negative the returned array will have length 0.
|
|
*/
|
|
static Local<Array> New(int length = 0);
|
|
|
|
V8_INLINE(static Array* Cast(Value* obj));
|
|
private:
|
|
Array();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A JavaScript function object (ECMA-262, 15.3).
|
|
*/
|
|
class V8EXPORT Function : public Object {
|
|
public:
|
|
Local<Object> NewInstance() const;
|
|
Local<Object> NewInstance(int argc, Handle<Value> argv[]) const;
|
|
Local<Value> Call(Handle<Object> recv, int argc, Handle<Value> argv[]);
|
|
void SetName(Handle<String> name);
|
|
Handle<Value> GetName() const;
|
|
|
|
/**
|
|
* Name inferred from variable or property assignment of this function.
|
|
* Used to facilitate debugging and profiling of JavaScript code written
|
|
* in an OO style, where many functions are anonymous but are assigned
|
|
* to object properties.
|
|
*/
|
|
Handle<Value> GetInferredName() const;
|
|
|
|
/**
|
|
* Returns zero based line number of function body and
|
|
* kLineOffsetNotFound if no information available.
|
|
*/
|
|
int GetScriptLineNumber() const;
|
|
/**
|
|
* Returns zero based column number of function body and
|
|
* kLineOffsetNotFound if no information available.
|
|
*/
|
|
int GetScriptColumnNumber() const;
|
|
Handle<Value> GetScriptId() const;
|
|
ScriptOrigin GetScriptOrigin() const;
|
|
V8_INLINE(static Function* Cast(Value* obj));
|
|
static const int kLineOffsetNotFound;
|
|
|
|
private:
|
|
Function();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
/**
|
|
* The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
|
|
* populates an instance of this class with a pointer to data and byte length.
|
|
*
|
|
* |ArrayBufferContents| is the owner of its data. When an instance of
|
|
* this class is destructed, the |Data| is freed.
|
|
*
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT ArrayBufferContents {
|
|
public:
|
|
ArrayBufferContents() : data_(NULL), byte_length_(0) {}
|
|
~ArrayBufferContents();
|
|
|
|
void* Data() const { return data_; }
|
|
size_t ByteLength() const { return byte_length_; }
|
|
|
|
private:
|
|
void* data_;
|
|
size_t byte_length_;
|
|
|
|
friend class ArrayBuffer;
|
|
};
|
|
|
|
#ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
|
|
#define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
|
|
#endif
|
|
|
|
/**
|
|
* An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT ArrayBuffer : public Object {
|
|
public:
|
|
/**
|
|
* Data length in bytes.
|
|
*/
|
|
size_t ByteLength() const;
|
|
|
|
/**
|
|
* Create a new ArrayBuffer. Allocate |byte_length| bytes.
|
|
* Allocated memory will be owned by a created ArrayBuffer and
|
|
* will be deallocated when it is garbage-collected,
|
|
* unless the object is externalized.
|
|
*/
|
|
static Local<ArrayBuffer> New(size_t byte_length);
|
|
|
|
/**
|
|
* Create a new ArrayBuffer over an existing memory block.
|
|
* The created array buffer is immediately in externalized state.
|
|
* The memory block will not be reclaimed when a created ArrayBuffer
|
|
* is garbage-collected.
|
|
*/
|
|
static Local<ArrayBuffer> New(void* data, size_t byte_length);
|
|
|
|
/**
|
|
* Returns true if ArrayBuffer is extrenalized, that is, does not
|
|
* own its memory block.
|
|
*/
|
|
bool IsExternal() const;
|
|
|
|
/**
|
|
* Pass the ownership of this ArrayBuffer's backing store to
|
|
* a given ArrayBufferContents.
|
|
*/
|
|
void Externalize(ArrayBufferContents* contents);
|
|
|
|
V8_INLINE(static ArrayBuffer* Cast(Value* obj));
|
|
|
|
|
|
static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
|
|
|
|
private:
|
|
ArrayBuffer();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A base class for an instance of TypedArray series of constructors
|
|
* (ES6 draft 15.13.6).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT TypedArray : public Object {
|
|
public:
|
|
/**
|
|
* Returns underlying ArrayBuffer.
|
|
*/
|
|
Local<ArrayBuffer> Buffer();
|
|
/**
|
|
* Byte offset in |Buffer|
|
|
*/
|
|
size_t ByteOffset();
|
|
/**
|
|
* Numbe of elements in this typed array.
|
|
*/
|
|
size_t Length();
|
|
/**
|
|
* Size of typed array in bytes (e.g. for Int16Array, 2*|Length|).
|
|
*/
|
|
size_t ByteLength();
|
|
/**
|
|
* Base address of typed array.
|
|
*/
|
|
void* BaseAddress();
|
|
|
|
V8_INLINE(static TypedArray* Cast(Value* obj));
|
|
|
|
private:
|
|
TypedArray();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of Uint8Array constructor (ES6 draft 15.13.6).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT Uint8Array : public TypedArray {
|
|
public:
|
|
static Local<Uint8Array> New(Handle<ArrayBuffer> array_buffer,
|
|
size_t byte_offset, size_t length);
|
|
V8_INLINE(static Uint8Array* Cast(Value* obj));
|
|
|
|
private:
|
|
Uint8Array();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT Uint8ClampedArray : public TypedArray {
|
|
public:
|
|
static Local<Uint8ClampedArray> New(Handle<ArrayBuffer> array_buffer,
|
|
size_t byte_offset, size_t length);
|
|
V8_INLINE(static Uint8ClampedArray* Cast(Value* obj));
|
|
|
|
private:
|
|
Uint8ClampedArray();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
/**
|
|
* An instance of Int8Array constructor (ES6 draft 15.13.6).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT Int8Array : public TypedArray {
|
|
public:
|
|
static Local<Int8Array> New(Handle<ArrayBuffer> array_buffer,
|
|
size_t byte_offset, size_t length);
|
|
V8_INLINE(static Int8Array* Cast(Value* obj));
|
|
|
|
private:
|
|
Int8Array();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of Uint16Array constructor (ES6 draft 15.13.6).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT Uint16Array : public TypedArray {
|
|
public:
|
|
static Local<Uint16Array> New(Handle<ArrayBuffer> array_buffer,
|
|
size_t byte_offset, size_t length);
|
|
V8_INLINE(static Uint16Array* Cast(Value* obj));
|
|
|
|
private:
|
|
Uint16Array();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of Int16Array constructor (ES6 draft 15.13.6).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT Int16Array : public TypedArray {
|
|
public:
|
|
static Local<Int16Array> New(Handle<ArrayBuffer> array_buffer,
|
|
size_t byte_offset, size_t length);
|
|
V8_INLINE(static Int16Array* Cast(Value* obj));
|
|
|
|
private:
|
|
Int16Array();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of Uint32Array constructor (ES6 draft 15.13.6).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT Uint32Array : public TypedArray {
|
|
public:
|
|
static Local<Uint32Array> New(Handle<ArrayBuffer> array_buffer,
|
|
size_t byte_offset, size_t length);
|
|
V8_INLINE(static Uint32Array* Cast(Value* obj));
|
|
|
|
private:
|
|
Uint32Array();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of Int32Array constructor (ES6 draft 15.13.6).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT Int32Array : public TypedArray {
|
|
public:
|
|
static Local<Int32Array> New(Handle<ArrayBuffer> array_buffer,
|
|
size_t byte_offset, size_t length);
|
|
V8_INLINE(static Int32Array* Cast(Value* obj));
|
|
|
|
private:
|
|
Int32Array();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of Float32Array constructor (ES6 draft 15.13.6).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT Float32Array : public TypedArray {
|
|
public:
|
|
static Local<Float32Array> New(Handle<ArrayBuffer> array_buffer,
|
|
size_t byte_offset, size_t length);
|
|
V8_INLINE(static Float32Array* Cast(Value* obj));
|
|
|
|
private:
|
|
Float32Array();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of Float64Array constructor (ES6 draft 15.13.6).
|
|
* This API is experimental and may change significantly.
|
|
*/
|
|
class V8EXPORT Float64Array : public TypedArray {
|
|
public:
|
|
static Local<Float64Array> New(Handle<ArrayBuffer> array_buffer,
|
|
size_t byte_offset, size_t length);
|
|
V8_INLINE(static Float64Array* Cast(Value* obj));
|
|
|
|
private:
|
|
Float64Array();
|
|
static void CheckCast(Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of the built-in Date constructor (ECMA-262, 15.9).
|
|
*/
|
|
class V8EXPORT Date : public Object {
|
|
public:
|
|
static Local<Value> New(double time);
|
|
|
|
/**
|
|
* A specialization of Value::NumberValue that is more efficient
|
|
* because we know the structure of this object.
|
|
*/
|
|
double NumberValue() const;
|
|
|
|
V8_INLINE(static Date* Cast(v8::Value* obj));
|
|
|
|
/**
|
|
* Notification that the embedder has changed the time zone,
|
|
* daylight savings time, or other date / time configuration
|
|
* parameters. V8 keeps a cache of various values used for
|
|
* date / time computation. This notification will reset
|
|
* those cached values for the current context so that date /
|
|
* time configuration changes would be reflected in the Date
|
|
* object.
|
|
*
|
|
* This API should not be called more than needed as it will
|
|
* negatively impact the performance of date operations.
|
|
*/
|
|
static void DateTimeConfigurationChangeNotification();
|
|
|
|
private:
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A Number object (ECMA-262, 4.3.21).
|
|
*/
|
|
class V8EXPORT NumberObject : public Object {
|
|
public:
|
|
static Local<Value> New(double value);
|
|
|
|
/**
|
|
* Returns the Number held by the object.
|
|
*/
|
|
double NumberValue() const;
|
|
|
|
V8_INLINE(static NumberObject* Cast(v8::Value* obj));
|
|
|
|
private:
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A Boolean object (ECMA-262, 4.3.15).
|
|
*/
|
|
class V8EXPORT BooleanObject : public Object {
|
|
public:
|
|
static Local<Value> New(bool value);
|
|
|
|
/**
|
|
* Returns the Boolean held by the object.
|
|
*/
|
|
bool BooleanValue() const;
|
|
|
|
V8_INLINE(static BooleanObject* Cast(v8::Value* obj));
|
|
|
|
private:
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A String object (ECMA-262, 4.3.18).
|
|
*/
|
|
class V8EXPORT StringObject : public Object {
|
|
public:
|
|
static Local<Value> New(Handle<String> value);
|
|
|
|
/**
|
|
* Returns the String held by the object.
|
|
*/
|
|
Local<String> StringValue() const;
|
|
|
|
V8_INLINE(static StringObject* Cast(v8::Value* obj));
|
|
|
|
private:
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A Symbol object (ECMA-262 edition 6).
|
|
*
|
|
* This is an experimental feature. Use at your own risk.
|
|
*/
|
|
class V8EXPORT SymbolObject : public Object {
|
|
public:
|
|
static Local<Value> New(Isolate* isolate, Handle<Symbol> value);
|
|
|
|
/**
|
|
* Returns the Symbol held by the object.
|
|
*/
|
|
Local<Symbol> SymbolValue() const;
|
|
|
|
V8_INLINE(static SymbolObject* Cast(v8::Value* obj));
|
|
|
|
private:
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* An instance of the built-in RegExp constructor (ECMA-262, 15.10).
|
|
*/
|
|
class V8EXPORT RegExp : public Object {
|
|
public:
|
|
/**
|
|
* Regular expression flag bits. They can be or'ed to enable a set
|
|
* of flags.
|
|
*/
|
|
enum Flags {
|
|
kNone = 0,
|
|
kGlobal = 1,
|
|
kIgnoreCase = 2,
|
|
kMultiline = 4
|
|
};
|
|
|
|
/**
|
|
* Creates a regular expression from the given pattern string and
|
|
* the flags bit field. May throw a JavaScript exception as
|
|
* described in ECMA-262, 15.10.4.1.
|
|
*
|
|
* For example,
|
|
* RegExp::New(v8::String::New("foo"),
|
|
* static_cast<RegExp::Flags>(kGlobal | kMultiline))
|
|
* is equivalent to evaluating "/foo/gm".
|
|
*/
|
|
static Local<RegExp> New(Handle<String> pattern, Flags flags);
|
|
|
|
/**
|
|
* Returns the value of the source property: a string representing
|
|
* the regular expression.
|
|
*/
|
|
Local<String> GetSource() const;
|
|
|
|
/**
|
|
* Returns the flags bit field.
|
|
*/
|
|
Flags GetFlags() const;
|
|
|
|
V8_INLINE(static RegExp* Cast(v8::Value* obj));
|
|
|
|
private:
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
/**
|
|
* A JavaScript value that wraps a C++ void*. This type of value is mainly used
|
|
* to associate C++ data structures with JavaScript objects.
|
|
*/
|
|
class V8EXPORT External : public Value {
|
|
public:
|
|
static Local<External> New(void* value);
|
|
V8_INLINE(static External* Cast(Value* obj));
|
|
void* Value() const;
|
|
private:
|
|
static void CheckCast(v8::Value* obj);
|
|
};
|
|
|
|
|
|
// --- Templates ---
|
|
|
|
|
|
/**
|
|
* The superclass of object and function templates.
|
|
*/
|
|
class V8EXPORT Template : public Data {
|
|
public:
|
|
/** Adds a property to each instance created by this template.*/
|
|
void Set(Handle<String> name, Handle<Data> value,
|
|
PropertyAttribute attributes = None);
|
|
V8_INLINE(void Set(const char* name, Handle<Data> value));
|
|
private:
|
|
Template();
|
|
|
|
friend class ObjectTemplate;
|
|
friend class FunctionTemplate;
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
class ReturnValue {
|
|
public:
|
|
V8_INLINE(explicit ReturnValue(internal::Object** slot));
|
|
// Handle setters
|
|
template <typename S> V8_INLINE(void Set(const Persistent<S>& handle));
|
|
template <typename S> V8_INLINE(void Set(const Handle<S> handle));
|
|
// Fast primitive setters
|
|
V8_INLINE(void Set(bool value));
|
|
V8_INLINE(void Set(double i));
|
|
V8_INLINE(void Set(int32_t i));
|
|
V8_INLINE(void Set(uint32_t i));
|
|
// Fast JS primitive setters
|
|
V8_INLINE(void SetNull());
|
|
V8_INLINE(void SetUndefined());
|
|
// Convenience getter for Isolate
|
|
V8_INLINE(Isolate* GetIsolate());
|
|
private:
|
|
internal::Object** value_;
|
|
};
|
|
|
|
|
|
/**
|
|
* The argument information given to function call callbacks. This
|
|
* class provides access to information about the context of the call,
|
|
* including the receiver, the number and values of arguments, and
|
|
* the holder of the function.
|
|
*/
|
|
template<typename T>
|
|
class FunctionCallbackInfo {
|
|
public:
|
|
V8_INLINE(int Length() const);
|
|
V8_INLINE(Local<Value> operator[](int i) const);
|
|
V8_INLINE(Local<Function> Callee() const);
|
|
V8_INLINE(Local<Object> This() const);
|
|
V8_INLINE(Local<Object> Holder() const);
|
|
V8_INLINE(bool IsConstructCall() const);
|
|
V8_INLINE(Local<Value> Data() const);
|
|
V8_INLINE(Isolate* GetIsolate() const);
|
|
V8_INLINE(ReturnValue<T> GetReturnValue() const);
|
|
// This shouldn't be public, but the arm compiler needs it.
|
|
static const int kArgsLength = 5;
|
|
|
|
protected:
|
|
friend class internal::FunctionCallbackArguments;
|
|
friend class internal::CustomArguments<FunctionCallbackInfo>;
|
|
static const int kReturnValueIndex = 0;
|
|
static const int kIsolateIndex = -1;
|
|
static const int kDataIndex = -2;
|
|
static const int kCalleeIndex = -3;
|
|
static const int kHolderIndex = -4;
|
|
|
|
V8_INLINE(FunctionCallbackInfo(internal::Object** implicit_args,
|
|
internal::Object** values,
|
|
int length,
|
|
bool is_construct_call));
|
|
internal::Object** implicit_args_;
|
|
internal::Object** values_;
|
|
int length_;
|
|
bool is_construct_call_;
|
|
};
|
|
|
|
|
|
class V8EXPORT Arguments : public FunctionCallbackInfo<Value> {
|
|
private:
|
|
friend class internal::FunctionCallbackArguments;
|
|
V8_INLINE(Arguments(internal::Object** implicit_args,
|
|
internal::Object** values,
|
|
int length,
|
|
bool is_construct_call));
|
|
};
|
|
|
|
/**
|
|
* The information passed to a property callback about the context
|
|
* of the property access.
|
|
*/
|
|
template<typename T>
|
|
class PropertyCallbackInfo {
|
|
public:
|
|
V8_INLINE(Isolate* GetIsolate() const);
|
|
V8_INLINE(Local<Value> Data() const);
|
|
V8_INLINE(Local<Object> This() const);
|
|
V8_INLINE(Local<Object> Holder() const);
|
|
V8_INLINE(ReturnValue<T> GetReturnValue() const);
|
|
// This shouldn't be public, but the arm compiler needs it.
|
|
static const int kArgsLength = 5;
|
|
|
|
protected:
|
|
friend class MacroAssembler;
|
|
friend class internal::PropertyCallbackArguments;
|
|
friend class internal::CustomArguments<PropertyCallbackInfo>;
|
|
static const int kThisIndex = 0;
|
|
static const int kHolderIndex = -1;
|
|
static const int kDataIndex = -2;
|
|
static const int kReturnValueIndex = -3;
|
|
static const int kIsolateIndex = -4;
|
|
|
|
V8_INLINE(PropertyCallbackInfo(internal::Object** args))
|
|
: args_(args) { }
|
|
internal::Object** args_;
|
|
};
|
|
|
|
|
|
class V8EXPORT AccessorInfo : public PropertyCallbackInfo<Value> {
|
|
private:
|
|
friend class internal::PropertyCallbackArguments;
|
|
V8_INLINE(AccessorInfo(internal::Object** args))
|
|
: PropertyCallbackInfo<Value>(args) { }
|
|
};
|
|
|
|
|
|
typedef Handle<Value> (*InvocationCallback)(const Arguments& args);
|
|
typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
|
|
|
|
/**
|
|
* NamedProperty[Getter|Setter] are used as interceptors on object.
|
|
* See ObjectTemplate::SetNamedPropertyHandler.
|
|
*/
|
|
typedef Handle<Value> (*NamedPropertyGetter)(Local<String> property,
|
|
const AccessorInfo& info);
|
|
typedef void (*NamedPropertyGetterCallback)(
|
|
Local<String> property,
|
|
const PropertyCallbackInfo<Value>& info);
|
|
|
|
|
|
/**
|
|
* Returns the value if the setter intercepts the request.
|
|
* Otherwise, returns an empty handle.
|
|
*/
|
|
typedef Handle<Value> (*NamedPropertySetter)(Local<String> property,
|
|
Local<Value> value,
|
|
const AccessorInfo& info);
|
|
typedef void (*NamedPropertySetterCallback)(
|
|
Local<String> property,
|
|
Local<Value> value,
|
|
const PropertyCallbackInfo<Value>& info);
|
|
|
|
|
|
/**
|
|
* Returns a non-empty handle if the interceptor intercepts the request.
|
|
* The result is an integer encoding property attributes (like v8::None,
|
|
* v8::DontEnum, etc.)
|
|
*/
|
|
typedef Handle<Integer> (*NamedPropertyQuery)(Local<String> property,
|
|
const AccessorInfo& info);
|
|
typedef void (*NamedPropertyQueryCallback)(
|
|
Local<String> property,
|
|
const PropertyCallbackInfo<Integer>& info);
|
|
|
|
|
|
/**
|
|
* Returns a non-empty handle if the deleter intercepts the request.
|
|
* The return value is true if the property could be deleted and false
|
|
* otherwise.
|
|
*/
|
|
typedef Handle<Boolean> (*NamedPropertyDeleter)(Local<String> property,
|
|
const AccessorInfo& info);
|
|
typedef void (*NamedPropertyDeleterCallback)(
|
|
Local<String> property,
|
|
const PropertyCallbackInfo<Boolean>& info);
|
|
|
|
|
|
/**
|
|
* Returns an array containing the names of the properties the named
|
|
* property getter intercepts.
|
|
*/
|
|
typedef Handle<Array> (*NamedPropertyEnumerator)(const AccessorInfo& info);
|
|
typedef void (*NamedPropertyEnumeratorCallback)(
|
|
const PropertyCallbackInfo<Array>& info);
|
|
|
|
|
|
/**
|
|
* Returns the value of the property if the getter intercepts the
|
|
* request. Otherwise, returns an empty handle.
|
|
*/
|
|
typedef Handle<Value> (*IndexedPropertyGetter)(uint32_t index,
|
|
const AccessorInfo& info);
|
|
typedef void (*IndexedPropertyGetterCallback)(
|
|
uint32_t index,
|
|
const PropertyCallbackInfo<Value>& info);
|
|
|
|
|
|
/**
|
|
* Returns the value if the setter intercepts the request.
|
|
* Otherwise, returns an empty handle.
|
|
*/
|
|
typedef Handle<Value> (*IndexedPropertySetter)(uint32_t index,
|
|
Local<Value> value,
|
|
const AccessorInfo& info);
|
|
typedef void (*IndexedPropertySetterCallback)(
|
|
uint32_t index,
|
|
Local<Value> value,
|
|
const PropertyCallbackInfo<Value>& info);
|
|
|
|
|
|
/**
|
|
* Returns a non-empty handle if the interceptor intercepts the request.
|
|
* The result is an integer encoding property attributes.
|
|
*/
|
|
typedef Handle<Integer> (*IndexedPropertyQuery)(uint32_t index,
|
|
const AccessorInfo& info);
|
|
typedef void (*IndexedPropertyQueryCallback)(
|
|
uint32_t index,
|
|
const PropertyCallbackInfo<Integer>& info);
|
|
|
|
|
|
/**
|
|
* Returns a non-empty handle if the deleter intercepts the request.
|
|
* The return value is true if the property could be deleted and false
|
|
* otherwise.
|
|
*/
|
|
typedef Handle<Boolean> (*IndexedPropertyDeleter)(uint32_t index,
|
|
const AccessorInfo& info);
|
|
typedef void (*IndexedPropertyDeleterCallback)(
|
|
uint32_t index,
|
|
const PropertyCallbackInfo<Boolean>& info);
|
|
|
|
|
|
/**
|
|
* Returns an array containing the indices of the properties the
|
|
* indexed property getter intercepts.
|
|
*/
|
|
typedef Handle<Array> (*IndexedPropertyEnumerator)(const AccessorInfo& info);
|
|
typedef void (*IndexedPropertyEnumeratorCallback)(
|
|
const PropertyCallbackInfo<Array>& info);
|
|
|
|
|
|
/**
|
|
* Access type specification.
|
|
*/
|
|
enum AccessType {
|
|
ACCESS_GET,
|
|
ACCESS_SET,
|
|
ACCESS_HAS,
|
|
ACCESS_DELETE,
|
|
ACCESS_KEYS
|
|
};
|
|
|
|
|
|
/**
|
|
* Returns true if cross-context access should be allowed to the named
|
|
* property with the given key on the host object.
|
|
*/
|
|
typedef bool (*NamedSecurityCallback)(Local<Object> host,
|
|
Local<Value> key,
|
|
AccessType type,
|
|
Local<Value> data);
|
|
|
|
|
|
/**
|
|
* Returns true if cross-context access should be allowed to the indexed
|
|
* property with the given index on the host object.
|
|
*/
|
|
typedef bool (*IndexedSecurityCallback)(Local<Object> host,
|
|
uint32_t index,
|
|
AccessType type,
|
|
Local<Value> data);
|
|
|
|
|
|
/**
|
|
* A FunctionTemplate is used to create functions at runtime. There
|
|
* can only be one function created from a FunctionTemplate in a
|
|
* context. The lifetime of the created function is equal to the
|
|
* lifetime of the context. So in case the embedder needs to create
|
|
* temporary functions that can be collected using Scripts is
|
|
* preferred.
|
|
*
|
|
* A FunctionTemplate can have properties, these properties are added to the
|
|
* function object when it is created.
|
|
*
|
|
* A FunctionTemplate has a corresponding instance template which is
|
|
* used to create object instances when the function is used as a
|
|
* constructor. Properties added to the instance template are added to
|
|
* each object instance.
|
|
*
|
|
* A FunctionTemplate can have a prototype template. The prototype template
|
|
* is used to create the prototype object of the function.
|
|
*
|
|
* The following example shows how to use a FunctionTemplate:
|
|
*
|
|
* \code
|
|
* v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
|
|
* t->Set("func_property", v8::Number::New(1));
|
|
*
|
|
* v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
|
|
* proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
|
|
* proto_t->Set("proto_const", v8::Number::New(2));
|
|
*
|
|
* v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
|
|
* instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
|
|
* instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
|
|
* instance_t->Set("instance_property", Number::New(3));
|
|
*
|
|
* v8::Local<v8::Function> function = t->GetFunction();
|
|
* v8::Local<v8::Object> instance = function->NewInstance();
|
|
* \endcode
|
|
*
|
|
* Let's use "function" as the JS variable name of the function object
|
|
* and "instance" for the instance object created above. The function
|
|
* and the instance will have the following properties:
|
|
*
|
|
* \code
|
|
* func_property in function == true;
|
|
* function.func_property == 1;
|
|
*
|
|
* function.prototype.proto_method() invokes 'InvokeCallback'
|
|
* function.prototype.proto_const == 2;
|
|
*
|
|
* instance instanceof function == true;
|
|
* instance.instance_accessor calls 'InstanceAccessorCallback'
|
|
* instance.instance_property == 3;
|
|
* \endcode
|
|
*
|
|
* A FunctionTemplate can inherit from another one by calling the
|
|
* FunctionTemplate::Inherit method. The following graph illustrates
|
|
* the semantics of inheritance:
|
|
*
|
|
* \code
|
|
* FunctionTemplate Parent -> Parent() . prototype -> { }
|
|
* ^ ^
|
|
* | Inherit(Parent) | .__proto__
|
|
* | |
|
|
* FunctionTemplate Child -> Child() . prototype -> { }
|
|
* \endcode
|
|
*
|
|
* A FunctionTemplate 'Child' inherits from 'Parent', the prototype
|
|
* object of the Child() function has __proto__ pointing to the
|
|
* Parent() function's prototype object. An instance of the Child
|
|
* function has all properties on Parent's instance templates.
|
|
*
|
|
* Let Parent be the FunctionTemplate initialized in the previous
|
|
* section and create a Child FunctionTemplate by:
|
|
*
|
|
* \code
|
|
* Local<FunctionTemplate> parent = t;
|
|
* Local<FunctionTemplate> child = FunctionTemplate::New();
|
|
* child->Inherit(parent);
|
|
*
|
|
* Local<Function> child_function = child->GetFunction();
|
|
* Local<Object> child_instance = child_function->NewInstance();
|
|
* \endcode
|
|
*
|
|
* The Child function and Child instance will have the following
|
|
* properties:
|
|
*
|
|
* \code
|
|
* child_func.prototype.__proto__ == function.prototype;
|
|
* child_instance.instance_accessor calls 'InstanceAccessorCallback'
|
|
* child_instance.instance_property == 3;
|
|
* \endcode
|
|
*/
|
|
class V8EXPORT FunctionTemplate : public Template {
|
|
public:
|
|
/** Creates a function template.*/
|
|
// TODO(dcarney): deprecate
|
|
static Local<FunctionTemplate> New(
|
|
InvocationCallback callback = 0,
|
|
Handle<Value> data = Handle<Value>(),
|
|
Handle<Signature> signature = Handle<Signature>(),
|
|
int length = 0);
|
|
static Local<FunctionTemplate> New(
|
|
FunctionCallback callback, // TODO(dcarney): add back default param.
|
|
Handle<Value> data = Handle<Value>(),
|
|
Handle<Signature> signature = Handle<Signature>(),
|
|
int length = 0);
|
|
|
|
/** Returns the unique function instance in the current execution context.*/
|
|
Local<Function> GetFunction();
|
|
|
|
/**
|
|
* Set the call-handler callback for a FunctionTemplate. This
|
|
* callback is called whenever the function created from this
|
|
* FunctionTemplate is called.
|
|
*/
|
|
// TODO(dcarney): deprecate
|
|
void SetCallHandler(InvocationCallback callback,
|
|
Handle<Value> data = Handle<Value>());
|
|
void SetCallHandler(FunctionCallback callback,
|
|
Handle<Value> data = Handle<Value>());
|
|
|
|
/** Set the predefined length property for the FunctionTemplate. */
|
|
void SetLength(int length);
|
|
|
|
/** Get the InstanceTemplate. */
|
|
Local<ObjectTemplate> InstanceTemplate();
|
|
|
|
/** Causes the function template to inherit from a parent function template.*/
|
|
void Inherit(Handle<FunctionTemplate> parent);
|
|
|
|
/**
|
|
* A PrototypeTemplate is the template used to create the prototype object
|
|
* of the function created by this template.
|
|
*/
|
|
Local<ObjectTemplate> PrototypeTemplate();
|
|
|
|
/**
|
|
* Set the class name of the FunctionTemplate. This is used for
|
|
* printing objects created with the function created from the
|
|
* FunctionTemplate as its constructor.
|
|
*/
|
|
void SetClassName(Handle<String> name);
|
|
|
|
/**
|
|
* Determines whether the __proto__ accessor ignores instances of
|
|
* the function template. If instances of the function template are
|
|
* ignored, __proto__ skips all instances and instead returns the
|
|
* next object in the prototype chain.
|
|
*
|
|
* Call with a value of true to make the __proto__ accessor ignore
|
|
* instances of the function template. Call with a value of false
|
|
* to make the __proto__ accessor not ignore instances of the
|
|
* function template. By default, instances of a function template
|
|
* are not ignored.
|
|
*/
|
|
void SetHiddenPrototype(bool value);
|
|
|
|
/**
|
|
* Sets the ReadOnly flag in the attributes of the 'prototype' property
|
|
* of functions created from this FunctionTemplate to true.
|
|
*/
|
|
void ReadOnlyPrototype();
|
|
|
|
/**
|
|
* Returns true if the given object is an instance of this function
|
|
* template.
|
|
*/
|
|
bool HasInstance(Handle<Value> object);
|
|
|
|
private:
|
|
FunctionTemplate();
|
|
friend class Context;
|
|
friend class ObjectTemplate;
|
|
};
|
|
|
|
|
|
/**
|
|
* An ObjectTemplate is used to create objects at runtime.
|
|
*
|
|
* Properties added to an ObjectTemplate are added to each object
|
|
* created from the ObjectTemplate.
|
|
*/
|
|
class V8EXPORT ObjectTemplate : public Template {
|
|
public:
|
|
/** Creates an ObjectTemplate. */
|
|
static Local<ObjectTemplate> New();
|
|
|
|
/** Creates a new instance of this template.*/
|
|
Local<Object> NewInstance();
|
|
|
|
/**
|
|
* Sets an accessor on the object template.
|
|
*
|
|
* Whenever the property with the given name is accessed on objects
|
|
* created from this ObjectTemplate the getter and setter callbacks
|
|
* are called instead of getting and setting the property directly
|
|
* on the JavaScript object.
|
|
*
|
|
* \param name The name of the property for which an accessor is added.
|
|
* \param getter The callback to invoke when getting the property.
|
|
* \param setter The callback to invoke when setting the property.
|
|
* \param data A piece of data that will be passed to the getter and setter
|
|
* callbacks whenever they are invoked.
|
|
* \param settings Access control settings for the accessor. This is a bit
|
|
* field consisting of one of more of
|
|
* DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
|
|
* The default is to not allow cross-context access.
|
|
* ALL_CAN_READ means that all cross-context reads are allowed.
|
|
* ALL_CAN_WRITE means that all cross-context writes are allowed.
|
|
* The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
|
|
* cross-context access.
|
|
* \param attribute The attributes of the property for which an accessor
|
|
* is added.
|
|
* \param signature The signature describes valid receivers for the accessor
|
|
* and is used to perform implicit instance checks against them. If the
|
|
* receiver is incompatible (i.e. is not an instance of the constructor as
|
|
* defined by FunctionTemplate::HasInstance()), an implicit TypeError is
|
|
* thrown and no callback is invoked.
|
|
*/
|
|
// TODO(dcarney): deprecate
|
|
void SetAccessor(Handle<String> name,
|
|
AccessorGetter getter,
|
|
AccessorSetter setter = 0,
|
|
Handle<Value> data = Handle<Value>(),
|
|
AccessControl settings = DEFAULT,
|
|
PropertyAttribute attribute = None,
|
|
Handle<AccessorSignature> signature =
|
|
Handle<AccessorSignature>());
|
|
void SetAccessor(Handle<String> name,
|
|
AccessorGetterCallback getter,
|
|
AccessorSetterCallback setter = 0,
|
|
Handle<Value> data = Handle<Value>(),
|
|
AccessControl settings = DEFAULT,
|
|
PropertyAttribute attribute = None,
|
|
Handle<AccessorSignature> signature =
|
|
Handle<AccessorSignature>());
|
|
|
|
// This function is not yet stable and should not be used at this time.
|
|
bool SetAccessor(Handle<String> name,
|
|
Handle<DeclaredAccessorDescriptor> descriptor,
|
|
AccessControl settings = DEFAULT,
|
|
PropertyAttribute attribute = None,
|
|
Handle<AccessorSignature> signature =
|
|
Handle<AccessorSignature>());
|
|
|
|
/**
|
|
* Sets a named property handler on the object template.
|
|
*
|
|
* Whenever a named property is accessed on objects created from
|
|
* this object template, the provided callback is invoked instead of
|
|
* accessing the property directly on the JavaScript object.
|
|
*
|
|
* \param getter The callback to invoke when getting a property.
|
|
* \param setter The callback to invoke when setting a property.
|
|
* \param query The callback to invoke to check if a property is present,
|
|
* and if present, get its attributes.
|
|
* \param deleter The callback to invoke when deleting a property.
|
|
* \param enumerator The callback to invoke to enumerate all the named
|
|
* properties of an object.
|
|
* \param data A piece of data that will be passed to the callbacks
|
|
* whenever they are invoked.
|
|
*/
|
|
// TODO(dcarney): deprecate
|
|
void SetNamedPropertyHandler(NamedPropertyGetter getter,
|
|
NamedPropertySetter setter = 0,
|
|
NamedPropertyQuery query = 0,
|
|
NamedPropertyDeleter deleter = 0,
|
|
NamedPropertyEnumerator enumerator = 0,
|
|
Handle<Value> data = Handle<Value>());
|
|
void SetNamedPropertyHandler(
|
|
NamedPropertyGetterCallback getter,
|
|
NamedPropertySetterCallback setter = 0,
|
|
NamedPropertyQueryCallback query = 0,
|
|
NamedPropertyDeleterCallback deleter = 0,
|
|
NamedPropertyEnumeratorCallback enumerator = 0,
|
|
Handle<Value> data = Handle<Value>());
|
|
|
|
/**
|
|
* Sets an indexed property handler on the object template.
|
|
*
|
|
* Whenever an indexed property is accessed on objects created from
|
|
* this object template, the provided callback is invoked instead of
|
|
* accessing the property directly on the JavaScript object.
|
|
*
|
|
* \param getter The callback to invoke when getting a property.
|
|
* \param setter The callback to invoke when setting a property.
|
|
* \param query The callback to invoke to check if an object has a property.
|
|
* \param deleter The callback to invoke when deleting a property.
|
|
* \param enumerator The callback to invoke to enumerate all the indexed
|
|
* properties of an object.
|
|
* \param data A piece of data that will be passed to the callbacks
|
|
* whenever they are invoked.
|
|
*/
|
|
// TODO(dcarney): deprecate
|
|
void SetIndexedPropertyHandler(IndexedPropertyGetter getter,
|
|
IndexedPropertySetter setter = 0,
|
|
IndexedPropertyQuery query = 0,
|
|
IndexedPropertyDeleter deleter = 0,
|
|
IndexedPropertyEnumerator enumerator = 0,
|
|
Handle<Value> data = Handle<Value>());
|
|
void SetIndexedPropertyHandler(
|
|
IndexedPropertyGetterCallback getter,
|
|
IndexedPropertySetterCallback setter = 0,
|
|
IndexedPropertyQueryCallback query = 0,
|
|
IndexedPropertyDeleterCallback deleter = 0,
|
|
IndexedPropertyEnumeratorCallback enumerator = 0,
|
|
Handle<Value> data = Handle<Value>());
|
|
|
|
/**
|
|
* Sets the callback to be used when calling instances created from
|
|
* this template as a function. If no callback is set, instances
|
|
* behave like normal JavaScript objects that cannot be called as a
|
|
* function.
|
|
*/
|
|
// TODO(dcarney): deprecate
|
|
void SetCallAsFunctionHandler(InvocationCallback callback,
|
|
Handle<Value> data = Handle<Value>());
|
|
void SetCallAsFunctionHandler(FunctionCallback callback,
|
|
Handle<Value> data = Handle<Value>());
|
|
|
|
/**
|
|
* Mark object instances of the template as undetectable.
|
|
*
|
|
* In many ways, undetectable objects behave as though they are not
|
|
* there. They behave like 'undefined' in conditionals and when
|
|
* printed. However, properties can be accessed and called as on
|
|
* normal objects.
|
|
*/
|
|
void MarkAsUndetectable();
|
|
|
|
/**
|
|
* Sets access check callbacks on the object template.
|
|
*
|
|
* When accessing properties on instances of this object template,
|
|
* the access check callback will be called to determine whether or
|
|
* not to allow cross-context access to the properties.
|
|
* The last parameter specifies whether access checks are turned
|
|
* on by default on instances. If access checks are off by default,
|
|
* they can be turned on on individual instances by calling
|
|
* Object::TurnOnAccessCheck().
|
|
*/
|
|
void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
|
|
IndexedSecurityCallback indexed_handler,
|
|
Handle<Value> data = Handle<Value>(),
|
|
bool turned_on_by_default = true);
|
|
|
|
/**
|
|
* Gets the number of internal fields for objects generated from
|
|
* this template.
|
|
*/
|
|
int InternalFieldCount();
|
|
|
|
/**
|
|
* Sets the number of internal fields for objects generated from
|
|
* this template.
|
|
*/
|
|
void SetInternalFieldCount(int value);
|
|
|
|
private:
|
|
ObjectTemplate();
|
|
static Local<ObjectTemplate> New(Handle<FunctionTemplate> constructor);
|
|
friend class FunctionTemplate;
|
|
};
|
|
|
|
|
|
/**
|
|
* A Signature specifies which receivers and arguments are valid
|
|
* parameters to a function.
|
|
*/
|
|
class V8EXPORT Signature : public Data {
|
|
public:
|
|
static Local<Signature> New(Handle<FunctionTemplate> receiver =
|
|
Handle<FunctionTemplate>(),
|
|
int argc = 0,
|
|
Handle<FunctionTemplate> argv[] = 0);
|
|
private:
|
|
Signature();
|
|
};
|
|
|
|
|
|
/**
|
|
* An AccessorSignature specifies which receivers are valid parameters
|
|
* to an accessor callback.
|
|
*/
|
|
class V8EXPORT AccessorSignature : public Data {
|
|
public:
|
|
static Local<AccessorSignature> New(Handle<FunctionTemplate> receiver =
|
|
Handle<FunctionTemplate>());
|
|
private:
|
|
AccessorSignature();
|
|
};
|
|
|
|
|
|
class V8EXPORT DeclaredAccessorDescriptor : public Data {
|
|
private:
|
|
DeclaredAccessorDescriptor();
|
|
};
|
|
|
|
|
|
class V8EXPORT ObjectOperationDescriptor : public Data {
|
|
public:
|
|
// This function is not yet stable and should not be used at this time.
|
|
static Local<RawOperationDescriptor> NewInternalFieldDereference(
|
|
Isolate* isolate,
|
|
int internal_field);
|
|
private:
|
|
ObjectOperationDescriptor();
|
|
};
|
|
|
|
|
|
enum DeclaredAccessorDescriptorDataType {
|
|
kDescriptorBoolType,
|
|
kDescriptorInt8Type, kDescriptorUint8Type,
|
|
kDescriptorInt16Type, kDescriptorUint16Type,
|
|
kDescriptorInt32Type, kDescriptorUint32Type,
|
|
kDescriptorFloatType, kDescriptorDoubleType
|
|
};
|
|
|
|
|
|
class V8EXPORT RawOperationDescriptor : public Data {
|
|
public:
|
|
Local<DeclaredAccessorDescriptor> NewHandleDereference(Isolate* isolate);
|
|
Local<RawOperationDescriptor> NewRawDereference(Isolate* isolate);
|
|
Local<RawOperationDescriptor> NewRawShift(Isolate* isolate,
|
|
int16_t byte_offset);
|
|
Local<DeclaredAccessorDescriptor> NewPointerCompare(Isolate* isolate,
|
|
void* compare_value);
|
|
Local<DeclaredAccessorDescriptor> NewPrimitiveValue(
|
|
Isolate* isolate,
|
|
DeclaredAccessorDescriptorDataType data_type,
|
|
uint8_t bool_offset = 0);
|
|
Local<DeclaredAccessorDescriptor> NewBitmaskCompare8(Isolate* isolate,
|
|
uint8_t bitmask,
|
|
uint8_t compare_value);
|
|
Local<DeclaredAccessorDescriptor> NewBitmaskCompare16(
|
|
Isolate* isolate,
|
|
uint16_t bitmask,
|
|
uint16_t compare_value);
|
|
Local<DeclaredAccessorDescriptor> NewBitmaskCompare32(
|
|
Isolate* isolate,
|
|
uint32_t bitmask,
|
|
uint32_t compare_value);
|
|
|
|
private:
|
|
RawOperationDescriptor();
|
|
};
|
|
|
|
|
|
/**
|
|
* A utility for determining the type of objects based on the template
|
|
* they were constructed from.
|
|
*/
|
|
class V8EXPORT TypeSwitch : public Data {
|
|
public:
|
|
static Local<TypeSwitch> New(Handle<FunctionTemplate> type);
|
|
static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]);
|
|
int match(Handle<Value> value);
|
|
private:
|
|
TypeSwitch();
|
|
};
|
|
|
|
|
|
// --- Extensions ---
|
|
|
|
class V8EXPORT ExternalAsciiStringResourceImpl
|
|
: public String::ExternalAsciiStringResource {
|
|
public:
|
|
ExternalAsciiStringResourceImpl() : data_(0), length_(0) {}
|
|
ExternalAsciiStringResourceImpl(const char* data, size_t length)
|
|
: data_(data), length_(length) {}
|
|
const char* data() const { return data_; }
|
|
size_t length() const { return length_; }
|
|
|
|
private:
|
|
const char* data_;
|
|
size_t length_;
|
|
};
|
|
|
|
/**
|
|
* Ignore
|
|
*/
|
|
class V8EXPORT Extension { // NOLINT
|
|
public:
|
|
// Note that the strings passed into this constructor must live as long
|
|
// as the Extension itself.
|
|
Extension(const char* name,
|
|
const char* source = 0,
|
|
int dep_count = 0,
|
|
const char** deps = 0,
|
|
int source_length = -1);
|
|
virtual ~Extension() { }
|
|
virtual v8::Handle<v8::FunctionTemplate>
|
|
GetNativeFunction(v8::Handle<v8::String> name) {
|
|
return v8::Handle<v8::FunctionTemplate>();
|
|
}
|
|
|
|
const char* name() const { return name_; }
|
|
size_t source_length() const { return source_length_; }
|
|
const String::ExternalAsciiStringResource* source() const {
|
|
return &source_; }
|
|
int dependency_count() { return dep_count_; }
|
|
const char** dependencies() { return deps_; }
|
|
void set_auto_enable(bool value) { auto_enable_ = value; }
|
|
bool auto_enable() { return auto_enable_; }
|
|
|
|
private:
|
|
const char* name_;
|
|
size_t source_length_; // expected to initialize before source_
|
|
ExternalAsciiStringResourceImpl source_;
|
|
int dep_count_;
|
|
const char** deps_;
|
|
bool auto_enable_;
|
|
|
|
// Disallow copying and assigning.
|
|
Extension(const Extension&);
|
|
void operator=(const Extension&);
|
|
};
|
|
|
|
|
|
void V8EXPORT RegisterExtension(Extension* extension);
|
|
|
|
|
|
/**
|
|
* Ignore
|
|
*/
|
|
class V8EXPORT DeclareExtension {
|
|
public:
|
|
V8_INLINE(DeclareExtension(Extension* extension)) {
|
|
RegisterExtension(extension);
|
|
}
|
|
};
|
|
|
|
|
|
// --- Statics ---
|
|
|
|
|
|
Handle<Primitive> V8EXPORT Undefined();
|
|
Handle<Primitive> V8EXPORT Null();
|
|
Handle<Boolean> V8EXPORT True();
|
|
Handle<Boolean> V8EXPORT False();
|
|
|
|
V8_INLINE(Handle<Primitive> Undefined(Isolate* isolate));
|
|
V8_INLINE(Handle<Primitive> Null(Isolate* isolate));
|
|
V8_INLINE(Handle<Boolean> True(Isolate* isolate));
|
|
V8_INLINE(Handle<Boolean> False(Isolate* isolate));
|
|
|
|
|
|
/**
|
|
* A set of constraints that specifies the limits of the runtime's memory use.
|
|
* You must set the heap size before initializing the VM - the size cannot be
|
|
* adjusted after the VM is initialized.
|
|
*
|
|
* If you are using threads then you should hold the V8::Locker lock while
|
|
* setting the stack limit and you must set a non-default stack limit separately
|
|
* for each thread.
|
|
*/
|
|
class V8EXPORT ResourceConstraints {
|
|
public:
|
|
ResourceConstraints();
|
|
int max_young_space_size() const { return max_young_space_size_; }
|
|
void set_max_young_space_size(int value) { max_young_space_size_ = value; }
|
|
int max_old_space_size() const { return max_old_space_size_; }
|
|
void set_max_old_space_size(int value) { max_old_space_size_ = value; }
|
|
int max_executable_size() { return max_executable_size_; }
|
|
void set_max_executable_size(int value) { max_executable_size_ = value; }
|
|
uint32_t* stack_limit() const { return stack_limit_; }
|
|
// Sets an address beyond which the VM's stack may not grow.
|
|
void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
|
|
private:
|
|
int max_young_space_size_;
|
|
int max_old_space_size_;
|
|
int max_executable_size_;
|
|
uint32_t* stack_limit_;
|
|
};
|
|
|
|
|
|
bool V8EXPORT SetResourceConstraints(ResourceConstraints* constraints);
|
|
|
|
|
|
// --- Exceptions ---
|
|
|
|
|
|
typedef void (*FatalErrorCallback)(const char* location, const char* message);
|
|
|
|
|
|
typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> error);
|
|
|
|
|
|
/**
|
|
* Schedules an exception to be thrown when returning to JavaScript. When an
|
|
* exception has been scheduled it is illegal to invoke any JavaScript
|
|
* operation; the caller must return immediately and only after the exception
|
|
* has been handled does it become legal to invoke JavaScript operations.
|
|
*/
|
|
Handle<Value> V8EXPORT ThrowException(Handle<Value> exception);
|
|
|
|
/**
|
|
* Create new error objects by calling the corresponding error object
|
|
* constructor with the message.
|
|
*/
|
|
class V8EXPORT Exception {
|
|
public:
|
|
static Local<Value> RangeError(Handle<String> message);
|
|
static Local<Value> ReferenceError(Handle<String> message);
|
|
static Local<Value> SyntaxError(Handle<String> message);
|
|
static Local<Value> TypeError(Handle<String> message);
|
|
static Local<Value> Error(Handle<String> message);
|
|
};
|
|
|
|
|
|
// --- Counters Callbacks ---
|
|
|
|
typedef int* (*CounterLookupCallback)(const char* name);
|
|
|
|
typedef void* (*CreateHistogramCallback)(const char* name,
|
|
int min,
|
|
int max,
|
|
size_t buckets);
|
|
|
|
typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
|
|
|
|
// --- Memory Allocation Callback ---
|
|
enum ObjectSpace {
|
|
kObjectSpaceNewSpace = 1 << 0,
|
|
kObjectSpaceOldPointerSpace = 1 << 1,
|
|
kObjectSpaceOldDataSpace = 1 << 2,
|
|
kObjectSpaceCodeSpace = 1 << 3,
|
|
kObjectSpaceMapSpace = 1 << 4,
|
|
kObjectSpaceLoSpace = 1 << 5,
|
|
|
|
kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldPointerSpace |
|
|
kObjectSpaceOldDataSpace | kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
|
|
kObjectSpaceLoSpace
|
|
};
|
|
|
|
enum AllocationAction {
|
|
kAllocationActionAllocate = 1 << 0,
|
|
kAllocationActionFree = 1 << 1,
|
|
kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
|
|
};
|
|
|
|
typedef void (*MemoryAllocationCallback)(ObjectSpace space,
|
|
AllocationAction action,
|
|
int size);
|
|
|
|
// --- Leave Script Callback ---
|
|
typedef void (*CallCompletedCallback)();
|
|
|
|
// --- Failed Access Check Callback ---
|
|
typedef void (*FailedAccessCheckCallback)(Local<Object> target,
|
|
AccessType type,
|
|
Local<Value> data);
|
|
|
|
// --- AllowCodeGenerationFromStrings callbacks ---
|
|
|
|
/**
|
|
* Callback to check if code generation from strings is allowed. See
|
|
* Context::AllowCodeGenerationFromStrings.
|
|
*/
|
|
typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
|
|
|
|
// --- Garbage Collection Callbacks ---
|
|
|
|
/**
|
|
* Applications can register callback functions which will be called
|
|
* before and after a garbage collection. Allocations are not
|
|
* allowed in the callback functions, you therefore cannot manipulate
|
|
* objects (set or delete properties for example) since it is possible
|
|
* such operations will result in the allocation of objects.
|
|
*/
|
|
enum GCType {
|
|
kGCTypeScavenge = 1 << 0,
|
|
kGCTypeMarkSweepCompact = 1 << 1,
|
|
kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact
|
|
};
|
|
|
|
enum GCCallbackFlags {
|
|
kNoGCCallbackFlags = 0,
|
|
kGCCallbackFlagCompacted = 1 << 0,
|
|
kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1
|
|
};
|
|
|
|
typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags);
|
|
typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
|
|
|
|
typedef void (*GCCallback)();
|
|
|
|
|
|
/**
|
|
* Collection of V8 heap information.
|
|
*
|
|
* Instances of this class can be passed to v8::V8::HeapStatistics to
|
|
* get heap statistics from V8.
|
|
*/
|
|
class V8EXPORT HeapStatistics {
|
|
public:
|
|
HeapStatistics();
|
|
size_t total_heap_size() { return total_heap_size_; }
|
|
size_t total_heap_size_executable() { return total_heap_size_executable_; }
|
|
size_t total_physical_size() { return total_physical_size_; }
|
|
size_t used_heap_size() { return used_heap_size_; }
|
|
size_t heap_size_limit() { return heap_size_limit_; }
|
|
|
|
private:
|
|
size_t total_heap_size_;
|
|
size_t total_heap_size_executable_;
|
|
size_t total_physical_size_;
|
|
size_t used_heap_size_;
|
|
size_t heap_size_limit_;
|
|
|
|
friend class V8;
|
|
friend class Isolate;
|
|
};
|
|
|
|
|
|
class RetainedObjectInfo;
|
|
|
|
/**
|
|
* Isolate represents an isolated instance of the V8 engine. V8
|
|
* isolates have completely separate states. Objects from one isolate
|
|
* must not be used in other isolates. When V8 is initialized a
|
|
* default isolate is implicitly created and entered. The embedder
|
|
* can create additional isolates and use them in parallel in multiple
|
|
* threads. An isolate can be entered by at most one thread at any
|
|
* given time. The Locker/Unlocker API must be used to synchronize.
|
|
*/
|
|
class V8EXPORT Isolate {
|
|
public:
|
|
/**
|
|
* Stack-allocated class which sets the isolate for all operations
|
|
* executed within a local scope.
|
|
*/
|
|
class V8EXPORT Scope {
|
|
public:
|
|
explicit Scope(Isolate* isolate) : isolate_(isolate) {
|
|
isolate->Enter();
|
|
}
|
|
|
|
~Scope() { isolate_->Exit(); }
|
|
|
|
private:
|
|
Isolate* const isolate_;
|
|
|
|
// Prevent copying of Scope objects.
|
|
Scope(const Scope&);
|
|
Scope& operator=(const Scope&);
|
|
};
|
|
|
|
/**
|
|
* Creates a new isolate. Does not change the currently entered
|
|
* isolate.
|
|
*
|
|
* When an isolate is no longer used its resources should be freed
|
|
* by calling Dispose(). Using the delete operator is not allowed.
|
|
*/
|
|
static Isolate* New();
|
|
|
|
/**
|
|
* Returns the entered isolate for the current thread or NULL in
|
|
* case there is no current isolate.
|
|
*/
|
|
static Isolate* GetCurrent();
|
|
|
|
/**
|
|
* Methods below this point require holding a lock (using Locker) in
|
|
* a multi-threaded environment.
|
|
*/
|
|
|
|
/**
|
|
* Sets this isolate as the entered one for the current thread.
|
|
* Saves the previously entered one (if any), so that it can be
|
|
* restored when exiting. Re-entering an isolate is allowed.
|
|
*/
|
|
void Enter();
|
|
|
|
/**
|
|
* Exits this isolate by restoring the previously entered one in the
|
|
* current thread. The isolate may still stay the same, if it was
|
|
* entered more than once.
|
|
*
|
|
* Requires: this == Isolate::GetCurrent().
|
|
*/
|
|
void Exit();
|
|
|
|
/**
|
|
* Disposes the isolate. The isolate must not be entered by any
|
|
* thread to be disposable.
|
|
*/
|
|
void Dispose();
|
|
|
|
/**
|
|
* Associate embedder-specific data with the isolate
|
|
*/
|
|
V8_INLINE(void SetData(void* data));
|
|
|
|
/**
|
|
* Retrieve embedder-specific data from the isolate.
|
|
* Returns NULL if SetData has never been called.
|
|
*/
|
|
V8_INLINE(void* GetData());
|
|
|
|
/**
|
|
* Get statistics about the heap memory usage.
|
|
*/
|
|
void GetHeapStatistics(HeapStatistics* heap_statistics);
|
|
|
|
/**
|
|
* Adjusts the amount of registered external memory. Used to give V8 an
|
|
* indication of the amount of externally allocated memory that is kept alive
|
|
* by JavaScript objects. V8 uses this to decide when to perform global
|
|
* garbage collections. Registering externally allocated memory will trigger
|
|
* global garbage collections more often than it would otherwise in an attempt
|
|
* to garbage collect the JavaScript objects that keep the externally
|
|
* allocated memory alive.
|
|
*
|
|
* \param change_in_bytes the change in externally allocated memory that is
|
|
* kept alive by JavaScript objects.
|
|
* \returns the adjusted value.
|
|
*/
|
|
intptr_t AdjustAmountOfExternalAllocatedMemory(intptr_t change_in_bytes);
|
|
|
|
/**
|
|
* Returns heap profiler for this isolate. Will return NULL until the isolate
|
|
* is initialized.
|
|
*/
|
|
HeapProfiler* GetHeapProfiler();
|
|
|
|
/**
|
|
* Returns CPU profiler for this isolate. Will return NULL until the isolate
|
|
* is initialized.
|
|
*/
|
|
CpuProfiler* GetCpuProfiler();
|
|
|
|
/** Returns the context that is on the top of the stack. */
|
|
Local<Context> GetCurrentContext();
|
|
|
|
/**
|
|
* Allows the host application to group objects together. If one
|
|
* object in the group is alive, all objects in the group are alive.
|
|
* After each garbage collection, object groups are removed. It is
|
|
* intended to be used in the before-garbage-collection callback
|
|
* function, for instance to simulate DOM tree connections among JS
|
|
* wrapper objects. Object groups for all dependent handles need to
|
|
* be provided for kGCTypeMarkSweepCompact collections, for all other
|
|
* garbage collection types it is sufficient to provide object groups
|
|
* for partially dependent handles only.
|
|
*/
|
|
void SetObjectGroupId(const Persistent<Value>& object,
|
|
UniqueId id);
|
|
|
|
/**
|
|
* Allows the host application to declare implicit references from an object
|
|
* group to an object. If the objects of the object group are alive, the child
|
|
* object is alive too. After each garbage collection, all implicit references
|
|
* are removed. It is intended to be used in the before-garbage-collection
|
|
* callback function.
|
|
*/
|
|
void SetReferenceFromGroup(UniqueId id,
|
|
const Persistent<Value>& child);
|
|
|
|
/**
|
|
* Allows the host application to declare implicit references from an object
|
|
* to another object. If the parent object is alive, the child object is alive
|
|
* too. After each garbage collection, all implicit references are removed. It
|
|
* is intended to be used in the before-garbage-collection callback function.
|
|
*/
|
|
void SetReference(const Persistent<Object>& parent,
|
|
const Persistent<Value>& child);
|
|
|
|
private:
|
|
Isolate();
|
|
Isolate(const Isolate&);
|
|
~Isolate();
|
|
Isolate& operator=(const Isolate&);
|
|
void* operator new(size_t size);
|
|
void operator delete(void*, size_t);
|
|
};
|
|
|
|
|
|
class V8EXPORT StartupData {
|
|
public:
|
|
enum CompressionAlgorithm {
|
|
kUncompressed,
|
|
kBZip2
|
|
};
|
|
|
|
const char* data;
|
|
int compressed_size;
|
|
int raw_size;
|
|
};
|
|
|
|
|
|
/**
|
|
* A helper class for driving V8 startup data decompression. It is based on
|
|
* "CompressedStartupData" API functions from the V8 class. It isn't mandatory
|
|
* for an embedder to use this class, instead, API functions can be used
|
|
* directly.
|
|
*
|
|
* For an example of the class usage, see the "shell.cc" sample application.
|
|
*/
|
|
class V8EXPORT StartupDataDecompressor { // NOLINT
|
|
public:
|
|
StartupDataDecompressor();
|
|
virtual ~StartupDataDecompressor();
|
|
int Decompress();
|
|
|
|
protected:
|
|
virtual int DecompressData(char* raw_data,
|
|
int* raw_data_size,
|
|
const char* compressed_data,
|
|
int compressed_data_size) = 0;
|
|
|
|
private:
|
|
char** raw_data;
|
|
};
|
|
|
|
|
|
/**
|
|
* EntropySource is used as a callback function when v8 needs a source
|
|
* of entropy.
|
|
*/
|
|
typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
|
|
|
|
|
|
/**
|
|
* ReturnAddressLocationResolver is used as a callback function when v8 is
|
|
* resolving the location of a return address on the stack. Profilers that
|
|
* change the return address on the stack can use this to resolve the stack
|
|
* location to whereever the profiler stashed the original return address.
|
|
*
|
|
* \param return_addr_location points to a location on stack where a machine
|
|
* return address resides.
|
|
* \returns either return_addr_location, or else a pointer to the profiler's
|
|
* copy of the original return address.
|
|
*
|
|
* \note the resolver function must not cause garbage collection.
|
|
*/
|
|
typedef uintptr_t (*ReturnAddressLocationResolver)(
|
|
uintptr_t return_addr_location);
|
|
|
|
|
|
/**
|
|
* FunctionEntryHook is the type of the profile entry hook called at entry to
|
|
* any generated function when function-level profiling is enabled.
|
|
*
|
|
* \param function the address of the function that's being entered.
|
|
* \param return_addr_location points to a location on stack where the machine
|
|
* return address resides. This can be used to identify the caller of
|
|
* \p function, and/or modified to divert execution when \p function exits.
|
|
*
|
|
* \note the entry hook must not cause garbage collection.
|
|
*/
|
|
typedef void (*FunctionEntryHook)(uintptr_t function,
|
|
uintptr_t return_addr_location);
|
|
|
|
|
|
/**
|
|
* A JIT code event is issued each time code is added, moved or removed.
|
|
*
|
|
* \note removal events are not currently issued.
|
|
*/
|
|
struct JitCodeEvent {
|
|
enum EventType {
|
|
CODE_ADDED,
|
|
CODE_MOVED,
|
|
CODE_REMOVED,
|
|
CODE_ADD_LINE_POS_INFO,
|
|
CODE_START_LINE_INFO_RECORDING,
|
|
CODE_END_LINE_INFO_RECORDING
|
|
};
|
|
// Definition of the code position type. The "POSITION" type means the place
|
|
// in the source code which are of interest when making stack traces to
|
|
// pin-point the source location of a stack frame as close as possible.
|
|
// The "STATEMENT_POSITION" means the place at the beginning of each
|
|
// statement, and is used to indicate possible break locations.
|
|
enum PositionType {
|
|
POSITION,
|
|
STATEMENT_POSITION
|
|
};
|
|
|
|
// Type of event.
|
|
EventType type;
|
|
// Start of the instructions.
|
|
void* code_start;
|
|
// Size of the instructions.
|
|
size_t code_len;
|
|
// Script info for CODE_ADDED event.
|
|
Handle<Script> script;
|
|
// User-defined data for *_LINE_INFO_* event. It's used to hold the source
|
|
// code line information which is returned from the
|
|
// CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
|
|
// CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
|
|
void* user_data;
|
|
|
|
struct name_t {
|
|
// Name of the object associated with the code, note that the string is not
|
|
// zero-terminated.
|
|
const char* str;
|
|
// Number of chars in str.
|
|
size_t len;
|
|
};
|
|
|
|
struct line_info_t {
|
|
// PC offset
|
|
size_t offset;
|
|
// Code postion
|
|
size_t pos;
|
|
// The position type.
|
|
PositionType position_type;
|
|
};
|
|
|
|
union {
|
|
// Only valid for CODE_ADDED.
|
|
struct name_t name;
|
|
|
|
// Only valid for CODE_ADD_LINE_POS_INFO
|
|
struct line_info_t line_info;
|
|
|
|
// New location of instructions. Only valid for CODE_MOVED.
|
|
void* new_code_start;
|
|
};
|
|
};
|
|
|
|
/**
|
|
* Option flags passed to the SetJitCodeEventHandler function.
|
|
*/
|
|
enum JitCodeEventOptions {
|
|
kJitCodeEventDefault = 0,
|
|
// Generate callbacks for already existent code.
|
|
kJitCodeEventEnumExisting = 1
|
|
};
|
|
|
|
|
|
/**
|
|
* Callback function passed to SetJitCodeEventHandler.
|
|
*
|
|
* \param event code add, move or removal event.
|
|
*/
|
|
typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
|
|
|
|
|
|
/**
|
|
* Interface for iterating through all external resources in the heap.
|
|
*/
|
|
class V8EXPORT ExternalResourceVisitor { // NOLINT
|
|
public:
|
|
virtual ~ExternalResourceVisitor() {}
|
|
virtual void VisitExternalString(Handle<String> string) {}
|
|
};
|
|
|
|
|
|
/**
|
|
* Interface for iterating through all the persistent handles in the heap.
|
|
*/
|
|
class V8EXPORT PersistentHandleVisitor { // NOLINT
|
|
public:
|
|
virtual ~PersistentHandleVisitor() {}
|
|
virtual void VisitPersistentHandle(Persistent<Value>* value,
|
|
uint16_t class_id) {}
|
|
};
|
|
|
|
|
|
/**
|
|
* Asserts that no action is performed that could cause a handle's value
|
|
* to be modified. Useful when otherwise unsafe handle operations need to
|
|
* be performed.
|
|
*/
|
|
class V8EXPORT AssertNoGCScope {
|
|
#ifndef DEBUG
|
|
// TODO(yangguo): remove isolate argument.
|
|
V8_INLINE(AssertNoGCScope(Isolate* isolate)) { }
|
|
#else
|
|
AssertNoGCScope(Isolate* isolate);
|
|
~AssertNoGCScope();
|
|
private:
|
|
void* disallow_heap_allocation_;
|
|
#endif
|
|
};
|
|
|
|
|
|
/**
|
|
* Container class for static utility functions.
|
|
*/
|
|
class V8EXPORT V8 {
|
|
public:
|
|
/** Set the callback to invoke in case of fatal errors. */
|
|
static void SetFatalErrorHandler(FatalErrorCallback that);
|
|
|
|
/**
|
|
* Set the callback to invoke to check if code generation from
|
|
* strings should be allowed.
|
|
*/
|
|
static void SetAllowCodeGenerationFromStringsCallback(
|
|
AllowCodeGenerationFromStringsCallback that);
|
|
|
|
/**
|
|
* Ignore out-of-memory exceptions.
|
|
*
|
|
* V8 running out of memory is treated as a fatal error by default.
|
|
* This means that the fatal error handler is called and that V8 is
|
|
* terminated.
|
|
*
|
|
* IgnoreOutOfMemoryException can be used to not treat an
|
|
* out-of-memory situation as a fatal error. This way, the contexts
|
|
* that did not cause the out of memory problem might be able to
|
|
* continue execution.
|
|
*/
|
|
static void IgnoreOutOfMemoryException();
|
|
|
|
/**
|
|
* Check if V8 is dead and therefore unusable. This is the case after
|
|
* fatal errors such as out-of-memory situations.
|
|
*/
|
|
static bool IsDead();
|
|
|
|
/**
|
|
* The following 4 functions are to be used when V8 is built with
|
|
* the 'compress_startup_data' flag enabled. In this case, the
|
|
* embedder must decompress startup data prior to initializing V8.
|
|
*
|
|
* This is how interaction with V8 should look like:
|
|
* int compressed_data_count = v8::V8::GetCompressedStartupDataCount();
|
|
* v8::StartupData* compressed_data =
|
|
* new v8::StartupData[compressed_data_count];
|
|
* v8::V8::GetCompressedStartupData(compressed_data);
|
|
* ... decompress data (compressed_data can be updated in-place) ...
|
|
* v8::V8::SetDecompressedStartupData(compressed_data);
|
|
* ... now V8 can be initialized
|
|
* ... make sure the decompressed data stays valid until V8 shutdown
|
|
*
|
|
* A helper class StartupDataDecompressor is provided. It implements
|
|
* the protocol of the interaction described above, and can be used in
|
|
* most cases instead of calling these API functions directly.
|
|
*/
|
|
static StartupData::CompressionAlgorithm GetCompressedStartupDataAlgorithm();
|
|
static int GetCompressedStartupDataCount();
|
|
static void GetCompressedStartupData(StartupData* compressed_data);
|
|
static void SetDecompressedStartupData(StartupData* decompressed_data);
|
|
|
|
/**
|
|
* Adds a message listener.
|
|
*
|
|
* The same message listener can be added more than once and in that
|
|
* case it will be called more than once for each message.
|
|
*
|
|
* If data is specified, it will be passed to the callback when it is called.
|
|
* Otherwise, the exception object will be passed to the callback instead.
|
|
*/
|
|
static bool AddMessageListener(MessageCallback that,
|
|
Handle<Value> data = Handle<Value>());
|
|
|
|
/**
|
|
* Remove all message listeners from the specified callback function.
|
|
*/
|
|
static void RemoveMessageListeners(MessageCallback that);
|
|
|
|
/**
|
|
* Tells V8 to capture current stack trace when uncaught exception occurs
|
|
* and report it to the message listeners. The option is off by default.
|
|
*/
|
|
static void SetCaptureStackTraceForUncaughtExceptions(
|
|
bool capture,
|
|
int frame_limit = 10,
|
|
StackTrace::StackTraceOptions options = StackTrace::kOverview);
|
|
|
|
/**
|
|
* Sets V8 flags from a string.
|
|
*/
|
|
static void SetFlagsFromString(const char* str, int length);
|
|
|
|
/**
|
|
* Sets V8 flags from the command line.
|
|
*/
|
|
static void SetFlagsFromCommandLine(int* argc,
|
|
char** argv,
|
|
bool remove_flags);
|
|
|
|
/** Get the version string. */
|
|
static const char* GetVersion();
|
|
|
|
/**
|
|
* Enables the host application to provide a mechanism for recording
|
|
* statistics counters.
|
|
*/
|
|
static void SetCounterFunction(CounterLookupCallback);
|
|
|
|
/**
|
|
* Enables the host application to provide a mechanism for recording
|
|
* histograms. The CreateHistogram function returns a
|
|
* histogram which will later be passed to the AddHistogramSample
|
|
* function.
|
|
*/
|
|
static void SetCreateHistogramFunction(CreateHistogramCallback);
|
|
static void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
|
|
|
|
/** Callback function for reporting failed access checks.*/
|
|
static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
|
|
|
|
/**
|
|
* Enables the host application to receive a notification before a
|
|
* garbage collection. Allocations are not allowed in the
|
|
* callback function, you therefore cannot manipulate objects (set
|
|
* or delete properties for example) since it is possible such
|
|
* operations will result in the allocation of objects. It is possible
|
|
* to specify the GCType filter for your callback. But it is not possible to
|
|
* register the same callback function two times with different
|
|
* GCType filters.
|
|
*/
|
|
static void AddGCPrologueCallback(
|
|
GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
|
|
|
|
/**
|
|
* This function removes callback which was installed by
|
|
* AddGCPrologueCallback function.
|
|
*/
|
|
static void RemoveGCPrologueCallback(GCPrologueCallback callback);
|
|
|
|
/**
|
|
* The function is deprecated. Please use AddGCPrologueCallback instead.
|
|
* Enables the host application to receive a notification before a
|
|
* garbage collection. Allocations are not allowed in the
|
|
* callback function, you therefore cannot manipulate objects (set
|
|
* or delete properties for example) since it is possible such
|
|
* operations will result in the allocation of objects.
|
|
*/
|
|
V8_DEPRECATED(static void SetGlobalGCPrologueCallback(GCCallback));
|
|
|
|
/**
|
|
* Enables the host application to receive a notification after a
|
|
* garbage collection. Allocations are not allowed in the
|
|
* callback function, you therefore cannot manipulate objects (set
|
|
* or delete properties for example) since it is possible such
|
|
* operations will result in the allocation of objects. It is possible
|
|
* to specify the GCType filter for your callback. But it is not possible to
|
|
* register the same callback function two times with different
|
|
* GCType filters.
|
|
*/
|
|
static void AddGCEpilogueCallback(
|
|
GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
|
|
|
|
/**
|
|
* This function removes callback which was installed by
|
|
* AddGCEpilogueCallback function.
|
|
*/
|
|
static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
|
|
|
|
/**
|
|
* The function is deprecated. Please use AddGCEpilogueCallback instead.
|
|
* Enables the host application to receive a notification after a
|
|
* major garbage collection. Allocations are not allowed in the
|
|
* callback function, you therefore cannot manipulate objects (set
|
|
* or delete properties for example) since it is possible such
|
|
* operations will result in the allocation of objects.
|
|
*/
|
|
V8_DEPRECATED(static void SetGlobalGCEpilogueCallback(GCCallback));
|
|
|
|
/**
|
|
* Enables the host application to provide a mechanism to be notified
|
|
* and perform custom logging when V8 Allocates Executable Memory.
|
|
*/
|
|
static void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
|
|
ObjectSpace space,
|
|
AllocationAction action);
|
|
|
|
/**
|
|
* Removes callback that was installed by AddMemoryAllocationCallback.
|
|
*/
|
|
static void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
|
|
|
|
/**
|
|
* Adds a callback to notify the host application when a script finished
|
|
* running. If a script re-enters the runtime during executing, the
|
|
* CallCompletedCallback is only invoked when the outer-most script
|
|
* execution ends. Executing scripts inside the callback do not trigger
|
|
* further callbacks.
|
|
*/
|
|
static void AddCallCompletedCallback(CallCompletedCallback callback);
|
|
|
|
/**
|
|
* Removes callback that was installed by AddCallCompletedCallback.
|
|
*/
|
|
static void RemoveCallCompletedCallback(CallCompletedCallback callback);
|
|
|
|
/**
|
|
* Initializes from snapshot if possible. Otherwise, attempts to
|
|
* initialize from scratch. This function is called implicitly if
|
|
* you use the API without calling it first.
|
|
*/
|
|
static bool Initialize();
|
|
|
|
/**
|
|
* Allows the host application to provide a callback which can be used
|
|
* as a source of entropy for random number generators.
|
|
*/
|
|
static void SetEntropySource(EntropySource source);
|
|
|
|
/**
|
|
* Allows the host application to provide a callback that allows v8 to
|
|
* cooperate with a profiler that rewrites return addresses on stack.
|
|
*/
|
|
static void SetReturnAddressLocationResolver(
|
|
ReturnAddressLocationResolver return_address_resolver);
|
|
|
|
/**
|
|
* Allows the host application to provide the address of a function that's
|
|
* invoked on entry to every V8-generated function.
|
|
* Note that \p entry_hook is invoked at the very start of each
|
|
* generated function.
|
|
*
|
|
* \param entry_hook a function that will be invoked on entry to every
|
|
* V8-generated function.
|
|
* \returns true on success on supported platforms, false on failure.
|
|
* \note Setting a new entry hook function when one is already active will
|
|
* fail.
|
|
*/
|
|
static bool SetFunctionEntryHook(FunctionEntryHook entry_hook);
|
|
|
|
/**
|
|
* Allows the host application to provide the address of a function that is
|
|
* notified each time code is added, moved or removed.
|
|
*
|
|
* \param options options for the JIT code event handler.
|
|
* \param event_handler the JIT code event handler, which will be invoked
|
|
* each time code is added, moved or removed.
|
|
* \note \p event_handler won't get notified of existent code.
|
|
* \note since code removal notifications are not currently issued, the
|
|
* \p event_handler may get notifications of code that overlaps earlier
|
|
* code notifications. This happens when code areas are reused, and the
|
|
* earlier overlapping code areas should therefore be discarded.
|
|
* \note the events passed to \p event_handler and the strings they point to
|
|
* are not guaranteed to live past each call. The \p event_handler must
|
|
* copy strings and other parameters it needs to keep around.
|
|
* \note the set of events declared in JitCodeEvent::EventType is expected to
|
|
* grow over time, and the JitCodeEvent structure is expected to accrue
|
|
* new members. The \p event_handler function must ignore event codes
|
|
* it does not recognize to maintain future compatibility.
|
|
*/
|
|
static void SetJitCodeEventHandler(JitCodeEventOptions options,
|
|
JitCodeEventHandler event_handler);
|
|
|
|
// TODO(svenpanne) Really deprecate me when Chrome is fixed.
|
|
/** Deprecated. Use Isolate::AdjustAmountOfExternalAllocatedMemory instead. */
|
|
static intptr_t AdjustAmountOfExternalAllocatedMemory(
|
|
intptr_t change_in_bytes);
|
|
|
|
/**
|
|
* Suspends recording of tick samples in the profiler.
|
|
* When the V8 profiling mode is enabled (usually via command line
|
|
* switches) this function suspends recording of tick samples.
|
|
* Profiling ticks are discarded until ResumeProfiler() is called.
|
|
*
|
|
* See also the --prof and --prof_auto command line switches to
|
|
* enable V8 profiling.
|
|
*/
|
|
static void PauseProfiler();
|
|
|
|
/**
|
|
* Resumes recording of tick samples in the profiler.
|
|
* See also PauseProfiler().
|
|
*/
|
|
static void ResumeProfiler();
|
|
|
|
/**
|
|
* Return whether profiler is currently paused.
|
|
*/
|
|
static bool IsProfilerPaused();
|
|
|
|
/**
|
|
* Retrieve the V8 thread id of the calling thread.
|
|
*
|
|
* The thread id for a thread should only be retrieved after the V8
|
|
* lock has been acquired with a Locker object with that thread.
|
|
*/
|
|
static int GetCurrentThreadId();
|
|
|
|
/**
|
|
* Forcefully terminate execution of a JavaScript thread. This can
|
|
* be used to terminate long-running scripts.
|
|
*
|
|
* TerminateExecution should only be called when then V8 lock has
|
|
* been acquired with a Locker object. Therefore, in order to be
|
|
* able to terminate long-running threads, preemption must be
|
|
* enabled to allow the user of TerminateExecution to acquire the
|
|
* lock.
|
|
*
|
|
* The termination is achieved by throwing an exception that is
|
|
* uncatchable by JavaScript exception handlers. Termination
|
|
* exceptions act as if they were caught by a C++ TryCatch exception
|
|
* handler. If forceful termination is used, any C++ TryCatch
|
|
* exception handler that catches an exception should check if that
|
|
* exception is a termination exception and immediately return if
|
|
* that is the case. Returning immediately in that case will
|
|
* continue the propagation of the termination exception if needed.
|
|
*
|
|
* The thread id passed to TerminateExecution must have been
|
|
* obtained by calling GetCurrentThreadId on the thread in question.
|
|
*
|
|
* \param thread_id The thread id of the thread to terminate.
|
|
*/
|
|
static void TerminateExecution(int thread_id);
|
|
|
|
/**
|
|
* Forcefully terminate the current thread of JavaScript execution
|
|
* in the given isolate. If no isolate is provided, the default
|
|
* isolate is used.
|
|
*
|
|
* This method can be used by any thread even if that thread has not
|
|
* acquired the V8 lock with a Locker object.
|
|
*
|
|
* \param isolate The isolate in which to terminate the current JS execution.
|
|
*/
|
|
static void TerminateExecution(Isolate* isolate = NULL);
|
|
|
|
/**
|
|
* Is V8 terminating JavaScript execution.
|
|
*
|
|
* Returns true if JavaScript execution is currently terminating
|
|
* because of a call to TerminateExecution. In that case there are
|
|
* still JavaScript frames on the stack and the termination
|
|
* exception is still active.
|
|
*
|
|
* \param isolate The isolate in which to check.
|
|
*/
|
|
static bool IsExecutionTerminating(Isolate* isolate = NULL);
|
|
|
|
/**
|
|
* Resume execution capability in the given isolate, whose execution
|
|
* was previously forcefully terminated using TerminateExecution().
|
|
*
|
|
* When execution is forcefully terminated using TerminateExecution(),
|
|
* the isolate can not resume execution until all JavaScript frames
|
|
* have propagated the uncatchable exception which is generated. This
|
|
* method allows the program embedding the engine to handle the
|
|
* termination event and resume execution capability, even if
|
|
* JavaScript frames remain on the stack.
|
|
*
|
|
* This method can be used by any thread even if that thread has not
|
|
* acquired the V8 lock with a Locker object.
|
|
*
|
|
* \param isolate The isolate in which to resume execution capability.
|
|
*/
|
|
static void CancelTerminateExecution(Isolate* isolate);
|
|
|
|
/**
|
|
* Releases any resources used by v8 and stops any utility threads
|
|
* that may be running. Note that disposing v8 is permanent, it
|
|
* cannot be reinitialized.
|
|
*
|
|
* It should generally not be necessary to dispose v8 before exiting
|
|
* a process, this should happen automatically. It is only necessary
|
|
* to use if the process needs the resources taken up by v8.
|
|
*/
|
|
static bool Dispose();
|
|
|
|
/** Deprecated. Use Isolate::GetHeapStatistics instead. */
|
|
V8_DEPRECATED(static void GetHeapStatistics(HeapStatistics* heap_statistics));
|
|
|
|
/**
|
|
* Iterates through all external resources referenced from current isolate
|
|
* heap. GC is not invoked prior to iterating, therefore there is no
|
|
* guarantee that visited objects are still alive.
|
|
*/
|
|
static void VisitExternalResources(ExternalResourceVisitor* visitor);
|
|
|
|
/**
|
|
* Iterates through all the persistent handles in the current isolate's heap
|
|
* that have class_ids.
|
|
*/
|
|
static void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
|
|
|
|
/**
|
|
* Iterates through all the persistent handles in the current isolate's heap
|
|
* that have class_ids and are candidates to be marked as partially dependent
|
|
* handles. This will visit handles to young objects created since the last
|
|
* garbage collection but is free to visit an arbitrary superset of these
|
|
* objects.
|
|
*/
|
|
static void VisitHandlesForPartialDependence(
|
|
Isolate* isolate, PersistentHandleVisitor* visitor);
|
|
|
|
/**
|
|
* Optional notification that the embedder is idle.
|
|
* V8 uses the notification to reduce memory footprint.
|
|
* This call can be used repeatedly if the embedder remains idle.
|
|
* Returns true if the embedder should stop calling IdleNotification
|
|
* until real work has been done. This indicates that V8 has done
|
|
* as much cleanup as it will be able to do.
|
|
*
|
|
* The hint argument specifies the amount of work to be done in the function
|
|
* on scale from 1 to 1000. There is no guarantee that the actual work will
|
|
* match the hint.
|
|
*/
|
|
static bool IdleNotification(int hint = 1000);
|
|
|
|
/**
|
|
* Optional notification that the system is running low on memory.
|
|
* V8 uses these notifications to attempt to free memory.
|
|
*/
|
|
static void LowMemoryNotification();
|
|
|
|
/**
|
|
* Optional notification that a context has been disposed. V8 uses
|
|
* these notifications to guide the GC heuristic. Returns the number
|
|
* of context disposals - including this one - since the last time
|
|
* V8 had a chance to clean up.
|
|
*/
|
|
static int ContextDisposedNotification();
|
|
|
|
private:
|
|
V8();
|
|
|
|
static internal::Object** GlobalizeReference(internal::Isolate* isolate,
|
|
internal::Object** handle);
|
|
static void DisposeGlobal(internal::Object** global_handle);
|
|
typedef WeakReferenceCallbacks<Value, void>::Revivable RevivableCallback;
|
|
static void MakeWeak(internal::Object** global_handle,
|
|
void* data,
|
|
RevivableCallback weak_reference_callback);
|
|
static void ClearWeak(internal::Object** global_handle);
|
|
|
|
template <class T> friend class Handle;
|
|
template <class T> friend class Local;
|
|
template <class T> friend class Persistent;
|
|
friend class Context;
|
|
};
|
|
|
|
|
|
/**
|
|
* An external exception handler.
|
|
*/
|
|
class V8EXPORT TryCatch {
|
|
public:
|
|
/**
|
|
* Creates a new try/catch block and registers it with v8. Note that
|
|
* all TryCatch blocks should be stack allocated because the memory
|
|
* location itself is compared against JavaScript try/catch blocks.
|
|
*/
|
|
TryCatch();
|
|
|
|
/**
|
|
* Unregisters and deletes this try/catch block.
|
|
*/
|
|
~TryCatch();
|
|
|
|
/**
|
|
* Returns true if an exception has been caught by this try/catch block.
|
|
*/
|
|
bool HasCaught() const;
|
|
|
|
/**
|
|
* For certain types of exceptions, it makes no sense to continue execution.
|
|
*
|
|
* If CanContinue returns false, the correct action is to perform any C++
|
|
* cleanup needed and then return. If CanContinue returns false and
|
|
* HasTerminated returns true, it is possible to call
|
|
* CancelTerminateExecution in order to continue calling into the engine.
|
|
*/
|
|
bool CanContinue() const;
|
|
|
|
/**
|
|
* Returns true if an exception has been caught due to script execution
|
|
* being terminated.
|
|
*
|
|
* There is no JavaScript representation of an execution termination
|
|
* exception. Such exceptions are thrown when the TerminateExecution
|
|
* methods are called to terminate a long-running script.
|
|
*
|
|
* If such an exception has been thrown, HasTerminated will return true,
|
|
* indicating that it is possible to call CancelTerminateExecution in order
|
|
* to continue calling into the engine.
|
|
*/
|
|
bool HasTerminated() const;
|
|
|
|
/**
|
|
* Throws the exception caught by this TryCatch in a way that avoids
|
|
* it being caught again by this same TryCatch. As with ThrowException
|
|
* it is illegal to execute any JavaScript operations after calling
|
|
* ReThrow; the caller must return immediately to where the exception
|
|
* is caught.
|
|
*/
|
|
Handle<Value> ReThrow();
|
|
|
|
/**
|
|
* Returns the exception caught by this try/catch block. If no exception has
|
|
* been caught an empty handle is returned.
|
|
*
|
|
* The returned handle is valid until this TryCatch block has been destroyed.
|
|
*/
|
|
Local<Value> Exception() const;
|
|
|
|
/**
|
|
* Returns the .stack property of the thrown object. If no .stack
|
|
* property is present an empty handle is returned.
|
|
*/
|
|
Local<Value> StackTrace() const;
|
|
|
|
/**
|
|
* Returns the message associated with this exception. If there is
|
|
* no message associated an empty handle is returned.
|
|
*
|
|
* The returned handle is valid until this TryCatch block has been
|
|
* destroyed.
|
|
*/
|
|
Local<v8::Message> Message() const;
|
|
|
|
/**
|
|
* Clears any exceptions that may have been caught by this try/catch block.
|
|
* After this method has been called, HasCaught() will return false.
|
|
*
|
|
* It is not necessary to clear a try/catch block before using it again; if
|
|
* another exception is thrown the previously caught exception will just be
|
|
* overwritten. However, it is often a good idea since it makes it easier
|
|
* to determine which operation threw a given exception.
|
|
*/
|
|
void Reset();
|
|
|
|
/**
|
|
* Set verbosity of the external exception handler.
|
|
*
|
|
* By default, exceptions that are caught by an external exception
|
|
* handler are not reported. Call SetVerbose with true on an
|
|
* external exception handler to have exceptions caught by the
|
|
* handler reported as if they were not caught.
|
|
*/
|
|
void SetVerbose(bool value);
|
|
|
|
/**
|
|
* Set whether or not this TryCatch should capture a Message object
|
|
* which holds source information about where the exception
|
|
* occurred. True by default.
|
|
*/
|
|
void SetCaptureMessage(bool value);
|
|
|
|
private:
|
|
// Make it hard to create heap-allocated TryCatch blocks.
|
|
TryCatch(const TryCatch&);
|
|
void operator=(const TryCatch&);
|
|
void* operator new(size_t size);
|
|
void operator delete(void*, size_t);
|
|
|
|
v8::internal::Isolate* isolate_;
|
|
void* next_;
|
|
void* exception_;
|
|
void* message_;
|
|
bool is_verbose_ : 1;
|
|
bool can_continue_ : 1;
|
|
bool capture_message_ : 1;
|
|
bool rethrow_ : 1;
|
|
bool has_terminated_ : 1;
|
|
|
|
friend class v8::internal::Isolate;
|
|
};
|
|
|
|
|
|
// --- Context ---
|
|
|
|
|
|
/**
|
|
* Ignore
|
|
*/
|
|
class V8EXPORT ExtensionConfiguration {
|
|
public:
|
|
ExtensionConfiguration(int name_count, const char* names[])
|
|
: name_count_(name_count), names_(names) { }
|
|
private:
|
|
friend class ImplementationUtilities;
|
|
int name_count_;
|
|
const char** names_;
|
|
};
|
|
|
|
|
|
/**
|
|
* A sandboxed execution context with its own set of built-in objects
|
|
* and functions.
|
|
*/
|
|
class V8EXPORT Context {
|
|
public:
|
|
/**
|
|
* Returns the global proxy object or global object itself for
|
|
* detached contexts.
|
|
*
|
|
* Global proxy object is a thin wrapper whose prototype points to
|
|
* actual context's global object with the properties like Object, etc.
|
|
* This is done that way for security reasons (for more details see
|
|
* https://wiki.mozilla.org/Gecko:SplitWindow).
|
|
*
|
|
* Please note that changes to global proxy object prototype most probably
|
|
* would break VM---v8 expects only global object as a prototype of
|
|
* global proxy object.
|
|
*
|
|
* If DetachGlobal() has been invoked, Global() would return actual global
|
|
* object until global is reattached with ReattachGlobal().
|
|
*/
|
|
Local<Object> Global();
|
|
|
|
/**
|
|
* Detaches the global object from its context before
|
|
* the global object can be reused to create a new context.
|
|
*/
|
|
void DetachGlobal();
|
|
|
|
/**
|
|
* Reattaches a global object to a context. This can be used to
|
|
* restore the connection between a global object and a context
|
|
* after DetachGlobal has been called.
|
|
*
|
|
* \param global_object The global object to reattach to the
|
|
* context. For this to work, the global object must be the global
|
|
* object that was associated with this context before a call to
|
|
* DetachGlobal.
|
|
*/
|
|
void ReattachGlobal(Handle<Object> global_object);
|
|
|
|
/**
|
|
* Creates a new context and returns a handle to the newly allocated
|
|
* context.
|
|
*
|
|
* \param isolate The isolate in which to create the context.
|
|
*
|
|
* \param extensions An optional extension configuration containing
|
|
* the extensions to be installed in the newly created context.
|
|
*
|
|
* \param global_template An optional object template from which the
|
|
* global object for the newly created context will be created.
|
|
*
|
|
* \param global_object An optional global object to be reused for
|
|
* the newly created context. This global object must have been
|
|
* created by a previous call to Context::New with the same global
|
|
* template. The state of the global object will be completely reset
|
|
* and only object identify will remain.
|
|
*/
|
|
static Local<Context> New(
|
|
Isolate* isolate,
|
|
ExtensionConfiguration* extensions = NULL,
|
|
Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
|
|
Handle<Value> global_object = Handle<Value>());
|
|
|
|
/** Deprecated. Use Isolate version instead. */
|
|
V8_DEPRECATED(static Persistent<Context> New(
|
|
ExtensionConfiguration* extensions = NULL,
|
|
Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
|
|
Handle<Value> global_object = Handle<Value>()));
|
|
|
|
/** Returns the last entered context. */
|
|
static Local<Context> GetEntered();
|
|
|
|
// TODO(svenpanne) Actually deprecate this.
|
|
/** Deprecated. Use Isolate::GetCurrentContext instead. */
|
|
static Local<Context> GetCurrent();
|
|
|
|
/**
|
|
* Returns the context of the calling JavaScript code. That is the
|
|
* context of the top-most JavaScript frame. If there are no
|
|
* JavaScript frames an empty handle is returned.
|
|
*/
|
|
static Local<Context> GetCalling();
|
|
|
|
/**
|
|
* Sets the security token for the context. To access an object in
|
|
* another context, the security tokens must match.
|
|
*/
|
|
void SetSecurityToken(Handle<Value> token);
|
|
|
|
/** Restores the security token to the default value. */
|
|
void UseDefaultSecurityToken();
|
|
|
|
/** Returns the security token of this context.*/
|
|
Handle<Value> GetSecurityToken();
|
|
|
|
/**
|
|
* Enter this context. After entering a context, all code compiled
|
|
* and run is compiled and run in this context. If another context
|
|
* is already entered, this old context is saved so it can be
|
|
* restored when the new context is exited.
|
|
*/
|
|
void Enter();
|
|
|
|
/**
|
|
* Exit this context. Exiting the current context restores the
|
|
* context that was in place when entering the current context.
|
|
*/
|
|
void Exit();
|
|
|
|
/** Returns true if the context has experienced an out of memory situation. */
|
|
bool HasOutOfMemoryException();
|
|
|
|
/** Returns true if V8 has a current context. */
|
|
static bool InContext();
|
|
|
|
/** Returns an isolate associated with a current context. */
|
|
v8::Isolate* GetIsolate();
|
|
|
|
/**
|
|
* Gets the embedder data with the given index, which must have been set by a
|
|
* previous call to SetEmbedderData with the same index. Note that index 0
|
|
* currently has a special meaning for Chrome's debugger.
|
|
*/
|
|
V8_INLINE(Local<Value> GetEmbedderData(int index));
|
|
|
|
/**
|
|
* Sets the embedder data with the given index, growing the data as
|
|
* needed. Note that index 0 currently has a special meaning for Chrome's
|
|
* debugger.
|
|
*/
|
|
void SetEmbedderData(int index, Handle<Value> value);
|
|
|
|
/**
|
|
* Gets a 2-byte-aligned native pointer from the embedder data with the given
|
|
* index, which must have bees set by a previous call to
|
|
* SetAlignedPointerInEmbedderData with the same index. Note that index 0
|
|
* currently has a special meaning for Chrome's debugger.
|
|
*/
|
|
V8_INLINE(void* GetAlignedPointerFromEmbedderData(int index));
|
|
|
|
/**
|
|
* Sets a 2-byte-aligned native pointer in the embedder data with the given
|
|
* index, growing the data as needed. Note that index 0 currently has a
|
|
* special meaning for Chrome's debugger.
|
|
*/
|
|
void SetAlignedPointerInEmbedderData(int index, void* value);
|
|
|
|
/**
|
|
* Control whether code generation from strings is allowed. Calling
|
|
* this method with false will disable 'eval' and the 'Function'
|
|
* constructor for code running in this context. If 'eval' or the
|
|
* 'Function' constructor are used an exception will be thrown.
|
|
*
|
|
* If code generation from strings is not allowed the
|
|
* V8::AllowCodeGenerationFromStrings callback will be invoked if
|
|
* set before blocking the call to 'eval' or the 'Function'
|
|
* constructor. If that callback returns true, the call will be
|
|
* allowed, otherwise an exception will be thrown. If no callback is
|
|
* set an exception will be thrown.
|
|
*/
|
|
void AllowCodeGenerationFromStrings(bool allow);
|
|
|
|
/**
|
|
* Returns true if code generation from strings is allowed for the context.
|
|
* For more details see AllowCodeGenerationFromStrings(bool) documentation.
|
|
*/
|
|
bool IsCodeGenerationFromStringsAllowed();
|
|
|
|
/**
|
|
* Sets the error description for the exception that is thrown when
|
|
* code generation from strings is not allowed and 'eval' or the 'Function'
|
|
* constructor are called.
|
|
*/
|
|
void SetErrorMessageForCodeGenerationFromStrings(Handle<String> message);
|
|
|
|
/**
|
|
* Stack-allocated class which sets the execution context for all
|
|
* operations executed within a local scope.
|
|
*/
|
|
class Scope {
|
|
public:
|
|
explicit V8_INLINE(Scope(Handle<Context> context)) : context_(context) {
|
|
context_->Enter();
|
|
}
|
|
// TODO(dcarney): deprecate
|
|
V8_INLINE(Scope(Isolate* isolate, Persistent<Context>& context)) // NOLINT
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
: context_(Handle<Context>::New(isolate, context)) {
|
|
#else
|
|
: context_(Local<Context>::New(isolate, context)) {
|
|
#endif
|
|
context_->Enter();
|
|
}
|
|
V8_INLINE(~Scope()) { context_->Exit(); }
|
|
|
|
private:
|
|
Handle<Context> context_;
|
|
};
|
|
|
|
private:
|
|
friend class Value;
|
|
friend class Script;
|
|
friend class Object;
|
|
friend class Function;
|
|
|
|
Local<Value> SlowGetEmbedderData(int index);
|
|
void* SlowGetAlignedPointerFromEmbedderData(int index);
|
|
};
|
|
|
|
|
|
/**
|
|
* Multiple threads in V8 are allowed, but only one thread at a time is allowed
|
|
* to use any given V8 isolate, see the comments in the Isolate class. The
|
|
* definition of 'using a V8 isolate' includes accessing handles or holding onto
|
|
* object pointers obtained from V8 handles while in the particular V8 isolate.
|
|
* It is up to the user of V8 to ensure, perhaps with locking, that this
|
|
* constraint is not violated. In addition to any other synchronization
|
|
* mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
|
|
* used to signal thead switches to V8.
|
|
*
|
|
* v8::Locker is a scoped lock object. While it's active, i.e. between its
|
|
* construction and destruction, the current thread is allowed to use the locked
|
|
* isolate. V8 guarantees that an isolate can be locked by at most one thread at
|
|
* any time. In other words, the scope of a v8::Locker is a critical section.
|
|
*
|
|
* Sample usage:
|
|
* \code
|
|
* ...
|
|
* {
|
|
* v8::Locker locker(isolate);
|
|
* v8::Isolate::Scope isolate_scope(isolate);
|
|
* ...
|
|
* // Code using V8 and isolate goes here.
|
|
* ...
|
|
* } // Destructor called here
|
|
* \endcode
|
|
*
|
|
* If you wish to stop using V8 in a thread A you can do this either by
|
|
* destroying the v8::Locker object as above or by constructing a v8::Unlocker
|
|
* object:
|
|
*
|
|
* \code
|
|
* {
|
|
* isolate->Exit();
|
|
* v8::Unlocker unlocker(isolate);
|
|
* ...
|
|
* // Code not using V8 goes here while V8 can run in another thread.
|
|
* ...
|
|
* } // Destructor called here.
|
|
* isolate->Enter();
|
|
* \endcode
|
|
*
|
|
* The Unlocker object is intended for use in a long-running callback from V8,
|
|
* where you want to release the V8 lock for other threads to use.
|
|
*
|
|
* The v8::Locker is a recursive lock, i.e. you can lock more than once in a
|
|
* given thread. This can be useful if you have code that can be called either
|
|
* from code that holds the lock or from code that does not. The Unlocker is
|
|
* not recursive so you can not have several Unlockers on the stack at once, and
|
|
* you can not use an Unlocker in a thread that is not inside a Locker's scope.
|
|
*
|
|
* An unlocker will unlock several lockers if it has to and reinstate the
|
|
* correct depth of locking on its destruction, e.g.:
|
|
*
|
|
* \code
|
|
* // V8 not locked.
|
|
* {
|
|
* v8::Locker locker(isolate);
|
|
* Isolate::Scope isolate_scope(isolate);
|
|
* // V8 locked.
|
|
* {
|
|
* v8::Locker another_locker(isolate);
|
|
* // V8 still locked (2 levels).
|
|
* {
|
|
* isolate->Exit();
|
|
* v8::Unlocker unlocker(isolate);
|
|
* // V8 not locked.
|
|
* }
|
|
* isolate->Enter();
|
|
* // V8 locked again (2 levels).
|
|
* }
|
|
* // V8 still locked (1 level).
|
|
* }
|
|
* // V8 Now no longer locked.
|
|
* \endcode
|
|
*/
|
|
class V8EXPORT Unlocker {
|
|
public:
|
|
/**
|
|
* Initialize Unlocker for a given Isolate.
|
|
*/
|
|
V8_INLINE(explicit Unlocker(Isolate* isolate)) { Initialize(isolate); }
|
|
|
|
/** Deprecated. Use Isolate version instead. */
|
|
V8_DEPRECATED(Unlocker());
|
|
|
|
~Unlocker();
|
|
private:
|
|
void Initialize(Isolate* isolate);
|
|
|
|
internal::Isolate* isolate_;
|
|
};
|
|
|
|
|
|
class V8EXPORT Locker {
|
|
public:
|
|
/**
|
|
* Initialize Locker for a given Isolate.
|
|
*/
|
|
V8_INLINE(explicit Locker(Isolate* isolate)) { Initialize(isolate); }
|
|
|
|
/** Deprecated. Use Isolate version instead. */
|
|
V8_DEPRECATED(Locker());
|
|
|
|
~Locker();
|
|
|
|
/**
|
|
* Start preemption.
|
|
*
|
|
* When preemption is started, a timer is fired every n milliseconds
|
|
* that will switch between multiple threads that are in contention
|
|
* for the V8 lock.
|
|
*/
|
|
static void StartPreemption(int every_n_ms);
|
|
|
|
/**
|
|
* Stop preemption.
|
|
*/
|
|
static void StopPreemption();
|
|
|
|
/**
|
|
* Returns whether or not the locker for a given isolate, is locked by the
|
|
* current thread.
|
|
*/
|
|
static bool IsLocked(Isolate* isolate);
|
|
|
|
/**
|
|
* Returns whether v8::Locker is being used by this V8 instance.
|
|
*/
|
|
static bool IsActive();
|
|
|
|
private:
|
|
void Initialize(Isolate* isolate);
|
|
|
|
bool has_lock_;
|
|
bool top_level_;
|
|
internal::Isolate* isolate_;
|
|
|
|
static bool active_;
|
|
|
|
// Disallow copying and assigning.
|
|
Locker(const Locker&);
|
|
void operator=(const Locker&);
|
|
};
|
|
|
|
|
|
/**
|
|
* A struct for exporting HeapStats data from V8, using "push" model.
|
|
*/
|
|
struct HeapStatsUpdate;
|
|
|
|
|
|
/**
|
|
* An interface for exporting data from V8, using "push" model.
|
|
*/
|
|
class V8EXPORT OutputStream { // NOLINT
|
|
public:
|
|
enum OutputEncoding {
|
|
kAscii = 0 // 7-bit ASCII.
|
|
};
|
|
enum WriteResult {
|
|
kContinue = 0,
|
|
kAbort = 1
|
|
};
|
|
virtual ~OutputStream() {}
|
|
/** Notify about the end of stream. */
|
|
virtual void EndOfStream() = 0;
|
|
/** Get preferred output chunk size. Called only once. */
|
|
virtual int GetChunkSize() { return 1024; }
|
|
/** Get preferred output encoding. Called only once. */
|
|
virtual OutputEncoding GetOutputEncoding() { return kAscii; }
|
|
/**
|
|
* Writes the next chunk of snapshot data into the stream. Writing
|
|
* can be stopped by returning kAbort as function result. EndOfStream
|
|
* will not be called in case writing was aborted.
|
|
*/
|
|
virtual WriteResult WriteAsciiChunk(char* data, int size) = 0;
|
|
/**
|
|
* Writes the next chunk of heap stats data into the stream. Writing
|
|
* can be stopped by returning kAbort as function result. EndOfStream
|
|
* will not be called in case writing was aborted.
|
|
*/
|
|
virtual WriteResult WriteHeapStatsChunk(HeapStatsUpdate* data, int count) {
|
|
return kAbort;
|
|
};
|
|
};
|
|
|
|
|
|
/**
|
|
* An interface for reporting progress and controlling long-running
|
|
* activities.
|
|
*/
|
|
class V8EXPORT ActivityControl { // NOLINT
|
|
public:
|
|
enum ControlOption {
|
|
kContinue = 0,
|
|
kAbort = 1
|
|
};
|
|
virtual ~ActivityControl() {}
|
|
/**
|
|
* Notify about current progress. The activity can be stopped by
|
|
* returning kAbort as the callback result.
|
|
*/
|
|
virtual ControlOption ReportProgressValue(int done, int total) = 0;
|
|
};
|
|
|
|
|
|
// --- Implementation ---
|
|
|
|
|
|
namespace internal {
|
|
|
|
const int kApiPointerSize = sizeof(void*); // NOLINT
|
|
const int kApiIntSize = sizeof(int); // NOLINT
|
|
|
|
// Tag information for HeapObject.
|
|
const int kHeapObjectTag = 1;
|
|
const int kHeapObjectTagSize = 2;
|
|
const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
|
|
|
|
// Tag information for Smi.
|
|
const int kSmiTag = 0;
|
|
const int kSmiTagSize = 1;
|
|
const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
|
|
|
|
template <size_t ptr_size> struct SmiTagging;
|
|
|
|
template<int kSmiShiftSize>
|
|
V8_INLINE(internal::Object* IntToSmi(int value)) {
|
|
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
|
|
intptr_t tagged_value =
|
|
(static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag;
|
|
return reinterpret_cast<internal::Object*>(tagged_value);
|
|
}
|
|
|
|
// Smi constants for 32-bit systems.
|
|
template <> struct SmiTagging<4> {
|
|
static const int kSmiShiftSize = 0;
|
|
static const int kSmiValueSize = 31;
|
|
V8_INLINE(static int SmiToInt(internal::Object* value)) {
|
|
int shift_bits = kSmiTagSize + kSmiShiftSize;
|
|
// Throw away top 32 bits and shift down (requires >> to be sign extending).
|
|
return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
|
|
}
|
|
V8_INLINE(static internal::Object* IntToSmi(int value)) {
|
|
return internal::IntToSmi<kSmiShiftSize>(value);
|
|
}
|
|
V8_INLINE(static bool IsValidSmi(intptr_t value)) {
|
|
// To be representable as an tagged small integer, the two
|
|
// most-significant bits of 'value' must be either 00 or 11 due to
|
|
// sign-extension. To check this we add 01 to the two
|
|
// most-significant bits, and check if the most-significant bit is 0
|
|
//
|
|
// CAUTION: The original code below:
|
|
// bool result = ((value + 0x40000000) & 0x80000000) == 0;
|
|
// may lead to incorrect results according to the C language spec, and
|
|
// in fact doesn't work correctly with gcc4.1.1 in some cases: The
|
|
// compiler may produce undefined results in case of signed integer
|
|
// overflow. The computation must be done w/ unsigned ints.
|
|
return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
|
|
}
|
|
};
|
|
|
|
// Smi constants for 64-bit systems.
|
|
template <> struct SmiTagging<8> {
|
|
static const int kSmiShiftSize = 31;
|
|
static const int kSmiValueSize = 32;
|
|
V8_INLINE(static int SmiToInt(internal::Object* value)) {
|
|
int shift_bits = kSmiTagSize + kSmiShiftSize;
|
|
// Shift down and throw away top 32 bits.
|
|
return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
|
|
}
|
|
V8_INLINE(static internal::Object* IntToSmi(int value)) {
|
|
return internal::IntToSmi<kSmiShiftSize>(value);
|
|
}
|
|
V8_INLINE(static bool IsValidSmi(intptr_t value)) {
|
|
// To be representable as a long smi, the value must be a 32-bit integer.
|
|
return (value == static_cast<int32_t>(value));
|
|
}
|
|
};
|
|
|
|
typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
|
|
const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
|
|
const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
|
|
|
|
/**
|
|
* This class exports constants and functionality from within v8 that
|
|
* is necessary to implement inline functions in the v8 api. Don't
|
|
* depend on functions and constants defined here.
|
|
*/
|
|
class Internals {
|
|
public:
|
|
// These values match non-compiler-dependent values defined within
|
|
// the implementation of v8.
|
|
static const int kHeapObjectMapOffset = 0;
|
|
static const int kMapInstanceTypeOffset = 1 * kApiPointerSize + kApiIntSize;
|
|
static const int kStringResourceOffset = 3 * kApiPointerSize;
|
|
|
|
static const int kOddballKindOffset = 3 * kApiPointerSize;
|
|
static const int kForeignAddressOffset = kApiPointerSize;
|
|
static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
|
|
static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
|
|
static const int kContextHeaderSize = 2 * kApiPointerSize;
|
|
static const int kContextEmbedderDataIndex = 64;
|
|
static const int kFullStringRepresentationMask = 0x07;
|
|
static const int kStringEncodingMask = 0x4;
|
|
static const int kExternalTwoByteRepresentationTag = 0x02;
|
|
static const int kExternalAsciiRepresentationTag = 0x06;
|
|
|
|
static const int kIsolateStateOffset = 0;
|
|
static const int kIsolateEmbedderDataOffset = 1 * kApiPointerSize;
|
|
static const int kIsolateRootsOffset = 3 * kApiPointerSize;
|
|
static const int kUndefinedValueRootIndex = 5;
|
|
static const int kNullValueRootIndex = 7;
|
|
static const int kTrueValueRootIndex = 8;
|
|
static const int kFalseValueRootIndex = 9;
|
|
static const int kEmptyStringRootIndex = 129;
|
|
|
|
static const int kNodeClassIdOffset = 1 * kApiPointerSize;
|
|
static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
|
|
static const int kNodeStateMask = 0xf;
|
|
static const int kNodeStateIsWeakValue = 2;
|
|
static const int kNodeStateIsNearDeathValue = 4;
|
|
static const int kNodeIsIndependentShift = 4;
|
|
static const int kNodeIsPartiallyDependentShift = 5;
|
|
|
|
static const int kJSObjectType = 0xae;
|
|
static const int kFirstNonstringType = 0x80;
|
|
static const int kOddballType = 0x83;
|
|
static const int kForeignType = 0x86;
|
|
|
|
static const int kUndefinedOddballKind = 5;
|
|
static const int kNullOddballKind = 3;
|
|
|
|
V8_INLINE(static bool HasHeapObjectTag(internal::Object* value)) {
|
|
return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
|
|
kHeapObjectTag);
|
|
}
|
|
|
|
V8_INLINE(static int SmiValue(internal::Object* value)) {
|
|
return PlatformSmiTagging::SmiToInt(value);
|
|
}
|
|
|
|
V8_INLINE(static internal::Object* IntToSmi(int value)) {
|
|
return PlatformSmiTagging::IntToSmi(value);
|
|
}
|
|
|
|
V8_INLINE(static bool IsValidSmi(intptr_t value)) {
|
|
return PlatformSmiTagging::IsValidSmi(value);
|
|
}
|
|
|
|
V8_INLINE(static int GetInstanceType(internal::Object* obj)) {
|
|
typedef internal::Object O;
|
|
O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
|
|
return ReadField<uint8_t>(map, kMapInstanceTypeOffset);
|
|
}
|
|
|
|
V8_INLINE(static int GetOddballKind(internal::Object* obj)) {
|
|
typedef internal::Object O;
|
|
return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
|
|
}
|
|
|
|
V8_INLINE(static bool IsExternalTwoByteString(int instance_type)) {
|
|
int representation = (instance_type & kFullStringRepresentationMask);
|
|
return representation == kExternalTwoByteRepresentationTag;
|
|
}
|
|
|
|
V8_INLINE(static bool IsInitialized(v8::Isolate* isolate)) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateStateOffset;
|
|
return *reinterpret_cast<int*>(addr) == 1;
|
|
}
|
|
|
|
V8_INLINE(static uint8_t GetNodeFlag(internal::Object** obj, int shift)) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
return *addr & (1 << shift);
|
|
}
|
|
|
|
V8_INLINE(static void UpdateNodeFlag(internal::Object** obj,
|
|
bool value, int shift)) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
uint8_t mask = 1 << shift;
|
|
*addr = (*addr & ~mask) | (value << shift);
|
|
}
|
|
|
|
V8_INLINE(static uint8_t GetNodeState(internal::Object** obj)) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
return *addr & kNodeStateMask;
|
|
}
|
|
|
|
V8_INLINE(static void UpdateNodeState(internal::Object** obj,
|
|
uint8_t value)) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
|
|
*addr = (*addr & ~kNodeStateMask) | value;
|
|
}
|
|
|
|
V8_INLINE(static void SetEmbedderData(v8::Isolate* isolate, void* data)) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
|
|
kIsolateEmbedderDataOffset;
|
|
*reinterpret_cast<void**>(addr) = data;
|
|
}
|
|
|
|
V8_INLINE(static void* GetEmbedderData(v8::Isolate* isolate)) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
|
|
kIsolateEmbedderDataOffset;
|
|
return *reinterpret_cast<void**>(addr);
|
|
}
|
|
|
|
V8_INLINE(static internal::Object** GetRoot(v8::Isolate* isolate,
|
|
int index)) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
|
|
return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
|
|
}
|
|
|
|
template <typename T>
|
|
V8_INLINE(static T ReadField(Object* ptr, int offset)) {
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag;
|
|
return *reinterpret_cast<T*>(addr);
|
|
}
|
|
|
|
template <typename T>
|
|
V8_INLINE(static T ReadEmbedderData(Context* context, int index)) {
|
|
typedef internal::Object O;
|
|
typedef internal::Internals I;
|
|
O* ctx = *reinterpret_cast<O**>(context);
|
|
int embedder_data_offset = I::kContextHeaderSize +
|
|
(internal::kApiPointerSize * I::kContextEmbedderDataIndex);
|
|
O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
|
|
int value_offset =
|
|
I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
|
|
return I::ReadField<T>(embedder_data, value_offset);
|
|
}
|
|
|
|
V8_INLINE(static bool CanCastToHeapObject(void* o)) { return false; }
|
|
V8_INLINE(static bool CanCastToHeapObject(Context* o)) { return true; }
|
|
V8_INLINE(static bool CanCastToHeapObject(String* o)) { return true; }
|
|
V8_INLINE(static bool CanCastToHeapObject(Object* o)) { return true; }
|
|
V8_INLINE(static bool CanCastToHeapObject(Message* o)) { return true; }
|
|
V8_INLINE(static bool CanCastToHeapObject(StackTrace* o)) { return true; }
|
|
V8_INLINE(static bool CanCastToHeapObject(StackFrame* o)) { return true; }
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
|
|
template <class T>
|
|
Local<T>::Local() : Handle<T>() { }
|
|
|
|
|
|
template <class T>
|
|
Local<T> Local<T>::New(Handle<T> that) {
|
|
if (that.IsEmpty()) return Local<T>();
|
|
T* that_ptr = *that;
|
|
internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
|
|
if (internal::Internals::CanCastToHeapObject(that_ptr)) {
|
|
return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
|
|
reinterpret_cast<internal::HeapObject*>(*p))));
|
|
}
|
|
return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(*p)));
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Local<T> Local<T>::New(Isolate* isolate, Handle<T> that) {
|
|
return New(isolate, that.val_);
|
|
}
|
|
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
template <class T>
|
|
Local<T> Local<T>::New(Isolate* isolate, const Persistent<T>& that) {
|
|
return New(isolate, that.val_);
|
|
}
|
|
|
|
template <class T>
|
|
Handle<T> Handle<T>::New(Isolate* isolate, T* that) {
|
|
if (that == NULL) return Handle<T>();
|
|
T* that_ptr = that;
|
|
internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
|
|
return Handle<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
|
|
reinterpret_cast<internal::Isolate*>(isolate), *p)));
|
|
}
|
|
#endif
|
|
|
|
|
|
template <class T>
|
|
Local<T> Local<T>::New(Isolate* isolate, T* that) {
|
|
if (that == NULL) return Local<T>();
|
|
T* that_ptr = that;
|
|
internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
|
|
return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
|
|
reinterpret_cast<internal::Isolate*>(isolate), *p)));
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Persistent<T> Persistent<T>::New(Handle<T> that) {
|
|
return New(Isolate::GetCurrent(), that.val_);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Persistent<T> Persistent<T>::New(Isolate* isolate, Handle<T> that) {
|
|
return New(Isolate::GetCurrent(), that.val_);
|
|
}
|
|
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
template <class T>
|
|
Persistent<T> Persistent<T>::New(Isolate* isolate, Persistent<T> that) {
|
|
return New(Isolate::GetCurrent(), that.val_);
|
|
}
|
|
#endif
|
|
|
|
template <class T>
|
|
Persistent<T> Persistent<T>::New(Isolate* isolate, T* that) {
|
|
if (that == NULL) return Persistent<T>();
|
|
internal::Object** p = reinterpret_cast<internal::Object**>(that);
|
|
return Persistent<T>(reinterpret_cast<T*>(
|
|
V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
|
|
p)));
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool Persistent<T>::IsIndependent() const {
|
|
typedef internal::Internals I;
|
|
if (this->IsEmpty()) return false;
|
|
return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
|
|
I::kNodeIsIndependentShift);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool Persistent<T>::IsNearDeath() const {
|
|
typedef internal::Internals I;
|
|
if (this->IsEmpty()) return false;
|
|
return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
|
|
I::kNodeStateIsNearDeathValue;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
bool Persistent<T>::IsWeak() const {
|
|
typedef internal::Internals I;
|
|
if (this->IsEmpty()) return false;
|
|
return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
|
|
I::kNodeStateIsWeakValue;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void Persistent<T>::Dispose() {
|
|
if (this->IsEmpty()) return;
|
|
V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
val_ = 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
template <class T>
|
|
template <typename S, typename P>
|
|
void Persistent<T>::MakeWeak(
|
|
P* parameters,
|
|
typename WeakReferenceCallbacks<S, P>::Revivable callback) {
|
|
TYPE_CHECK(S, T);
|
|
typedef typename WeakReferenceCallbacks<Value, void>::Revivable Revivable;
|
|
V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_),
|
|
parameters,
|
|
reinterpret_cast<Revivable>(callback));
|
|
}
|
|
|
|
|
|
template <class T>
|
|
template <typename P>
|
|
void Persistent<T>::MakeWeak(
|
|
P* parameters,
|
|
typename WeakReferenceCallbacks<T, P>::Revivable callback) {
|
|
MakeWeak<T, P>(parameters, callback);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void Persistent<T>::ClearWeak() {
|
|
V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_));
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void Persistent<T>::MarkIndependent() {
|
|
typedef internal::Internals I;
|
|
if (this->IsEmpty()) return;
|
|
I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
|
|
true,
|
|
I::kNodeIsIndependentShift);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void Persistent<T>::MarkPartiallyDependent() {
|
|
typedef internal::Internals I;
|
|
if (this->IsEmpty()) return;
|
|
I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
|
|
true,
|
|
I::kNodeIsPartiallyDependentShift);
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void Persistent<T>::Reset(Isolate* isolate, const Handle<T>& other) {
|
|
Dispose(isolate);
|
|
#ifdef V8_USE_UNSAFE_HANDLES
|
|
*this = *New(isolate, other);
|
|
#else
|
|
if (other.IsEmpty()) {
|
|
this->val_ = NULL;
|
|
return;
|
|
}
|
|
internal::Object** p = reinterpret_cast<internal::Object**>(other.val_);
|
|
this->val_ = reinterpret_cast<T*>(
|
|
V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate), p));
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifndef V8_USE_UNSAFE_HANDLES
|
|
template <class T>
|
|
void Persistent<T>::Reset(Isolate* isolate, const Persistent<T>& other) {
|
|
Dispose(isolate);
|
|
if (other.IsEmpty()) {
|
|
this->val_ = NULL;
|
|
return;
|
|
}
|
|
internal::Object** p = reinterpret_cast<internal::Object**>(other.val_);
|
|
this->val_ = reinterpret_cast<T*>(
|
|
V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate), p));
|
|
}
|
|
#endif
|
|
|
|
|
|
template <class T>
|
|
T* Persistent<T>::ClearAndLeak() {
|
|
T* old;
|
|
#ifdef V8_USE_UNSAFE_HANDLES
|
|
old = **this;
|
|
*this = Persistent<T>();
|
|
#else
|
|
old = val_;
|
|
val_ = NULL;
|
|
#endif
|
|
return old;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void Persistent<T>::SetWrapperClassId(uint16_t class_id) {
|
|
typedef internal::Internals I;
|
|
if (this->IsEmpty()) return;
|
|
internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
|
|
*reinterpret_cast<uint16_t*>(addr) = class_id;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
uint16_t Persistent<T>::WrapperClassId() const {
|
|
typedef internal::Internals I;
|
|
if (this->IsEmpty()) return 0;
|
|
internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
|
|
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
|
|
return *reinterpret_cast<uint16_t*>(addr);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
|
|
|
|
template<typename T>
|
|
template<typename S>
|
|
void ReturnValue<T>::Set(const Persistent<S>& handle) {
|
|
TYPE_CHECK(T, S);
|
|
if (V8_UNLIKELY(handle.IsEmpty())) {
|
|
SetUndefined();
|
|
} else {
|
|
*value_ = *reinterpret_cast<internal::Object**>(*handle);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
template<typename S>
|
|
void ReturnValue<T>::Set(const Handle<S> handle) {
|
|
TYPE_CHECK(T, S);
|
|
if (V8_UNLIKELY(handle.IsEmpty())) {
|
|
SetUndefined();
|
|
} else {
|
|
*value_ = *reinterpret_cast<internal::Object**>(*handle);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void ReturnValue<T>::Set(double i) {
|
|
Set(Number::New(GetIsolate(), i));
|
|
}
|
|
|
|
template<typename T>
|
|
void ReturnValue<T>::Set(int32_t i) {
|
|
typedef internal::Internals I;
|
|
if (V8_LIKELY(I::IsValidSmi(i))) {
|
|
*value_ = I::IntToSmi(i);
|
|
return;
|
|
}
|
|
Set(Integer::New(i, GetIsolate()));
|
|
}
|
|
|
|
template<typename T>
|
|
void ReturnValue<T>::Set(uint32_t i) {
|
|
typedef internal::Internals I;
|
|
if (V8_LIKELY(I::IsValidSmi(i))) {
|
|
*value_ = I::IntToSmi(i);
|
|
return;
|
|
}
|
|
Set(Integer::NewFromUnsigned(i, GetIsolate()));
|
|
}
|
|
|
|
template<typename T>
|
|
void ReturnValue<T>::Set(bool value) {
|
|
typedef internal::Internals I;
|
|
int root_index;
|
|
if (value) {
|
|
root_index = I::kTrueValueRootIndex;
|
|
} else {
|
|
root_index = I::kFalseValueRootIndex;
|
|
}
|
|
*value_ = *I::GetRoot(GetIsolate(), root_index);
|
|
}
|
|
|
|
template<typename T>
|
|
void ReturnValue<T>::SetNull() {
|
|
typedef internal::Internals I;
|
|
*value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
|
|
}
|
|
|
|
template<typename T>
|
|
void ReturnValue<T>::SetUndefined() {
|
|
typedef internal::Internals I;
|
|
*value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
|
|
}
|
|
|
|
template<typename T>
|
|
Isolate* ReturnValue<T>::GetIsolate() {
|
|
// Isolate is always the pointer below value_ on the stack.
|
|
return *reinterpret_cast<Isolate**>(&value_[-1]);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
|
|
internal::Object** values,
|
|
int length,
|
|
bool is_construct_call)
|
|
: implicit_args_(implicit_args),
|
|
values_(values),
|
|
length_(length),
|
|
is_construct_call_(is_construct_call) { }
|
|
|
|
|
|
Arguments::Arguments(internal::Object** args,
|
|
internal::Object** values,
|
|
int length,
|
|
bool is_construct_call)
|
|
: FunctionCallbackInfo<Value>(args, values, length, is_construct_call) { }
|
|
|
|
|
|
template<typename T>
|
|
Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
|
|
if (i < 0 || length_ <= i) return Local<Value>(*Undefined());
|
|
return Local<Value>(reinterpret_cast<Value*>(values_ - i));
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Local<Function> FunctionCallbackInfo<T>::Callee() const {
|
|
return Local<Function>(reinterpret_cast<Function*>(
|
|
&implicit_args_[kCalleeIndex]));
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Local<Object> FunctionCallbackInfo<T>::This() const {
|
|
return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Local<Object> FunctionCallbackInfo<T>::Holder() const {
|
|
return Local<Object>(reinterpret_cast<Object*>(
|
|
&implicit_args_[kHolderIndex]));
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Local<Value> FunctionCallbackInfo<T>::Data() const {
|
|
return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
|
|
return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
|
|
return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
bool FunctionCallbackInfo<T>::IsConstructCall() const {
|
|
return is_construct_call_;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
int FunctionCallbackInfo<T>::Length() const {
|
|
return length_;
|
|
}
|
|
|
|
|
|
template <class T>
|
|
Local<T> HandleScope::Close(Handle<T> value) {
|
|
internal::Object** before = reinterpret_cast<internal::Object**>(*value);
|
|
internal::Object** after = RawClose(before);
|
|
return Local<T>(reinterpret_cast<T*>(after));
|
|
}
|
|
|
|
Handle<Value> ScriptOrigin::ResourceName() const {
|
|
return resource_name_;
|
|
}
|
|
|
|
|
|
Handle<Integer> ScriptOrigin::ResourceLineOffset() const {
|
|
return resource_line_offset_;
|
|
}
|
|
|
|
|
|
Handle<Integer> ScriptOrigin::ResourceColumnOffset() const {
|
|
return resource_column_offset_;
|
|
}
|
|
|
|
|
|
Handle<Boolean> Boolean::New(bool value) {
|
|
return value ? True() : False();
|
|
}
|
|
|
|
|
|
void Template::Set(const char* name, v8::Handle<Data> value) {
|
|
Set(v8::String::New(name), value);
|
|
}
|
|
|
|
|
|
Local<Value> Object::GetInternalField(int index) {
|
|
#ifndef V8_ENABLE_CHECKS
|
|
typedef internal::Object O;
|
|
typedef internal::Internals I;
|
|
O* obj = *reinterpret_cast<O**>(this);
|
|
// Fast path: If the object is a plain JSObject, which is the common case, we
|
|
// know where to find the internal fields and can return the value directly.
|
|
if (I::GetInstanceType(obj) == I::kJSObjectType) {
|
|
int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
|
|
O* value = I::ReadField<O*>(obj, offset);
|
|
O** result = HandleScope::CreateHandle(value);
|
|
return Local<Value>(reinterpret_cast<Value*>(result));
|
|
}
|
|
#endif
|
|
return SlowGetInternalField(index);
|
|
}
|
|
|
|
|
|
void* Object::GetAlignedPointerFromInternalField(int index) {
|
|
#ifndef V8_ENABLE_CHECKS
|
|
typedef internal::Object O;
|
|
typedef internal::Internals I;
|
|
O* obj = *reinterpret_cast<O**>(this);
|
|
// Fast path: If the object is a plain JSObject, which is the common case, we
|
|
// know where to find the internal fields and can return the value directly.
|
|
if (V8_LIKELY(I::GetInstanceType(obj) == I::kJSObjectType)) {
|
|
int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
|
|
return I::ReadField<void*>(obj, offset);
|
|
}
|
|
#endif
|
|
return SlowGetAlignedPointerFromInternalField(index);
|
|
}
|
|
|
|
|
|
String* String::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<String*>(value);
|
|
}
|
|
|
|
|
|
Local<String> String::Empty(Isolate* isolate) {
|
|
typedef internal::Object* S;
|
|
typedef internal::Internals I;
|
|
if (!I::IsInitialized(isolate)) return Empty();
|
|
S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
|
|
return Local<String>(reinterpret_cast<String*>(slot));
|
|
}
|
|
|
|
|
|
Local<String> String::New(const char* data, int length) {
|
|
return NewFromUtf8(Isolate::GetCurrent(), data, kNormalString, length);
|
|
}
|
|
|
|
|
|
Local<String> String::New(const uint16_t* data, int length) {
|
|
return NewFromTwoByte(Isolate::GetCurrent(), data, kNormalString, length);
|
|
}
|
|
|
|
|
|
Local<String> String::NewSymbol(const char* data, int length) {
|
|
return NewFromUtf8(Isolate::GetCurrent(), data, kInternalizedString, length);
|
|
}
|
|
|
|
|
|
Local<String> String::NewUndetectable(const char* data, int length) {
|
|
return NewFromUtf8(Isolate::GetCurrent(), data, kUndetectableString, length);
|
|
}
|
|
|
|
|
|
Local<String> String::NewUndetectable(const uint16_t* data, int length) {
|
|
return NewFromTwoByte(
|
|
Isolate::GetCurrent(), data, kUndetectableString, length);
|
|
}
|
|
|
|
|
|
String::ExternalStringResource* String::GetExternalStringResource() const {
|
|
typedef internal::Object O;
|
|
typedef internal::Internals I;
|
|
O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
|
|
String::ExternalStringResource* result;
|
|
if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
|
|
void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
|
|
result = reinterpret_cast<String::ExternalStringResource*>(value);
|
|
} else {
|
|
result = NULL;
|
|
}
|
|
#ifdef V8_ENABLE_CHECKS
|
|
VerifyExternalStringResource(result);
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
|
|
String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
|
|
String::Encoding* encoding_out) const {
|
|
typedef internal::Object O;
|
|
typedef internal::Internals I;
|
|
O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
|
|
int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
|
|
*encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
|
|
ExternalStringResourceBase* resource = NULL;
|
|
if (type == I::kExternalAsciiRepresentationTag ||
|
|
type == I::kExternalTwoByteRepresentationTag) {
|
|
void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
|
|
resource = static_cast<ExternalStringResourceBase*>(value);
|
|
}
|
|
#ifdef V8_ENABLE_CHECKS
|
|
VerifyExternalStringResourceBase(resource, *encoding_out);
|
|
#endif
|
|
return resource;
|
|
}
|
|
|
|
|
|
bool Value::IsUndefined() const {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
return FullIsUndefined();
|
|
#else
|
|
return QuickIsUndefined();
|
|
#endif
|
|
}
|
|
|
|
bool Value::QuickIsUndefined() const {
|
|
typedef internal::Object O;
|
|
typedef internal::Internals I;
|
|
O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
|
|
if (!I::HasHeapObjectTag(obj)) return false;
|
|
if (I::GetInstanceType(obj) != I::kOddballType) return false;
|
|
return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
|
|
}
|
|
|
|
|
|
bool Value::IsNull() const {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
return FullIsNull();
|
|
#else
|
|
return QuickIsNull();
|
|
#endif
|
|
}
|
|
|
|
bool Value::QuickIsNull() const {
|
|
typedef internal::Object O;
|
|
typedef internal::Internals I;
|
|
O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
|
|
if (!I::HasHeapObjectTag(obj)) return false;
|
|
if (I::GetInstanceType(obj) != I::kOddballType) return false;
|
|
return (I::GetOddballKind(obj) == I::kNullOddballKind);
|
|
}
|
|
|
|
|
|
bool Value::IsString() const {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
return FullIsString();
|
|
#else
|
|
return QuickIsString();
|
|
#endif
|
|
}
|
|
|
|
bool Value::QuickIsString() const {
|
|
typedef internal::Object O;
|
|
typedef internal::Internals I;
|
|
O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
|
|
if (!I::HasHeapObjectTag(obj)) return false;
|
|
return (I::GetInstanceType(obj) < I::kFirstNonstringType);
|
|
}
|
|
|
|
|
|
Symbol* Symbol::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Symbol*>(value);
|
|
}
|
|
|
|
|
|
Number* Number::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Number*>(value);
|
|
}
|
|
|
|
|
|
Integer* Integer::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Integer*>(value);
|
|
}
|
|
|
|
|
|
Date* Date::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Date*>(value);
|
|
}
|
|
|
|
|
|
StringObject* StringObject::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<StringObject*>(value);
|
|
}
|
|
|
|
|
|
SymbolObject* SymbolObject::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<SymbolObject*>(value);
|
|
}
|
|
|
|
|
|
NumberObject* NumberObject::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<NumberObject*>(value);
|
|
}
|
|
|
|
|
|
BooleanObject* BooleanObject::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<BooleanObject*>(value);
|
|
}
|
|
|
|
|
|
RegExp* RegExp::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<RegExp*>(value);
|
|
}
|
|
|
|
|
|
Object* Object::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Object*>(value);
|
|
}
|
|
|
|
|
|
Array* Array::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Array*>(value);
|
|
}
|
|
|
|
|
|
ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<ArrayBuffer*>(value);
|
|
}
|
|
|
|
|
|
TypedArray* TypedArray::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<TypedArray*>(value);
|
|
}
|
|
|
|
|
|
Uint8Array* Uint8Array::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Uint8Array*>(value);
|
|
}
|
|
|
|
|
|
Int8Array* Int8Array::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Int8Array*>(value);
|
|
}
|
|
|
|
|
|
Uint16Array* Uint16Array::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Uint16Array*>(value);
|
|
}
|
|
|
|
|
|
Int16Array* Int16Array::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Int16Array*>(value);
|
|
}
|
|
|
|
|
|
Uint32Array* Uint32Array::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Uint32Array*>(value);
|
|
}
|
|
|
|
|
|
Int32Array* Int32Array::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Int32Array*>(value);
|
|
}
|
|
|
|
|
|
Float32Array* Float32Array::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Float32Array*>(value);
|
|
}
|
|
|
|
|
|
Float64Array* Float64Array::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Float64Array*>(value);
|
|
}
|
|
|
|
|
|
Function* Function::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<Function*>(value);
|
|
}
|
|
|
|
|
|
External* External::Cast(v8::Value* value) {
|
|
#ifdef V8_ENABLE_CHECKS
|
|
CheckCast(value);
|
|
#endif
|
|
return static_cast<External*>(value);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
|
|
return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Local<Value> PropertyCallbackInfo<T>::Data() const {
|
|
return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Local<Object> PropertyCallbackInfo<T>::This() const {
|
|
return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Local<Object> PropertyCallbackInfo<T>::Holder() const {
|
|
return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
|
|
return ReturnValue<T>(&args_[kReturnValueIndex]);
|
|
}
|
|
|
|
|
|
Handle<Primitive> Undefined(Isolate* isolate) {
|
|
typedef internal::Object* S;
|
|
typedef internal::Internals I;
|
|
if (!I::IsInitialized(isolate)) return Undefined();
|
|
S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
|
|
return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
|
|
}
|
|
|
|
|
|
Handle<Primitive> Null(Isolate* isolate) {
|
|
typedef internal::Object* S;
|
|
typedef internal::Internals I;
|
|
if (!I::IsInitialized(isolate)) return Null();
|
|
S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
|
|
return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
|
|
}
|
|
|
|
|
|
Handle<Boolean> True(Isolate* isolate) {
|
|
typedef internal::Object* S;
|
|
typedef internal::Internals I;
|
|
if (!I::IsInitialized(isolate)) return True();
|
|
S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
|
|
return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
|
|
}
|
|
|
|
|
|
Handle<Boolean> False(Isolate* isolate) {
|
|
typedef internal::Object* S;
|
|
typedef internal::Internals I;
|
|
if (!I::IsInitialized(isolate)) return False();
|
|
S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
|
|
return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
|
|
}
|
|
|
|
|
|
void Isolate::SetData(void* data) {
|
|
typedef internal::Internals I;
|
|
I::SetEmbedderData(this, data);
|
|
}
|
|
|
|
|
|
void* Isolate::GetData() {
|
|
typedef internal::Internals I;
|
|
return I::GetEmbedderData(this);
|
|
}
|
|
|
|
|
|
Local<Value> Context::GetEmbedderData(int index) {
|
|
#ifndef V8_ENABLE_CHECKS
|
|
typedef internal::Object O;
|
|
typedef internal::Internals I;
|
|
O** result = HandleScope::CreateHandle(I::ReadEmbedderData<O*>(this, index));
|
|
return Local<Value>(reinterpret_cast<Value*>(result));
|
|
#else
|
|
return SlowGetEmbedderData(index);
|
|
#endif
|
|
}
|
|
|
|
|
|
void* Context::GetAlignedPointerFromEmbedderData(int index) {
|
|
#ifndef V8_ENABLE_CHECKS
|
|
typedef internal::Internals I;
|
|
return I::ReadEmbedderData<void*>(this, index);
|
|
#else
|
|
return SlowGetAlignedPointerFromEmbedderData(index);
|
|
#endif
|
|
}
|
|
|
|
|
|
/**
|
|
* \example shell.cc
|
|
* A simple shell that takes a list of expressions on the
|
|
* command-line and executes them.
|
|
*/
|
|
|
|
|
|
/**
|
|
* \example process.cc
|
|
*/
|
|
|
|
|
|
} // namespace v8
|
|
|
|
|
|
#undef V8EXPORT
|
|
#undef TYPE_CHECK
|
|
|
|
|
|
#endif // V8_H_
|