v8/test/unittests/interpreter/bytecode-register-allocator-unittest.cc
oth 48d082af38 [interpreter] Add support for scalable operands.
This change introduces wide prefix bytecodes to support wide (16-bit)
and extra-wide (32-bit) operands. It retires the previous
wide-bytecodes and reduces the number of operand types.

Operands are now either scalable or fixed size. Scalable operands
increase in width when a bytecode is prefixed with wide or extra-wide.

The bytecode handler table is extended to 256*3 entries. The
first 256 entries are used for bytecodes with 8-bit operands,
the second 256 entries are used for bytecodes with operands that
scale to 16-bits, and the third group of 256 entries are used for
bytecodes with operands that scale to 32-bits.

LOG=N
BUG=v8:4747,v8:4280

Review URL: https://codereview.chromium.org/1783483002

Cr-Commit-Position: refs/heads/master@{#34955}
2016-03-21 17:09:49 +00:00

213 lines
7.3 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/interpreter/bytecode-array-builder.h"
#include "src/interpreter/bytecode-register-allocator.h"
#include "test/unittests/test-utils.h"
namespace v8 {
namespace internal {
namespace interpreter {
class TemporaryRegisterAllocatorTest : public TestWithIsolateAndZone {
public:
TemporaryRegisterAllocatorTest() : allocator_(zone(), 0) {}
~TemporaryRegisterAllocatorTest() override {}
TemporaryRegisterAllocator* allocator() { return &allocator_; }
private:
TemporaryRegisterAllocator allocator_;
};
TEST_F(TemporaryRegisterAllocatorTest, FirstAllocation) {
CHECK_EQ(allocator()->allocation_count(), 0);
int reg0_index = allocator()->BorrowTemporaryRegister();
CHECK_EQ(reg0_index, 0);
CHECK_EQ(allocator()->allocation_count(), 1);
CHECK(allocator()->RegisterIsLive(Register(reg0_index)));
allocator()->ReturnTemporaryRegister(reg0_index);
CHECK(!allocator()->RegisterIsLive(Register(reg0_index)));
CHECK_EQ(allocator()->allocation_count(), 1);
CHECK(allocator()->first_temporary_register() == Register(0));
CHECK(allocator()->last_temporary_register() == Register(0));
}
TEST_F(TemporaryRegisterAllocatorTest, SimpleAllocations) {
for (int i = 0; i < 13; i++) {
int reg_index = allocator()->BorrowTemporaryRegister();
CHECK_EQ(reg_index, i);
CHECK_EQ(allocator()->allocation_count(), i + 1);
}
for (int i = 0; i < 13; i++) {
CHECK(allocator()->RegisterIsLive(Register(i)));
allocator()->ReturnTemporaryRegister(i);
CHECK(!allocator()->RegisterIsLive(Register(i)));
int reg_index = allocator()->BorrowTemporaryRegister();
CHECK_EQ(reg_index, i);
CHECK_EQ(allocator()->allocation_count(), 13);
}
for (int i = 0; i < 13; i++) {
CHECK(allocator()->RegisterIsLive(Register(i)));
allocator()->ReturnTemporaryRegister(i);
CHECK(!allocator()->RegisterIsLive(Register(i)));
}
}
TEST_F(TemporaryRegisterAllocatorTest, SimpleRangeAllocation) {
static const int kRunLength = 7;
int start = allocator()->PrepareForConsecutiveTemporaryRegisters(kRunLength);
CHECK(!allocator()->RegisterIsLive(Register(start)));
for (int i = 0; i < kRunLength; i++) {
CHECK(!allocator()->RegisterIsLive(Register(start + i)));
allocator()->BorrowConsecutiveTemporaryRegister(start + i);
CHECK(allocator()->RegisterIsLive(Register(start + i)));
}
}
TEST_F(TemporaryRegisterAllocatorTest, RangeAllocationAbuttingFree) {
static const int kFreeCount = 3;
static const int kRunLength = 6;
for (int i = 0; i < kFreeCount; i++) {
int to_free = allocator()->BorrowTemporaryRegister();
CHECK_EQ(to_free, i);
}
for (int i = 0; i < kFreeCount; i++) {
allocator()->ReturnTemporaryRegister(i);
}
int start = allocator()->PrepareForConsecutiveTemporaryRegisters(kRunLength);
CHECK(!allocator()->RegisterIsLive(Register(start)));
for (int i = 0; i < kRunLength; i++) {
CHECK(!allocator()->RegisterIsLive(Register(start + i)));
allocator()->BorrowConsecutiveTemporaryRegister(start + i);
CHECK(allocator()->RegisterIsLive(Register(start + i)));
}
}
TEST_F(TemporaryRegisterAllocatorTest, RangeAllocationAbuttingHole) {
static const int kPreAllocatedCount = 7;
static const int kPreAllocatedFreeCount = 6;
static const int kRunLength = 8;
for (int i = 0; i < kPreAllocatedCount; i++) {
int to_free = allocator()->BorrowTemporaryRegister();
CHECK_EQ(to_free, i);
}
for (int i = 0; i < kPreAllocatedFreeCount; i++) {
allocator()->ReturnTemporaryRegister(i);
}
int start = allocator()->PrepareForConsecutiveTemporaryRegisters(kRunLength);
CHECK(!allocator()->RegisterIsLive(Register(start)));
CHECK_EQ(start, kPreAllocatedCount);
for (int i = 0; i < kRunLength; i++) {
CHECK(!allocator()->RegisterIsLive(Register(start + i)));
allocator()->BorrowConsecutiveTemporaryRegister(start + i);
CHECK(allocator()->RegisterIsLive(Register(start + i)));
}
}
TEST_F(TemporaryRegisterAllocatorTest, RangeAllocationAvailableInTemporaries) {
static const int kNotRunLength = 13;
static const int kRunLength = 8;
// Allocate big batch
for (int i = 0; i < kNotRunLength * 2 + kRunLength; i++) {
int allocated = allocator()->BorrowTemporaryRegister();
CHECK_EQ(allocated, i);
}
// Free every other register either side of target.
for (int i = 0; i < kNotRunLength; i++) {
if ((i & 2) == 1) {
allocator()->ReturnTemporaryRegister(i);
allocator()->ReturnTemporaryRegister(kNotRunLength + kRunLength + i);
}
}
// Free all registers for target.
for (int i = kNotRunLength; i < kNotRunLength + kRunLength; i++) {
allocator()->ReturnTemporaryRegister(i);
}
int start = allocator()->PrepareForConsecutiveTemporaryRegisters(kRunLength);
CHECK_EQ(start, kNotRunLength);
for (int i = 0; i < kRunLength; i++) {
CHECK(!allocator()->RegisterIsLive(Register(start + i)));
allocator()->BorrowConsecutiveTemporaryRegister(start + i);
CHECK(allocator()->RegisterIsLive(Register(start + i)));
}
}
TEST_F(TemporaryRegisterAllocatorTest, NotInRange) {
for (int i = 0; i < 10; i++) {
int reg = allocator()->BorrowTemporaryRegisterNotInRange(2, 5);
CHECK(reg == i || (reg > 2 && reg == i + 4));
}
for (int i = 0; i < 10; i++) {
if (i < 2) {
allocator()->ReturnTemporaryRegister(i);
} else {
allocator()->ReturnTemporaryRegister(i + 4);
}
}
int reg0 = allocator()->BorrowTemporaryRegisterNotInRange(0, 3);
CHECK_EQ(reg0, 4);
int reg1 = allocator()->BorrowTemporaryRegisterNotInRange(3, 10);
CHECK_EQ(reg1, 2);
int reg2 = allocator()->BorrowTemporaryRegisterNotInRange(2, 6);
CHECK_EQ(reg2, 1);
allocator()->ReturnTemporaryRegister(reg0);
allocator()->ReturnTemporaryRegister(reg1);
allocator()->ReturnTemporaryRegister(reg2);
}
class BytecodeRegisterAllocatorTest : public TestWithIsolateAndZone {
public:
BytecodeRegisterAllocatorTest() {}
~BytecodeRegisterAllocatorTest() override {}
};
TEST_F(BytecodeRegisterAllocatorTest, TemporariesRecycled) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 0);
int first;
{
BytecodeRegisterAllocator allocator(zone(),
builder.temporary_register_allocator());
first = allocator.NewRegister().index();
allocator.NewRegister();
allocator.NewRegister();
allocator.NewRegister();
}
int second;
{
BytecodeRegisterAllocator allocator(zone(),
builder.temporary_register_allocator());
second = allocator.NewRegister().index();
}
CHECK_EQ(first, second);
}
TEST_F(BytecodeRegisterAllocatorTest, ConsecutiveRegisters) {
BytecodeArrayBuilder builder(isolate(), zone(), 0, 0, 0);
BytecodeRegisterAllocator allocator(zone(),
builder.temporary_register_allocator());
allocator.PrepareForConsecutiveAllocations(4);
Register reg0 = allocator.NextConsecutiveRegister();
Register other = allocator.NewRegister();
Register reg1 = allocator.NextConsecutiveRegister();
Register reg2 = allocator.NextConsecutiveRegister();
Register reg3 = allocator.NextConsecutiveRegister();
USE(other);
CHECK(Register::AreContiguous(reg0, reg1, reg2, reg3));
}
} // namespace interpreter
} // namespace internal
} // namespace v8