5f5988299a
Upstream S390 platform specific code to latest lkgr from the past 2 weeks. R=danno@chromium.org,jkummerow@chromium.org,jochen@chromium.org,joransiu@ca.ibm.com,michael_dawson@ca.ibm.com,mbrandy@us.ibm.com BUG= Review URL: https://codereview.chromium.org/1799893002 Cr-Commit-Position: refs/heads/master@{#34787}
676 lines
24 KiB
C++
676 lines
24 KiB
C++
// Copyright 2015 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/s390/codegen-s390.h"
|
|
|
|
#if V8_TARGET_ARCH_S390
|
|
|
|
#include "src/codegen.h"
|
|
#include "src/macro-assembler.h"
|
|
#include "src/s390/simulator-s390.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
#define __ masm.
|
|
|
|
#if defined(USE_SIMULATOR)
|
|
byte* fast_exp_s390_machine_code = nullptr;
|
|
double fast_exp_simulator(double x, Isolate* isolate) {
|
|
return Simulator::current(isolate)->CallFPReturnsDouble(
|
|
fast_exp_s390_machine_code, x, 0);
|
|
}
|
|
#endif
|
|
|
|
UnaryMathFunctionWithIsolate CreateExpFunction(Isolate* isolate) {
|
|
size_t actual_size;
|
|
byte* buffer =
|
|
static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
|
|
if (buffer == nullptr) return nullptr;
|
|
ExternalReference::InitializeMathExpData();
|
|
|
|
MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
|
|
CodeObjectRequired::kNo);
|
|
|
|
{
|
|
DoubleRegister input = d0;
|
|
DoubleRegister result = d2;
|
|
DoubleRegister double_scratch1 = d3;
|
|
DoubleRegister double_scratch2 = d4;
|
|
Register temp1 = r6;
|
|
Register temp2 = r7;
|
|
Register temp3 = r8;
|
|
|
|
__ Push(temp3, temp2, temp1);
|
|
MathExpGenerator::EmitMathExp(&masm, input, result, double_scratch1,
|
|
double_scratch2, temp1, temp2, temp3);
|
|
__ Pop(temp3, temp2, temp1);
|
|
__ ldr(d0, result);
|
|
__ Ret();
|
|
}
|
|
|
|
CodeDesc desc;
|
|
masm.GetCode(&desc);
|
|
DCHECK(ABI_USES_FUNCTION_DESCRIPTORS || !RelocInfo::RequiresRelocation(desc));
|
|
|
|
Assembler::FlushICache(isolate, buffer, actual_size);
|
|
base::OS::ProtectCode(buffer, actual_size);
|
|
|
|
#if !defined(USE_SIMULATOR)
|
|
return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
|
|
#else
|
|
fast_exp_s390_machine_code = buffer;
|
|
return &fast_exp_simulator;
|
|
#endif
|
|
}
|
|
|
|
UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
|
|
#if defined(USE_SIMULATOR)
|
|
return nullptr;
|
|
#else
|
|
size_t actual_size;
|
|
byte* buffer =
|
|
static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
|
|
if (buffer == nullptr) return nullptr;
|
|
|
|
MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
|
|
CodeObjectRequired::kNo);
|
|
|
|
__ MovFromFloatParameter(d0);
|
|
__ sqdbr(d0, d0);
|
|
__ MovToFloatResult(d0);
|
|
__ Ret();
|
|
|
|
CodeDesc desc;
|
|
masm.GetCode(&desc);
|
|
DCHECK(ABI_USES_FUNCTION_DESCRIPTORS || !RelocInfo::RequiresRelocation(desc));
|
|
|
|
Assembler::FlushICache(isolate, buffer, actual_size);
|
|
base::OS::ProtectCode(buffer, actual_size);
|
|
return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
|
|
#endif
|
|
}
|
|
|
|
#undef __
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Platform-specific RuntimeCallHelper functions.
|
|
|
|
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
|
|
masm->EnterFrame(StackFrame::INTERNAL);
|
|
DCHECK(!masm->has_frame());
|
|
masm->set_has_frame(true);
|
|
}
|
|
|
|
void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
|
|
masm->LeaveFrame(StackFrame::INTERNAL);
|
|
DCHECK(masm->has_frame());
|
|
masm->set_has_frame(false);
|
|
}
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Code generators
|
|
|
|
#define __ ACCESS_MASM(masm)
|
|
|
|
void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
|
|
MacroAssembler* masm, Register receiver, Register key, Register value,
|
|
Register target_map, AllocationSiteMode mode,
|
|
Label* allocation_memento_found) {
|
|
Register scratch_elements = r6;
|
|
DCHECK(!AreAliased(receiver, key, value, target_map, scratch_elements));
|
|
|
|
if (mode == TRACK_ALLOCATION_SITE) {
|
|
DCHECK(allocation_memento_found != NULL);
|
|
__ JumpIfJSArrayHasAllocationMemento(receiver, scratch_elements,
|
|
allocation_memento_found);
|
|
}
|
|
|
|
// Set transitioned map.
|
|
__ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
|
|
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, r1,
|
|
kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
|
|
OMIT_SMI_CHECK);
|
|
}
|
|
|
|
void ElementsTransitionGenerator::GenerateSmiToDouble(
|
|
MacroAssembler* masm, Register receiver, Register key, Register value,
|
|
Register target_map, AllocationSiteMode mode, Label* fail) {
|
|
// lr contains the return address
|
|
Label loop, entry, convert_hole, gc_required, only_change_map, done;
|
|
Register elements = r6;
|
|
Register length = r7;
|
|
Register array = r8;
|
|
Register array_end = array;
|
|
|
|
// target_map parameter can be clobbered.
|
|
Register scratch1 = target_map;
|
|
Register scratch2 = r1;
|
|
|
|
// Verify input registers don't conflict with locals.
|
|
DCHECK(!AreAliased(receiver, key, value, target_map, elements, length, array,
|
|
scratch2));
|
|
|
|
if (mode == TRACK_ALLOCATION_SITE) {
|
|
__ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
|
|
}
|
|
|
|
// Check for empty arrays, which only require a map transition and no changes
|
|
// to the backing store.
|
|
__ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
|
__ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex);
|
|
__ beq(&only_change_map, Label::kNear);
|
|
|
|
// Preserve lr and use r14 as a temporary register.
|
|
__ push(r14);
|
|
|
|
__ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
|
|
// length: number of elements (smi-tagged)
|
|
|
|
// Allocate new FixedDoubleArray.
|
|
__ SmiToDoubleArrayOffset(r14, length);
|
|
__ AddP(r14, Operand(FixedDoubleArray::kHeaderSize));
|
|
__ Allocate(r14, array, r9, scratch2, &gc_required, DOUBLE_ALIGNMENT);
|
|
|
|
// Set destination FixedDoubleArray's length and map.
|
|
__ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex);
|
|
__ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
|
|
// Update receiver's map.
|
|
__ StoreP(scratch2, MemOperand(array, HeapObject::kMapOffset));
|
|
|
|
__ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
|
|
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2,
|
|
kLRHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
|
|
OMIT_SMI_CHECK);
|
|
// Replace receiver's backing store with newly created FixedDoubleArray.
|
|
__ AddP(scratch1, array, Operand(kHeapObjectTag));
|
|
__ StoreP(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
|
__ RecordWriteField(receiver, JSObject::kElementsOffset, scratch1, scratch2,
|
|
kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
|
|
OMIT_SMI_CHECK);
|
|
|
|
// Prepare for conversion loop.
|
|
__ AddP(target_map, elements,
|
|
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
|
__ AddP(r9, array, Operand(FixedDoubleArray::kHeaderSize));
|
|
__ SmiToDoubleArrayOffset(array, length);
|
|
__ AddP(array_end, r9, array);
|
|
// Repurpose registers no longer in use.
|
|
#if V8_TARGET_ARCH_S390X
|
|
Register hole_int64 = elements;
|
|
#else
|
|
Register hole_lower = elements;
|
|
Register hole_upper = length;
|
|
#endif
|
|
// scratch1: begin of source FixedArray element fields, not tagged
|
|
// hole_lower: kHoleNanLower32 OR hol_int64
|
|
// hole_upper: kHoleNanUpper32
|
|
// array_end: end of destination FixedDoubleArray, not tagged
|
|
// scratch2: begin of FixedDoubleArray element fields, not tagged
|
|
|
|
__ b(&entry, Label::kNear);
|
|
|
|
__ bind(&only_change_map);
|
|
__ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
|
|
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2,
|
|
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
|
|
OMIT_SMI_CHECK);
|
|
__ b(&done, Label::kNear);
|
|
|
|
// Call into runtime if GC is required.
|
|
__ bind(&gc_required);
|
|
__ pop(r14);
|
|
__ b(fail);
|
|
|
|
// Convert and copy elements.
|
|
__ bind(&loop);
|
|
__ LoadP(r14, MemOperand(scratch1));
|
|
__ la(scratch1, MemOperand(scratch1, kPointerSize));
|
|
// r1: current element
|
|
__ UntagAndJumpIfNotSmi(r14, r14, &convert_hole);
|
|
|
|
// Normal smi, convert to double and store.
|
|
__ ConvertIntToDouble(r14, d0);
|
|
__ StoreDouble(d0, MemOperand(r9, 0));
|
|
__ la(r9, MemOperand(r9, 8));
|
|
|
|
__ b(&entry, Label::kNear);
|
|
|
|
// Hole found, store the-hole NaN.
|
|
__ bind(&convert_hole);
|
|
if (FLAG_debug_code) {
|
|
// Restore a "smi-untagged" heap object.
|
|
__ LoadP(r1, MemOperand(r5, -kPointerSize));
|
|
__ CompareRoot(r1, Heap::kTheHoleValueRootIndex);
|
|
__ Assert(eq, kObjectFoundInSmiOnlyArray);
|
|
}
|
|
#if V8_TARGET_ARCH_S390X
|
|
__ stg(hole_int64, MemOperand(r9, 0));
|
|
#else
|
|
__ StoreW(hole_upper, MemOperand(r9, Register::kExponentOffset));
|
|
__ StoreW(hole_lower, MemOperand(r9, Register::kMantissaOffset));
|
|
#endif
|
|
__ AddP(r9, Operand(8));
|
|
|
|
__ bind(&entry);
|
|
__ CmpP(r9, array_end);
|
|
__ blt(&loop);
|
|
|
|
__ pop(r14);
|
|
__ bind(&done);
|
|
}
|
|
|
|
void ElementsTransitionGenerator::GenerateDoubleToObject(
|
|
MacroAssembler* masm, Register receiver, Register key, Register value,
|
|
Register target_map, AllocationSiteMode mode, Label* fail) {
|
|
// Register lr contains the return address.
|
|
Label loop, convert_hole, gc_required, only_change_map;
|
|
Register elements = r6;
|
|
Register array = r8;
|
|
Register length = r7;
|
|
Register scratch = r1;
|
|
Register scratch3 = r9;
|
|
Register hole_value = r9;
|
|
|
|
// Verify input registers don't conflict with locals.
|
|
DCHECK(!AreAliased(receiver, key, value, target_map, elements, array, length,
|
|
scratch));
|
|
|
|
if (mode == TRACK_ALLOCATION_SITE) {
|
|
__ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
|
|
}
|
|
|
|
// Check for empty arrays, which only require a map transition and no changes
|
|
// to the backing store.
|
|
__ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
|
__ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex);
|
|
__ beq(&only_change_map);
|
|
|
|
__ Push(target_map, receiver, key, value);
|
|
__ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
|
|
// elements: source FixedDoubleArray
|
|
// length: number of elements (smi-tagged)
|
|
|
|
// Allocate new FixedArray.
|
|
// Re-use value and target_map registers, as they have been saved on the
|
|
// stack.
|
|
Register array_size = value;
|
|
Register allocate_scratch = target_map;
|
|
__ LoadImmP(array_size, Operand(FixedDoubleArray::kHeaderSize));
|
|
__ SmiToPtrArrayOffset(r0, length);
|
|
__ AddP(array_size, r0);
|
|
__ Allocate(array_size, array, allocate_scratch, scratch, &gc_required,
|
|
NO_ALLOCATION_FLAGS);
|
|
// array: destination FixedArray, not tagged as heap object
|
|
// Set destination FixedDoubleArray's length and map.
|
|
__ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
|
|
__ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
|
|
__ StoreP(scratch, MemOperand(array, HeapObject::kMapOffset));
|
|
__ AddP(array, Operand(kHeapObjectTag));
|
|
|
|
// Prepare for conversion loop.
|
|
Register src_elements = elements;
|
|
Register dst_elements = target_map;
|
|
Register dst_end = length;
|
|
Register heap_number_map = scratch;
|
|
__ AddP(src_elements,
|
|
Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
|
|
__ SmiToPtrArrayOffset(length, length);
|
|
__ LoadRoot(hole_value, Heap::kTheHoleValueRootIndex);
|
|
|
|
Label initialization_loop, loop_done;
|
|
__ ShiftRightP(scratch, length, Operand(kPointerSizeLog2));
|
|
__ beq(&loop_done, Label::kNear);
|
|
|
|
// Allocating heap numbers in the loop below can fail and cause a jump to
|
|
// gc_required. We can't leave a partly initialized FixedArray behind,
|
|
// so pessimistically fill it with holes now.
|
|
__ AddP(dst_elements, array,
|
|
Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
|
|
__ bind(&initialization_loop);
|
|
__ StoreP(hole_value, MemOperand(dst_elements, kPointerSize));
|
|
__ lay(dst_elements, MemOperand(dst_elements, kPointerSize));
|
|
__ BranchOnCount(scratch, &initialization_loop);
|
|
|
|
__ AddP(dst_elements, array,
|
|
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
|
__ AddP(dst_end, dst_elements, length);
|
|
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
|
// Using offsetted addresses in src_elements to fully take advantage of
|
|
// post-indexing.
|
|
// dst_elements: begin of destination FixedArray element fields, not tagged
|
|
// src_elements: begin of source FixedDoubleArray element fields,
|
|
// not tagged, +4
|
|
// dst_end: end of destination FixedArray, not tagged
|
|
// array: destination FixedArray
|
|
// hole_value: the-hole pointer
|
|
// heap_number_map: heap number map
|
|
__ b(&loop, Label::kNear);
|
|
|
|
// Call into runtime if GC is required.
|
|
__ bind(&gc_required);
|
|
__ Pop(target_map, receiver, key, value);
|
|
__ b(fail);
|
|
|
|
// Replace the-hole NaN with the-hole pointer.
|
|
__ bind(&convert_hole);
|
|
__ StoreP(hole_value, MemOperand(dst_elements));
|
|
__ AddP(dst_elements, Operand(kPointerSize));
|
|
__ CmpLogicalP(dst_elements, dst_end);
|
|
__ bge(&loop_done);
|
|
|
|
__ bind(&loop);
|
|
Register upper_bits = key;
|
|
__ LoadlW(upper_bits, MemOperand(src_elements, Register::kExponentOffset));
|
|
__ AddP(src_elements, Operand(kDoubleSize));
|
|
// upper_bits: current element's upper 32 bit
|
|
// src_elements: address of next element's upper 32 bit
|
|
__ Cmp32(upper_bits, Operand(kHoleNanUpper32));
|
|
__ beq(&convert_hole, Label::kNear);
|
|
|
|
// Non-hole double, copy value into a heap number.
|
|
Register heap_number = receiver;
|
|
Register scratch2 = value;
|
|
__ AllocateHeapNumber(heap_number, scratch2, scratch3, heap_number_map,
|
|
&gc_required);
|
|
// heap_number: new heap number
|
|
#if V8_TARGET_ARCH_S390X
|
|
__ lg(scratch2, MemOperand(src_elements, -kDoubleSize));
|
|
// subtract tag for std
|
|
__ AddP(upper_bits, heap_number, Operand(-kHeapObjectTag));
|
|
__ stg(scratch2, MemOperand(upper_bits, HeapNumber::kValueOffset));
|
|
#else
|
|
__ LoadlW(scratch2,
|
|
MemOperand(src_elements, Register::kMantissaOffset - kDoubleSize));
|
|
__ LoadlW(upper_bits,
|
|
MemOperand(src_elements, Register::kExponentOffset - kDoubleSize));
|
|
__ StoreW(scratch2,
|
|
FieldMemOperand(heap_number, HeapNumber::kMantissaOffset));
|
|
__ StoreW(upper_bits,
|
|
FieldMemOperand(heap_number, HeapNumber::kExponentOffset));
|
|
#endif
|
|
__ LoadRR(scratch2, dst_elements);
|
|
__ StoreP(heap_number, MemOperand(dst_elements));
|
|
__ AddP(dst_elements, Operand(kPointerSize));
|
|
__ RecordWrite(array, scratch2, heap_number, kLRHasNotBeenSaved,
|
|
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
|
|
__ CmpLogicalP(dst_elements, dst_end);
|
|
__ blt(&loop);
|
|
__ bind(&loop_done);
|
|
|
|
__ Pop(target_map, receiver, key, value);
|
|
// Replace receiver's backing store with newly created and filled FixedArray.
|
|
__ StoreP(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
|
|
__ RecordWriteField(receiver, JSObject::kElementsOffset, array, scratch,
|
|
kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
|
|
OMIT_SMI_CHECK);
|
|
|
|
__ bind(&only_change_map);
|
|
// Update receiver's map.
|
|
__ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
|
|
__ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch,
|
|
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
|
|
OMIT_SMI_CHECK);
|
|
}
|
|
|
|
// assume ip can be used as a scratch register below
|
|
void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string,
|
|
Register index, Register result,
|
|
Label* call_runtime) {
|
|
// Fetch the instance type of the receiver into result register.
|
|
__ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset));
|
|
__ LoadlB(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
|
|
|
|
// We need special handling for indirect strings.
|
|
Label check_sequential;
|
|
__ mov(r0, Operand(kIsIndirectStringMask));
|
|
__ AndP(r0, result);
|
|
__ beq(&check_sequential, Label::kNear /*, cr0*/);
|
|
|
|
// Dispatch on the indirect string shape: slice or cons.
|
|
Label cons_string;
|
|
__ mov(ip, Operand(kSlicedNotConsMask));
|
|
__ LoadRR(r0, result);
|
|
__ AndP(r0, ip /*, SetRC*/); // Should be okay to remove RC
|
|
__ beq(&cons_string, Label::kNear /*, cr0*/);
|
|
|
|
// Handle slices.
|
|
Label indirect_string_loaded;
|
|
__ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
|
|
__ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset));
|
|
__ SmiUntag(ip, result);
|
|
__ AddP(index, ip);
|
|
__ b(&indirect_string_loaded, Label::kNear);
|
|
|
|
// Handle cons strings.
|
|
// Check whether the right hand side is the empty string (i.e. if
|
|
// this is really a flat string in a cons string). If that is not
|
|
// the case we would rather go to the runtime system now to flatten
|
|
// the string.
|
|
__ bind(&cons_string);
|
|
__ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset));
|
|
__ CompareRoot(result, Heap::kempty_stringRootIndex);
|
|
__ bne(call_runtime);
|
|
// Get the first of the two strings and load its instance type.
|
|
__ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset));
|
|
|
|
__ bind(&indirect_string_loaded);
|
|
__ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset));
|
|
__ LoadlB(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
|
|
|
|
// Distinguish sequential and external strings. Only these two string
|
|
// representations can reach here (slices and flat cons strings have been
|
|
// reduced to the underlying sequential or external string).
|
|
Label external_string, check_encoding;
|
|
__ bind(&check_sequential);
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
__ mov(r0, Operand(kStringRepresentationMask));
|
|
__ AndP(r0, result);
|
|
__ bne(&external_string, Label::kNear);
|
|
|
|
// Prepare sequential strings
|
|
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
|
__ AddP(string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
|
__ b(&check_encoding, Label::kNear);
|
|
|
|
// Handle external strings.
|
|
__ bind(&external_string);
|
|
if (FLAG_debug_code) {
|
|
// Assert that we do not have a cons or slice (indirect strings) here.
|
|
// Sequential strings have already been ruled out.
|
|
__ mov(r0, Operand(kIsIndirectStringMask));
|
|
__ AndP(r0, result);
|
|
__ Assert(eq, kExternalStringExpectedButNotFound, cr0);
|
|
}
|
|
// Rule out short external strings.
|
|
STATIC_ASSERT(kShortExternalStringTag != 0);
|
|
__ mov(r0, Operand(kShortExternalStringMask));
|
|
__ AndP(r0, result);
|
|
__ bne(call_runtime /*, cr0*/);
|
|
__ LoadP(string,
|
|
FieldMemOperand(string, ExternalString::kResourceDataOffset));
|
|
|
|
Label one_byte, done;
|
|
__ bind(&check_encoding);
|
|
STATIC_ASSERT(kTwoByteStringTag == 0);
|
|
__ mov(r0, Operand(kStringEncodingMask));
|
|
__ AndP(r0, result);
|
|
__ bne(&one_byte, Label::kNear);
|
|
// Two-byte string.
|
|
__ ShiftLeftP(result, index, Operand(1));
|
|
__ LoadLogicalHalfWordP(result, MemOperand(string, result));
|
|
__ b(&done, Label::kNear);
|
|
__ bind(&one_byte);
|
|
// One-byte string.
|
|
__ LoadlB(result, MemOperand(string, index));
|
|
__ bind(&done);
|
|
}
|
|
|
|
static MemOperand ExpConstant(int index, Register base) {
|
|
return MemOperand(base, index * kDoubleSize);
|
|
}
|
|
|
|
void MathExpGenerator::EmitMathExp(MacroAssembler* masm, DoubleRegister input,
|
|
DoubleRegister result,
|
|
DoubleRegister double_scratch1,
|
|
DoubleRegister double_scratch2,
|
|
Register temp1, Register temp2,
|
|
Register temp3) {
|
|
DCHECK(!input.is(result));
|
|
DCHECK(!input.is(double_scratch1));
|
|
DCHECK(!input.is(double_scratch2));
|
|
DCHECK(!result.is(double_scratch1));
|
|
DCHECK(!result.is(double_scratch2));
|
|
DCHECK(!double_scratch1.is(double_scratch2));
|
|
DCHECK(!temp1.is(temp2));
|
|
DCHECK(!temp1.is(temp3));
|
|
DCHECK(!temp2.is(temp3));
|
|
DCHECK(ExternalReference::math_exp_constants(0).address() != NULL);
|
|
DCHECK(!masm->serializer_enabled()); // External references not serializable.
|
|
|
|
Label zero, infinity, done;
|
|
|
|
__ mov(temp3, Operand(ExternalReference::math_exp_constants(0)));
|
|
|
|
__ LoadDouble(double_scratch1, ExpConstant(0, temp3));
|
|
__ cdbr(double_scratch1, input);
|
|
__ ldr(result, input);
|
|
__ bunordered(&done, Label::kNear);
|
|
__ bge(&zero, Label::kNear);
|
|
|
|
__ LoadDouble(double_scratch2, ExpConstant(1, temp3));
|
|
__ cdbr(input, double_scratch2);
|
|
__ bge(&infinity, Label::kNear);
|
|
|
|
__ LoadDouble(double_scratch1, ExpConstant(3, temp3));
|
|
__ LoadDouble(result, ExpConstant(4, temp3));
|
|
|
|
// Do not generate madbr, as intermediate result are not
|
|
// rounded properly
|
|
__ mdbr(double_scratch1, input);
|
|
__ adbr(double_scratch1, result);
|
|
|
|
// Move low word of double_scratch1 to temp2
|
|
__ lgdr(temp2, double_scratch1);
|
|
__ nihf(temp2, Operand::Zero());
|
|
|
|
__ sdbr(double_scratch1, result);
|
|
__ LoadDouble(result, ExpConstant(6, temp3));
|
|
__ LoadDouble(double_scratch2, ExpConstant(5, temp3));
|
|
__ mdbr(double_scratch1, double_scratch2);
|
|
__ sdbr(double_scratch1, input);
|
|
__ sdbr(result, double_scratch1);
|
|
__ ldr(double_scratch2, double_scratch1);
|
|
__ mdbr(double_scratch2, double_scratch2);
|
|
__ mdbr(result, double_scratch2);
|
|
__ LoadDouble(double_scratch2, ExpConstant(7, temp3));
|
|
__ mdbr(result, double_scratch2);
|
|
__ sdbr(result, double_scratch1);
|
|
__ LoadDouble(double_scratch2, ExpConstant(8, temp3));
|
|
__ adbr(result, double_scratch2);
|
|
__ ShiftRight(temp1, temp2, Operand(11));
|
|
__ AndP(temp2, Operand(0x7ff));
|
|
__ AddP(temp1, Operand(0x3ff));
|
|
|
|
// Must not call ExpConstant() after overwriting temp3!
|
|
__ mov(temp3, Operand(ExternalReference::math_exp_log_table()));
|
|
__ ShiftLeft(temp2, temp2, Operand(3));
|
|
|
|
__ lg(temp2, MemOperand(temp2, temp3));
|
|
__ sllg(temp1, temp1, Operand(52));
|
|
__ ogr(temp2, temp1);
|
|
__ ldgr(double_scratch1, temp2);
|
|
|
|
__ mdbr(result, double_scratch1);
|
|
__ b(&done, Label::kNear);
|
|
|
|
__ bind(&zero);
|
|
__ lzdr(kDoubleRegZero);
|
|
__ ldr(result, kDoubleRegZero);
|
|
__ b(&done, Label::kNear);
|
|
|
|
__ bind(&infinity);
|
|
__ LoadDouble(result, ExpConstant(2, temp3));
|
|
|
|
__ bind(&done);
|
|
}
|
|
|
|
#undef __
|
|
|
|
CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
|
|
USE(isolate);
|
|
DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
|
|
// Since patcher is a large object, allocate it dynamically when needed,
|
|
// to avoid overloading the stack in stress conditions.
|
|
// DONT_FLUSH is used because the CodeAgingHelper is initialized early in
|
|
// the process, before ARM simulator ICache is setup.
|
|
base::SmartPointer<CodePatcher> patcher(
|
|
new CodePatcher(isolate, young_sequence_.start(),
|
|
young_sequence_.length(), CodePatcher::DONT_FLUSH));
|
|
PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
|
|
patcher->masm()->PushStandardFrame(r3);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
bool CodeAgingHelper::IsOld(byte* candidate) const {
|
|
return Assembler::IsNop(Assembler::instr_at(candidate));
|
|
}
|
|
#endif
|
|
|
|
bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
|
|
bool result = isolate->code_aging_helper()->IsYoung(sequence);
|
|
DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
|
|
return result;
|
|
}
|
|
|
|
void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
|
|
MarkingParity* parity) {
|
|
if (IsYoungSequence(isolate, sequence)) {
|
|
*age = kNoAgeCodeAge;
|
|
*parity = NO_MARKING_PARITY;
|
|
} else {
|
|
Code* code = NULL;
|
|
Address target_address =
|
|
Assembler::target_address_at(sequence + kCodeAgingTargetDelta, code);
|
|
Code* stub = GetCodeFromTargetAddress(target_address);
|
|
GetCodeAgeAndParity(stub, age, parity);
|
|
}
|
|
}
|
|
|
|
void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age,
|
|
MarkingParity parity) {
|
|
uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
|
|
if (age == kNoAgeCodeAge) {
|
|
isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
|
|
Assembler::FlushICache(isolate, sequence, young_length);
|
|
} else {
|
|
// FIXED_SEQUENCE
|
|
Code* stub = GetCodeAgeStub(isolate, age, parity);
|
|
CodePatcher patcher(isolate, sequence, young_length);
|
|
intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start());
|
|
// We need to push lr on stack so that GenerateMakeCodeYoungAgainCommon
|
|
// knows where to pick up the return address
|
|
//
|
|
// Since we can no longer guarentee ip will hold the branch address
|
|
// because of BRASL, use Call so that GenerateMakeCodeYoungAgainCommon
|
|
// can calculate the branch address offset
|
|
patcher.masm()->nop(); // marker to detect sequence (see IsOld)
|
|
patcher.masm()->CleanseP(r14);
|
|
patcher.masm()->Push(r14);
|
|
patcher.masm()->mov(r2, Operand(target));
|
|
patcher.masm()->Call(r2);
|
|
for (int i = 0; i < kNoCodeAgeSequenceLength - kCodeAgingSequenceLength;
|
|
i += 2) {
|
|
// TODO(joransiu): Create nop function to pad
|
|
// (kNoCodeAgeSequenceLength - kCodeAgingSequenceLength) bytes.
|
|
patcher.masm()->nop(); // 2-byte nops().
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // V8_TARGET_ARCH_S390
|