v8/test/unittests/wasm/module-decoder-unittest.cc
Andreas Haas 6380476c71 [wasm] Make wasm::ValueType independent of the MachineRepresentation
R=clemensh@chromium.org
CC=​titzer@chromium.org

Change-Id: I4951bf7ffc8baf51225e7bef60349186811b9f76
Reviewed-on: https://chromium-review.googlesource.com/1024037
Commit-Queue: Andreas Haas <ahaas@chromium.org>
Reviewed-by: Clemens Hammacher <clemensh@chromium.org>
Reviewed-by: Ben Titzer <titzer@chromium.org>
Cr-Commit-Position: refs/heads/master@{#53020}
2018-05-07 11:54:56 +00:00

1929 lines
62 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/test-utils.h"
#include "src/handles.h"
#include "src/objects-inl.h"
#include "src/wasm/module-decoder.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-opcodes.h"
#include "test/common/wasm/flag-utils.h"
#include "test/common/wasm/wasm-macro-gen.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace module_decoder_unittest {
#define WASM_INIT_EXPR_I32V_1(val) WASM_I32V_1(val), kExprEnd
#define WASM_INIT_EXPR_I32V_2(val) WASM_I32V_2(val), kExprEnd
#define WASM_INIT_EXPR_I32V_3(val) WASM_I32V_3(val), kExprEnd
#define WASM_INIT_EXPR_I32V_4(val) WASM_I32V_4(val), kExprEnd
#define WASM_INIT_EXPR_I32V_5(val) WASM_I32V_5(val), kExprEnd
#define WASM_INIT_EXPR_F32(val) WASM_F32(val), kExprEnd
#define WASM_INIT_EXPR_I64(val) WASM_I64(val), kExprEnd
#define WASM_INIT_EXPR_F64(val) WASM_F64(val), kExprEnd
#define WASM_INIT_EXPR_ANYREF WASM_REF_NULL, kExprEnd
#define WASM_INIT_EXPR_GLOBAL(index) WASM_GET_GLOBAL(index), kExprEnd
#define SIZEOF_EMPTY_FUNCTION ((size_t)5)
#define EMPTY_BODY 0
#define SIZEOF_EMPTY_BODY ((size_t)1)
#define NOP_BODY 2, 0, kExprNop
#define SIZEOF_NOP_BODY ((size_t)3)
#define SIG_ENTRY_i_i SIG_ENTRY_x_x(kLocalI32, kLocalI32)
#define UNKNOWN_SECTION(size) 0, U32V_1(size + 5), 4, 'l', 'u', 'l', 'z'
#define SECTION(name, size) k##name##SectionCode, U32V_1(size)
#define SIGNATURES_SECTION(count, ...) \
SECTION(Type, 1 + 3 * (count)), U32V_1(count), __VA_ARGS__
#define FUNCTION_SIGNATURES_SECTION(count, ...) \
SECTION(Function, 1 + (count)), U32V_1(count), __VA_ARGS__
#define FOO_STRING 3, 'f', 'o', 'o'
#define NO_LOCAL_NAMES 0
#define EMPTY_SIGNATURES_SECTION SECTION(Type, 1), 0
#define EMPTY_FUNCTION_SIGNATURES_SECTION SECTION(Function, 1), 0
#define EMPTY_FUNCTION_BODIES_SECTION SECTION(Code, 1), 0
#define SECTION_NAMES(size) SECTION(Unknown, size + 5), 4, 'n', 'a', 'm', 'e'
#define SECTION_EXCEPTIONS(size) SECTION(Exception, size)
#define EMPTY_NAMES_SECTION SECTION_NAMES(1), 0
#define FAIL_IF_NO_EXPERIMENTAL_EH(data) \
do { \
ModuleResult result = DecodeModule((data), (data) + sizeof((data))); \
EXPECT_FALSE(result.ok()); \
EXPECT_EQ(0u, result.val->exceptions.size()); \
} while (0)
#define X1(...) __VA_ARGS__
#define X2(...) __VA_ARGS__, __VA_ARGS__
#define X3(...) __VA_ARGS__, __VA_ARGS__, __VA_ARGS__
#define X4(...) __VA_ARGS__, __VA_ARGS__, __VA_ARGS__, __VA_ARGS__
#define ONE_EMPTY_FUNCTION SECTION(Function, 1 + 1 * 1), 1, X1(0)
#define TWO_EMPTY_FUNCTIONS SECTION(Function, 1 + 2 * 1), 2, X2(0)
#define THREE_EMPTY_FUNCTIONS SECTION(Function, 1 + 3 * 1), 3, X3(0)
#define FOUR_EMPTY_FUNCTIONS SECTION(Function, 1 + 4 * 1), 4, X4(0)
#define ONE_EMPTY_BODY \
SECTION(Code, 1 + 1 * (1 + SIZEOF_EMPTY_BODY)) \
, 1, X1(SIZEOF_EMPTY_BODY, EMPTY_BODY)
#define TWO_EMPTY_BODIES \
SECTION(Code, 1 + 2 * (1 + SIZEOF_EMPTY_BODY)) \
, 2, X2(SIZEOF_EMPTY_BODY, EMPTY_BODY)
#define THREE_EMPTY_BODIES \
SECTION(Code, 1 + 3 * (1 + SIZEOF_EMPTY_BODY)) \
, 3, X3(SIZEOF_EMPTY_BODY, EMPTY_BODY)
#define FOUR_EMPTY_BODIES \
SECTION(Code, 1 + 4 * (1 + SIZEOF_EMPTY_BODY)) \
, 4, X4(SIZEOF_EMPTY_BODY, EMPTY_BODY)
#define SIGNATURES_SECTION_VOID_VOID \
SECTION(Type, 1 + SIZEOF_SIG_ENTRY_v_v), 1, SIG_ENTRY_v_v
#define LINEAR_MEMORY_INDEX_0 0
#define EXPECT_VERIFIES(data) \
do { \
ModuleResult result = DecodeModule(data, data + sizeof(data)); \
EXPECT_TRUE(result.ok()); \
} while (false)
#define EXPECT_FAILURE_LEN(data, length) \
do { \
ModuleResult result = DecodeModule(data, data + length); \
EXPECT_FALSE(result.ok()); \
} while (false)
#define EXPECT_FAILURE(data) EXPECT_FAILURE_LEN(data, sizeof(data))
#define EXPECT_OFF_END_FAILURE(data, min, max) \
do { \
for (size_t length = min; length < max; length++) { \
EXPECT_FAILURE_LEN(data, length); \
} \
} while (false)
#define EXPECT_OK(result) \
do { \
EXPECT_TRUE(result.ok()); \
if (!result.ok()) return; \
} while (false)
static size_t SizeOfVarInt(size_t value) {
size_t size = 0;
do {
size++;
value = value >> 7;
} while (value > 0);
return size;
}
struct ValueTypePair {
uint8_t code;
ValueType type;
} kValueTypes[] = {{kLocalI32, kWasmI32},
{kLocalI64, kWasmI64},
{kLocalF32, kWasmF32},
{kLocalF64, kWasmF64},
{kLocalAnyRef, kWasmAnyRef}};
class WasmModuleVerifyTest : public TestWithIsolateAndZone {
public:
ModuleResult DecodeModule(const byte* module_start, const byte* module_end) {
// Add the wasm magic and version number automatically.
size_t size = static_cast<size_t>(module_end - module_start);
byte header[] = {WASM_MODULE_HEADER};
size_t total = sizeof(header) + size;
auto temp = new byte[total];
memcpy(temp, header, sizeof(header));
memcpy(temp + sizeof(header), module_start, size);
ModuleResult result =
SyncDecodeWasmModule(isolate(), temp, temp + total, false, kWasmOrigin);
delete[] temp;
return result;
}
ModuleResult DecodeModuleNoHeader(const byte* module_start,
const byte* module_end) {
return SyncDecodeWasmModule(isolate(), module_start, module_end, false,
kWasmOrigin);
}
};
TEST_F(WasmModuleVerifyTest, WrongMagic) {
for (uint32_t x = 1; x; x <<= 1) {
const byte data[] = {U32_LE(kWasmMagic ^ x), U32_LE(kWasmVersion)};
ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
}
}
TEST_F(WasmModuleVerifyTest, WrongVersion) {
for (uint32_t x = 1; x; x <<= 1) {
const byte data[] = {U32_LE(kWasmMagic), U32_LE(kWasmVersion ^ x)};
ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
}
}
TEST_F(WasmModuleVerifyTest, DecodeEmpty) {
ModuleResult result = DecodeModule(nullptr, 0);
EXPECT_TRUE(result.ok());
}
TEST_F(WasmModuleVerifyTest, OneGlobal) {
static const byte data[] = {
SECTION(Global, 6), // --
1,
kLocalI32, // local type
0, // immutable
WASM_INIT_EXPR_I32V_1(13) // init
};
{
// Should decode to exactly one global.
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.val->globals.size());
EXPECT_EQ(0u, result.val->functions.size());
EXPECT_EQ(0u, result.val->data_segments.size());
const WasmGlobal* global = &result.val->globals.back();
EXPECT_EQ(kWasmI32, global->type);
EXPECT_EQ(0u, global->offset);
EXPECT_FALSE(global->mutability);
EXPECT_EQ(WasmInitExpr::kI32Const, global->init.kind);
EXPECT_EQ(13, global->init.val.i32_const);
}
EXPECT_OFF_END_FAILURE(data, 1, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, AnyRefGlobal) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
static const byte data[] = {
SECTION(Global, 5), // --
1,
kLocalAnyRef, // local type
0, // immutable
WASM_INIT_EXPR_ANYREF // init
};
{
// Should decode to exactly one global.
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.val->globals.size());
EXPECT_EQ(0u, result.val->functions.size());
EXPECT_EQ(0u, result.val->data_segments.size());
const WasmGlobal* global = &result.val->globals.back();
EXPECT_EQ(kWasmAnyRef, global->type);
EXPECT_FALSE(global->mutability);
EXPECT_EQ(WasmInitExpr::kAnyRefConst, global->init.kind);
}
}
TEST_F(WasmModuleVerifyTest, AnyRefGlobalWithGlobalInit) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
static const byte data[] = {
SECTION(Import, 8), // section header
1, // number of imports
NAME_LENGTH(1), // --
'm', // module name
NAME_LENGTH(1), // --
'f', // global name
kExternalGlobal, // import kind
kLocalAnyRef, // type
0, // mutability
SECTION(Global, 6), // --
1,
kLocalAnyRef, // local type
0, // immutable
WASM_INIT_EXPR_GLOBAL(0),
};
{
// Should decode to exactly one global.
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.val->globals.size());
EXPECT_EQ(0u, result.val->functions.size());
EXPECT_EQ(0u, result.val->data_segments.size());
const WasmGlobal* global = &result.val->globals.back();
EXPECT_EQ(kWasmAnyRef, global->type);
EXPECT_FALSE(global->mutability);
EXPECT_EQ(WasmInitExpr::kGlobalIndex, global->init.kind);
}
}
TEST_F(WasmModuleVerifyTest, Global_invalid_type) {
static const byte data[] = {
SECTION(Global, 6), // --
1,
64, // invalid memory type
1, // mutable
WASM_INIT_EXPR_I32V_1(33), // init
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
}
TEST_F(WasmModuleVerifyTest, Global_invalid_type2) {
static const byte data[] = {
SECTION(Global, 6), // --
1,
kLocalVoid, // invalid memory type
1, // mutable
WASM_INIT_EXPR_I32V_1(33), // init
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
}
TEST_F(WasmModuleVerifyTest, ZeroGlobals) {
static const byte data[] = {
SECTION(Global, 1), // --
0, // declare 0 globals
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
}
TEST_F(WasmModuleVerifyTest, ExportMutableGlobal) {
{
static const byte data[] = {
SECTION(Global, 6), // --
1,
kLocalI32, // local type
0, // immutable
WASM_INIT_EXPR_I32V_1(13), // init
SECTION(Export, 8), // --
1, // Export count
4, // name length
'n', // --
'a', // --
'm', // --
'e', // --
kExternalGlobal, // global
0, // global index
};
EXPECT_VERIFIES(data);
}
{
static const byte data[] = {
SECTION(Global, 6), // --
1, // --
kLocalI32, // local type
1, // mutable
WASM_INIT_EXPR_I32V_1(13), // init
SECTION(Export, 8), // --
1, // Export count
4, // name length
'n', // --
'a', // --
'm', // --
'e', // --
kExternalGlobal, // global
0, // global index
};
EXPECT_FAILURE(data);
}
}
static void AppendUint32v(std::vector<byte>& buffer, uint32_t val) {
while (true) {
uint32_t next = val >> 7;
uint32_t out = val & 0x7F;
if (next) {
buffer.push_back(static_cast<byte>(0x80 | out));
val = next;
} else {
buffer.push_back(static_cast<byte>(out));
break;
}
}
}
TEST_F(WasmModuleVerifyTest, NGlobals) {
static const byte data[] = {
kLocalF32, // memory type
0, // immutable
WASM_INIT_EXPR_F32(7.7), // init
};
for (uint32_t i = 0; i < kV8MaxWasmGlobals; i = i * 13 + 1) {
std::vector<byte> buffer;
size_t size = SizeOfVarInt(i) + i * sizeof(data);
const byte globals[] = {kGlobalSectionCode, U32V_5(size)};
for (size_t g = 0; g != sizeof(globals); ++g) {
buffer.push_back(globals[g]);
}
AppendUint32v(buffer, i); // Number of globals.
for (uint32_t j = 0; j < i; j++) {
buffer.insert(buffer.end(), data, data + sizeof(data));
}
ModuleResult result = DecodeModule(&buffer[0], &buffer[0] + buffer.size());
EXPECT_OK(result);
}
}
TEST_F(WasmModuleVerifyTest, GlobalWithInvalidMemoryType) {
static const byte data[] = {SECTION(Global, 7),
33, // memory type
0, // exported
WASM_INIT_EXPR_I32V_1(1)};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, TwoGlobals) {
static const byte data[] = {
SECTION(Global, 21),
2,
kLocalF32, // type
0, // immutable
WASM_INIT_EXPR_F32(22.0),
kLocalF64, // type
1, // mutable
WASM_INIT_EXPR_F64(23.0),
};
{
// Should decode to exactly two globals.
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.val->globals.size());
EXPECT_EQ(0u, result.val->functions.size());
EXPECT_EQ(0u, result.val->data_segments.size());
const WasmGlobal* g0 = &result.val->globals[0];
EXPECT_EQ(kWasmF32, g0->type);
EXPECT_EQ(0u, g0->offset);
EXPECT_FALSE(g0->mutability);
EXPECT_EQ(WasmInitExpr::kF32Const, g0->init.kind);
const WasmGlobal* g1 = &result.val->globals[1];
EXPECT_EQ(kWasmF64, g1->type);
EXPECT_EQ(8u, g1->offset);
EXPECT_TRUE(g1->mutability);
EXPECT_EQ(WasmInitExpr::kF64Const, g1->init.kind);
}
EXPECT_OFF_END_FAILURE(data, 1, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, ZeroExceptions) {
static const byte data[] = {
SECTION_EXCEPTIONS(1), 0,
};
FAIL_IF_NO_EXPERIMENTAL_EH(data);
EXPERIMENTAL_FLAG_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(0u, result.val->exceptions.size());
}
TEST_F(WasmModuleVerifyTest, OneI32Exception) {
static const byte data[] = {
SECTION_EXCEPTIONS(3), 1,
// except[0] (i32)
1, kLocalI32,
};
FAIL_IF_NO_EXPERIMENTAL_EH(data);
EXPERIMENTAL_FLAG_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.val->exceptions.size());
const WasmException& e0 = result.val->exceptions.front();
EXPECT_EQ(1u, e0.sig->parameter_count());
EXPECT_EQ(kWasmI32, e0.sig->GetParam(0));
}
TEST_F(WasmModuleVerifyTest, TwoExceptions) {
static const byte data[] = {SECTION_EXCEPTIONS(6), 2,
// except[0] (f32, i64)
2, kLocalF32, kLocalI64,
// except[1] (i32)
1, kLocalI32};
FAIL_IF_NO_EXPERIMENTAL_EH(data);
EXPERIMENTAL_FLAG_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.val->exceptions.size());
const WasmException& e0 = result.val->exceptions.front();
EXPECT_EQ(2u, e0.sig->parameter_count());
EXPECT_EQ(kWasmF32, e0.sig->GetParam(0));
EXPECT_EQ(kWasmI64, e0.sig->GetParam(1));
const WasmException& e1 = result.val->exceptions.back();
EXPECT_EQ(kWasmI32, e1.sig->GetParam(0));
}
TEST_F(WasmModuleVerifyTest, Exception_invalid_type) {
static const byte data[] = {SECTION_EXCEPTIONS(3), 1,
// except[0] (?)
1, 64};
FAIL_IF_NO_EXPERIMENTAL_EH(data);
// Should fail decoding exception section.
EXPERIMENTAL_FLAG_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
}
TEST_F(WasmModuleVerifyTest, OneSignature) {
{
static const byte data[] = {SIGNATURES_SECTION_VOID_VOID};
EXPECT_VERIFIES(data);
}
{
static const byte data[] = {SECTION(Type, 1 + SIZEOF_SIG_ENTRY_x_x), 1,
SIG_ENTRY_i_i};
EXPECT_VERIFIES(data);
}
}
TEST_F(WasmModuleVerifyTest, MultipleSignatures) {
static const byte data[] = {
SECTION(Type, 1 + SIZEOF_SIG_ENTRY_v_v + SIZEOF_SIG_ENTRY_x_x +
SIZEOF_SIG_ENTRY_x_xx), // --
3, // --
SIG_ENTRY_v_v, // void -> void
SIG_ENTRY_x_x(kLocalI32, kLocalF32), // f32 -> i32
SIG_ENTRY_x_xx(kLocalI32, kLocalF64, kLocalF64), // f64,f64 -> i32
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(3u, result.val->signatures.size());
if (result.val->signatures.size() == 3) {
EXPECT_EQ(0u, result.val->signatures[0]->return_count());
EXPECT_EQ(1u, result.val->signatures[1]->return_count());
EXPECT_EQ(1u, result.val->signatures[2]->return_count());
EXPECT_EQ(0u, result.val->signatures[0]->parameter_count());
EXPECT_EQ(1u, result.val->signatures[1]->parameter_count());
EXPECT_EQ(2u, result.val->signatures[2]->parameter_count());
}
EXPECT_OFF_END_FAILURE(data, 1, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, DataSegmentWithImmutableImportedGlobal) {
// Import 2 globals so that we can initialize data with a global index != 0.
const byte data[] = {
SECTION(Import, 15), // section header
2, // number of imports
NAME_LENGTH(1), // --
'm', // module name
NAME_LENGTH(1), // --
'f', // global name
kExternalGlobal, // import kind
kLocalI32, // type
0, // mutability
NAME_LENGTH(1), // --
'n', // module name
NAME_LENGTH(1), // --
'g', // global name
kExternalGlobal, // import kind
kLocalI32, // type
0, // mutability
SECTION(Memory, 4),
ENTRY_COUNT(1),
kHasMaximumFlag,
28,
28,
SECTION(Data, 9),
ENTRY_COUNT(1),
LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_GLOBAL(1), // dest addr
U32V_1(3), // source size
'a',
'b',
'c' // data bytes
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
WasmInitExpr expr = result.val->data_segments.back().dest_addr;
EXPECT_EQ(WasmInitExpr::kGlobalIndex, expr.kind);
EXPECT_EQ(1u, expr.val.global_index);
}
TEST_F(WasmModuleVerifyTest, DataSegmentWithMutableImportedGlobal) {
// Only an immutable imported global can be used as an init_expr.
const byte data[] = {
SECTION(Import, 8), // section header
1, // number of imports
NAME_LENGTH(1), // --
'm', // module name
NAME_LENGTH(1), // --
'f', // global name
kExternalGlobal, // import kind
kLocalI32, // type
1, // mutability
SECTION(Memory, 4),
ENTRY_COUNT(1),
kHasMaximumFlag,
28,
28,
SECTION(Data, 9),
ENTRY_COUNT(1),
LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_GLOBAL(0), // dest addr
U32V_1(3), // source size
'a',
'b',
'c' // data bytes
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, DataSegmentWithImmutableGlobal) {
// Only an immutable imported global can be used as an init_expr.
const byte data[] = {
SECTION(Memory, 4),
ENTRY_COUNT(1),
kHasMaximumFlag,
28,
28,
SECTION(Global, 8), // --
1,
kLocalI32, // local type
0, // immutable
WASM_INIT_EXPR_I32V_3(0x9BBAA), // init
SECTION(Data, 9),
ENTRY_COUNT(1),
LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_GLOBAL(0), // dest addr
U32V_1(3), // source size
'a',
'b',
'c' // data bytes
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, OneDataSegment) {
const byte kDataSegmentSourceOffset = 24;
const byte data[] = {
SECTION(Memory, 4),
ENTRY_COUNT(1),
kHasMaximumFlag,
28,
28,
SECTION(Data, 11),
ENTRY_COUNT(1),
LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_I32V_3(0x9BBAA), // dest addr
U32V_1(3), // source size
'a',
'b',
'c' // data bytes
};
{
EXPECT_VERIFIES(data);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(0u, result.val->globals.size());
EXPECT_EQ(0u, result.val->functions.size());
EXPECT_EQ(1u, result.val->data_segments.size());
const WasmDataSegment* segment = &result.val->data_segments.back();
EXPECT_EQ(WasmInitExpr::kI32Const, segment->dest_addr.kind);
EXPECT_EQ(0x9BBAA, segment->dest_addr.val.i32_const);
EXPECT_EQ(kDataSegmentSourceOffset, segment->source.offset());
EXPECT_EQ(3u, segment->source.length());
}
EXPECT_OFF_END_FAILURE(data, 14, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, TwoDataSegments) {
const byte kDataSegment0SourceOffset = 24;
const byte kDataSegment1SourceOffset = kDataSegment0SourceOffset + 11;
const byte data[] = {
SECTION(Memory, 4),
ENTRY_COUNT(1),
kHasMaximumFlag,
28,
28,
SECTION(Data, 29),
ENTRY_COUNT(2), // segment count
LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_I32V_3(0x7FFEE), // #0: dest addr
U32V_1(4), // source size
1,
2,
3,
4, // data bytes
LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_I32V_3(0x6DDCC), // #1: dest addr
U32V_1(10), // source size
1,
2,
3,
4,
5,
6,
7,
8,
9,
10 // data bytes
};
{
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(0u, result.val->globals.size());
EXPECT_EQ(0u, result.val->functions.size());
EXPECT_EQ(2u, result.val->data_segments.size());
const WasmDataSegment* s0 = &result.val->data_segments[0];
const WasmDataSegment* s1 = &result.val->data_segments[1];
EXPECT_EQ(WasmInitExpr::kI32Const, s0->dest_addr.kind);
EXPECT_EQ(0x7FFEE, s0->dest_addr.val.i32_const);
EXPECT_EQ(kDataSegment0SourceOffset, s0->source.offset());
EXPECT_EQ(4u, s0->source.length());
EXPECT_EQ(WasmInitExpr::kI32Const, s1->dest_addr.kind);
EXPECT_EQ(0x6DDCC, s1->dest_addr.val.i32_const);
EXPECT_EQ(kDataSegment1SourceOffset, s1->source.offset());
EXPECT_EQ(10u, s1->source.length());
}
EXPECT_OFF_END_FAILURE(data, 14, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, DataWithoutMemory) {
const byte data[] = {
SECTION(Data, 11),
ENTRY_COUNT(1),
LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_I32V_3(0x9BBAA), // dest addr
U32V_1(3), // source size
'a',
'b',
'c' // data bytes
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, MaxMaximumMemorySize) {
{
const byte data[] = {
SECTION(Memory, 6), ENTRY_COUNT(1), kHasMaximumFlag, 0, U32V_3(65536),
};
EXPECT_VERIFIES(data);
}
{
const byte data[] = {
SECTION(Memory, 6), ENTRY_COUNT(1), kHasMaximumFlag, 0, U32V_3(65537),
};
EXPECT_FAILURE(data);
}
}
TEST_F(WasmModuleVerifyTest, DataSegment_wrong_init_type) {
const byte data[] = {
SECTION(Memory, 4),
ENTRY_COUNT(1),
kHasMaximumFlag,
28,
28,
SECTION(Data, 11),
ENTRY_COUNT(1),
LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_F64(9.9), // dest addr
U32V_1(3), // source size
'a',
'b',
'c' // data bytes
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, DataSegmentEndOverflow) {
const byte data[] = {
SECTION(Memory, 4), // memory section
ENTRY_COUNT(1), kHasMaximumFlag, 28, 28,
SECTION(Data, 10), // data section
ENTRY_COUNT(1), // one entry
LINEAR_MEMORY_INDEX_0, // mem index
WASM_INIT_EXPR_I32V_1(0), // offset
U32V_5(0xFFFFFFFF) // size
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, OneIndirectFunction) {
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
SIGNATURES_SECTION_VOID_VOID,
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION,
// table declaration ---------------------------------------------------
SECTION(Table, 4), ENTRY_COUNT(1), kWasmAnyFunctionTypeCode, 0, 1};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
if (result.ok()) {
EXPECT_EQ(1u, result.val->signatures.size());
EXPECT_EQ(1u, result.val->functions.size());
EXPECT_EQ(1u, result.val->function_tables.size());
EXPECT_EQ(1u, result.val->function_tables[0].initial_size);
}
}
TEST_F(WasmModuleVerifyTest, ElementSectionWithInternalTable) {
static const byte data[] = {
// table ---------------------------------------------------------------
SECTION(Table, 4), ENTRY_COUNT(1), kWasmAnyFunctionTypeCode, 0, 1,
// elements ------------------------------------------------------------
SECTION(Element, 1),
0 // entry count
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ElementSectionWithImportedTable) {
static const byte data[] = {
// imports -------------------------------------------------------------
SECTION(Import, 9), ENTRY_COUNT(1),
NAME_LENGTH(1), // --
'm', // module name
NAME_LENGTH(1), // --
't', // table name
kExternalTable, // import kind
kWasmAnyFunctionTypeCode, // elem_type
0, // no maximum field
1, // initial size
// elements ------------------------------------------------------------
SECTION(Element, 1),
0 // entry count
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ElementSectionWithoutTable) {
// Test that an element section without a table causes a validation error.
static const byte data[] = {
// elements ------------------------------------------------------------
SECTION(Element, 4),
1, // entry count
0, // table index
0, // offset
0 // number of elements
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, Regression_735887) {
// Test with an invalid function index in the element section.
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
SIGNATURES_SECTION_VOID_VOID,
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION,
// table declaration ---------------------------------------------------
SECTION(Table, 4), ENTRY_COUNT(1), kWasmAnyFunctionTypeCode, 0, 1,
// elements ------------------------------------------------------------
SECTION(Element, 7),
1, // entry count
TABLE_INDEX(0), WASM_INIT_EXPR_I32V_1(0),
1, // elements count
0x9A // invalid I32V as function index
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, OneIndirectFunction_one_entry) {
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
SIGNATURES_SECTION_VOID_VOID,
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION,
// table declaration ---------------------------------------------------
SECTION(Table, 4), ENTRY_COUNT(1), kWasmAnyFunctionTypeCode, 0, 1,
// elements ------------------------------------------------------------
SECTION(Element, 7),
1, // entry count
TABLE_INDEX(0), WASM_INIT_EXPR_I32V_1(0),
1, // elements count
FUNC_INDEX(0)};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
if (result.ok()) {
EXPECT_EQ(1u, result.val->signatures.size());
EXPECT_EQ(1u, result.val->functions.size());
EXPECT_EQ(1u, result.val->function_tables.size());
EXPECT_EQ(1u, result.val->function_tables[0].initial_size);
}
}
TEST_F(WasmModuleVerifyTest, MultipleIndirectFunctions) {
static const byte data[] = {
// sig#0 -------------------------------------------------------
SECTION(Type, 1 + SIZEOF_SIG_ENTRY_v_v + SIZEOF_SIG_ENTRY_v_x),
2, // --
SIG_ENTRY_v_v, // void -> void
SIG_ENTRY_v_x(kLocalI32), // void -> i32
// funcs ------------------------------------------------------
FOUR_EMPTY_FUNCTIONS,
// table declaration -------------------------------------------
SECTION(Table, 4), ENTRY_COUNT(1), kWasmAnyFunctionTypeCode, 0, 8,
// table elements ----------------------------------------------
SECTION(Element, 14),
1, // entry count
TABLE_INDEX(0), WASM_INIT_EXPR_I32V_1(0),
8, // elements count
FUNC_INDEX(0), // --
FUNC_INDEX(1), // --
FUNC_INDEX(2), // --
FUNC_INDEX(3), // --
FUNC_INDEX(0), // --
FUNC_INDEX(1), // --
FUNC_INDEX(2), // --
FUNC_INDEX(3), // --
FOUR_EMPTY_BODIES};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
if (result.ok()) {
EXPECT_EQ(2u, result.val->signatures.size());
EXPECT_EQ(4u, result.val->functions.size());
EXPECT_EQ(1u, result.val->function_tables.size());
EXPECT_EQ(8u, result.val->function_tables[0].initial_size);
}
}
TEST_F(WasmModuleVerifyTest, IndirectFunctionNoFunctions) {
static const byte data[] = {
// sig#0 -------------------------------------------------------
SIGNATURES_SECTION_VOID_VOID,
// indirect table ----------------------------------------------
SECTION(Table, 4), ENTRY_COUNT(1), 1, 0, 0,
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, IndirectFunctionInvalidIndex) {
static const byte data[] = {
// sig#0 -------------------------------------------------------
SIGNATURES_SECTION_VOID_VOID,
// functions ---------------------------------------------------
ONE_EMPTY_FUNCTION,
// indirect table ----------------------------------------------
SECTION(Table, 4), ENTRY_COUNT(1), 1, 1, 0,
};
EXPECT_FAILURE(data);
}
class WasmSignatureDecodeTest : public TestWithZone {
public:
WasmSignatureDecodeTest()
// In the following tests we turn on support for AnyRef by default. There
// is a test (Fail_anyref_without_flag) which explicitly turns off support
// for AnyRef.
: flag_scope(&FLAG_experimental_wasm_anyref, true) {}
private:
FlagScope<bool> flag_scope;
};
TEST_F(WasmSignatureDecodeTest, Ok_v_v) {
static const byte data[] = {SIG_ENTRY_v_v};
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
FunctionSig* sig =
DecodeWasmSignatureForTesting(&zone, data, data + sizeof(data));
EXPECT_TRUE(sig != nullptr);
EXPECT_EQ(0u, sig->parameter_count());
EXPECT_EQ(0u, sig->return_count());
}
TEST_F(WasmSignatureDecodeTest, Ok_t_v) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueTypePair ret_type = kValueTypes[i];
const byte data[] = {SIG_ENTRY_x(ret_type.code)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_TRUE(sig != nullptr);
EXPECT_EQ(0u, sig->parameter_count());
EXPECT_EQ(1u, sig->return_count());
EXPECT_EQ(ret_type.type, sig->GetReturn());
}
}
TEST_F(WasmSignatureDecodeTest, Ok_v_t) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueTypePair param_type = kValueTypes[i];
const byte data[] = {SIG_ENTRY_v_x(param_type.code)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_TRUE(sig != nullptr);
EXPECT_EQ(1u, sig->parameter_count());
EXPECT_EQ(0u, sig->return_count());
EXPECT_EQ(param_type.type, sig->GetParam(0));
}
}
TEST_F(WasmSignatureDecodeTest, Ok_t_t) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueTypePair ret_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueTypePair param_type = kValueTypes[j];
const byte data[] = {SIG_ENTRY_x_x(ret_type.code, param_type.code)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_TRUE(sig != nullptr);
EXPECT_EQ(1u, sig->parameter_count());
EXPECT_EQ(1u, sig->return_count());
EXPECT_EQ(param_type.type, sig->GetParam(0));
EXPECT_EQ(ret_type.type, sig->GetReturn());
}
}
}
TEST_F(WasmSignatureDecodeTest, Ok_i_tt) {
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueTypePair p0_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueTypePair p1_type = kValueTypes[j];
const byte data[] = {
SIG_ENTRY_x_xx(kLocalI32, p0_type.code, p1_type.code)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_TRUE(sig != nullptr);
EXPECT_EQ(2u, sig->parameter_count());
EXPECT_EQ(1u, sig->return_count());
EXPECT_EQ(p0_type.type, sig->GetParam(0));
EXPECT_EQ(p1_type.type, sig->GetParam(1));
}
}
}
TEST_F(WasmSignatureDecodeTest, TooManyParams) {
static const byte data[] = {kWasmFunctionTypeCode,
WASM_I32V_3(kV8MaxWasmFunctionParams + 1),
kLocalI32, 0};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_FALSE(sig != nullptr);
}
TEST_F(WasmSignatureDecodeTest, TooManyReturns) {
for (int i = 0; i < 2; i++) {
FlagScope<bool> flag_scope(&FLAG_experimental_wasm_mv, i != 0);
const int max_return_count = static_cast<int>(
FLAG_experimental_wasm_mv ? kV8MaxWasmFunctionMultiReturns
: kV8MaxWasmFunctionReturns);
byte data[] = {kWasmFunctionTypeCode, 0, WASM_I32V_3(max_return_count + 1),
kLocalI32};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_EQ(nullptr, sig);
}
}
TEST_F(WasmSignatureDecodeTest, Fail_off_end) {
byte data[256];
for (int p = 0; p <= 255; p = p + 1 + p * 3) {
for (int i = 0; i <= p; i++) data[i] = kLocalI32;
data[0] = static_cast<byte>(p);
for (int i = 0; i < p + 1; i++) {
// Should fall off the end for all signatures.
FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + i);
EXPECT_EQ(nullptr, sig);
}
}
}
TEST_F(WasmSignatureDecodeTest, Fail_anyref_without_flag) {
// Disable AnyRef support and check that decoding fails.
FlagScope<bool> flag_scope(&FLAG_experimental_wasm_anyref, false);
byte kInvalidType = kLocalAnyRef;
for (size_t i = 0; i < SIZEOF_SIG_ENTRY_x_xx; i++) {
byte data[] = {SIG_ENTRY_x_xx(kLocalI32, kLocalI32, kLocalI32)};
data[i] = kInvalidType;
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_EQ(nullptr, sig);
}
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_type) {
byte kInvalidType = 76;
for (size_t i = 0; i < SIZEOF_SIG_ENTRY_x_xx; i++) {
byte data[] = {SIG_ENTRY_x_xx(kLocalI32, kLocalI32, kLocalI32)};
data[i] = kInvalidType;
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_EQ(nullptr, sig);
}
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_ret_type1) {
static const byte data[] = {SIG_ENTRY_x_x(kLocalVoid, kLocalI32)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_EQ(nullptr, sig);
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_param_type1) {
static const byte data[] = {SIG_ENTRY_x_x(kLocalI32, kLocalVoid)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_EQ(nullptr, sig);
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_param_type2) {
static const byte data[] = {SIG_ENTRY_x_xx(kLocalI32, kLocalI32, kLocalVoid)};
FunctionSig* sig =
DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data));
EXPECT_EQ(nullptr, sig);
}
class WasmFunctionVerifyTest : public TestWithIsolateAndZone {
public:
WasmFunctionVerifyTest() {}
virtual ~WasmFunctionVerifyTest() {}
WasmModule module;
Vector<const byte> bytes;
DISALLOW_COPY_AND_ASSIGN(WasmFunctionVerifyTest);
};
TEST_F(WasmFunctionVerifyTest, Ok_v_v_empty) {
static const byte data[] = {
SIG_ENTRY_v_v, // signature entry
4, // locals
3,
kLocalI32, // --
4,
kLocalI64, // --
5,
kLocalF32, // --
6,
kLocalF64, // --
kExprEnd // body
};
FunctionResult result = SyncDecodeWasmFunction(
isolate(), zone(), bytes, &module, data, data + sizeof(data));
EXPECT_OK(result);
if (result.val && result.ok()) {
WasmFunction* function = result.val.get();
EXPECT_EQ(0u, function->sig->parameter_count());
EXPECT_EQ(0u, function->sig->return_count());
EXPECT_EQ(static_cast<uint32_t>(SIZEOF_SIG_ENTRY_v_v),
function->code.offset());
EXPECT_EQ(sizeof(data), function->code.end_offset());
// TODO(titzer): verify encoding of local declarations
}
}
TEST_F(WasmModuleVerifyTest, SectionWithoutNameLength) {
const byte data[] = {1};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, TheLoneliestOfValidModulesTheTrulyEmptyOne) {
const byte data[] = {
0, // unknown section code.
0, // Empty section name.
// No section name, no content, nothing but sadness.
0, // No section content.
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, OnlyUnknownSectionEmpty) {
const byte data[] = {
UNKNOWN_SECTION(0),
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, OnlyUnknownSectionNonEmpty) {
const byte data[] = {
UNKNOWN_SECTION(5),
0xFF,
0xFF,
0xFF,
0xFF,
0xFF, // section data
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, SignatureFollowedByEmptyUnknownSection) {
const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
// -----------------------------------------------------------
UNKNOWN_SECTION(0)};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, SignatureFollowedByUnknownSection) {
const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
// -----------------------------------------------------------
UNKNOWN_SECTION(5), 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, UnknownSectionOverflow) {
static const byte data[] = {
UNKNOWN_SECTION(9),
1,
2,
3,
4,
5,
6,
7,
8,
9,
10, // 10 byte section
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, UnknownSectionUnderflow) {
static const byte data[] = {
UNKNOWN_SECTION(333),
1,
2,
3,
4, // 4 byte section
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, UnknownSectionSkipped) {
static const byte data[] = {
UNKNOWN_SECTION(1),
0, // one byte section
SECTION(Global, 6),
1,
kLocalI32, // memory type
0, // exported
WASM_INIT_EXPR_I32V_1(33), // init
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.val->globals.size());
EXPECT_EQ(0u, result.val->functions.size());
EXPECT_EQ(0u, result.val->data_segments.size());
const WasmGlobal* global = &result.val->globals.back();
EXPECT_EQ(kWasmI32, global->type);
EXPECT_EQ(0u, global->offset);
}
TEST_F(WasmModuleVerifyTest, ImportTable_empty) {
static const byte data[] = {SECTION(Type, 1), 0, SECTION(Import, 1), 0};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_nosigs1) {
static const byte data[] = {SECTION(Import, 1), 0};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_mutable_global) {
{
static const byte data[] = {
SECTION(Import, 8), // section header
1, // number of imports
NAME_LENGTH(1), // --
'm', // module name
NAME_LENGTH(1), // --
'f', // global name
kExternalGlobal, // import kind
kLocalI32, // type
0, // mutability
};
EXPECT_VERIFIES(data);
}
{
static const byte data[] = {
SECTION(Import, 8), // section header
1, // sig table
NAME_LENGTH(1), // --
'm', // module name
NAME_LENGTH(1), // --
'f', // global name
kExternalGlobal, // import kind
kLocalI32, // type
1, // mutability
};
EXPECT_FAILURE(data);
}
}
TEST_F(WasmModuleVerifyTest, ImportTable_mutability_malformed) {
static const byte data[] = {
SECTION(Import, 8),
1, // --
NAME_LENGTH(1), // --
'm', // module name
NAME_LENGTH(1), // --
'g', // global name
kExternalGlobal, // import kind
kLocalI32, // type
2, // invalid mutability
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_nosigs2) {
static const byte data[] = {
SECTION(Import, 6), 1, // sig table
NAME_LENGTH(1), 'm', // module name
NAME_LENGTH(1), 'f', // function name
kExternalFunction, // import kind
IMPORT_SIG_INDEX(0), // sig index
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_invalid_sig) {
static const byte data[] = {
SECTION(Type, 1), 0, // --
SECTION(Import, 6), 1, // --
NAME_LENGTH(1), 'm', // module name
NAME_LENGTH(1), 'f', // function name
kExternalFunction, // import kind
IMPORT_SIG_INDEX(0), // sig index
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_one_sig) {
static const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
SECTION(Import, 7),
1, // --
NAME_LENGTH(1),
'm', // module name
NAME_LENGTH(1),
'f', // function name
kExternalFunction, // import kind
IMPORT_SIG_INDEX(0), // sig index
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_invalid_module) {
static const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID, // --
SECTION(Import, 7), // --
1, // --
NO_NAME, // module name
NAME_LENGTH(1), // --
'f', // function name
kExternalFunction, // import kind
IMPORT_SIG_INDEX(0), // sig index
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_off_end) {
static const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
SECTION(Import, 6),
1,
NAME_LENGTH(1),
'm', // module name
NAME_LENGTH(1),
'f', // function name
kExternalFunction, // import kind
IMPORT_SIG_INDEX(0), // sig index
};
EXPECT_OFF_END_FAILURE(data, 16, sizeof(data));
}
TEST_F(WasmModuleVerifyTest, ExportTable_empty1) {
static const byte data[] = { // signatures
SIGNATURES_SECTION_VOID_VOID, // --
ONE_EMPTY_FUNCTION, SECTION(Export, 1), // --
0, // --
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.val->functions.size());
EXPECT_EQ(0u, result.val->export_table.size());
}
TEST_F(WasmModuleVerifyTest, ExportTable_empty2) {
static const byte data[] = {
SECTION(Type, 1), 0, SECTION(Export, 1), 0 // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ExportTable_NoFunctions2) {
static const byte data[] = {SECTION(Export, 1), 0};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ExportTableOne) {
static const byte data[] = {// signatures
SIGNATURES_SECTION_VOID_VOID,
ONE_EMPTY_FUNCTION,
SECTION(Export, 4),
1, // exports
NO_NAME, // --
kExternalFunction, // --
FUNC_INDEX(0), // --
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.val->functions.size());
EXPECT_EQ(1u, result.val->export_table.size());
}
TEST_F(WasmModuleVerifyTest, ExportNameWithInvalidStringLength) {
static const byte data[] = {// signatures
SIGNATURES_SECTION_VOID_VOID,
ONE_EMPTY_FUNCTION,
SECTION(Export, 12),
1, // exports
NAME_LENGTH(84), // invalid string length
'e', // --
kExternalFunction, // --
FUNC_INDEX(0)};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ExportTableTwo) {
static const byte data[] = {// signatures
SIGNATURES_SECTION_VOID_VOID,
ONE_EMPTY_FUNCTION,
SECTION(Export, 14),
2, // exports
NAME_LENGTH(4),
'n',
'a',
'm',
'e', // --
kExternalFunction,
FUNC_INDEX(0), // --
NAME_LENGTH(3),
'n',
'o',
'm', // --
kExternalFunction, // --
FUNC_INDEX(0), // --
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.val->functions.size());
EXPECT_EQ(2u, result.val->export_table.size());
}
TEST_F(WasmModuleVerifyTest, ExportTableThree) {
static const byte data[] = {// signatures
SIGNATURES_SECTION_VOID_VOID,
THREE_EMPTY_FUNCTIONS,
SECTION(Export, 13),
3, // exports
NAME_LENGTH(1),
'a', // --
kExternalFunction,
FUNC_INDEX(0), // --
NAME_LENGTH(1),
'b', // --
kExternalFunction,
FUNC_INDEX(1), // --
NAME_LENGTH(1),
'c', // --
kExternalFunction,
FUNC_INDEX(2), // --
THREE_EMPTY_BODIES};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(3u, result.val->functions.size());
EXPECT_EQ(3u, result.val->export_table.size());
}
TEST_F(WasmModuleVerifyTest, ExportTableThreeOne) {
for (int i = 0; i < 6; i++) {
const byte data[] = {// signatures
SIGNATURES_SECTION_VOID_VOID,
THREE_EMPTY_FUNCTIONS,
SECTION(Export, 6),
1, // exports
NAME_LENGTH(2),
'e',
'x', // --
kExternalFunction,
FUNC_INDEX(i), // --
THREE_EMPTY_BODIES};
if (i < 3) {
EXPECT_VERIFIES(data);
} else {
EXPECT_FAILURE(data);
}
}
}
TEST_F(WasmModuleVerifyTest, ExportTableOne_off_end) {
static const byte data[] = {
// signatures
SIGNATURES_SECTION_VOID_VOID,
ONE_EMPTY_FUNCTION,
SECTION(Export, 1 + 6),
1, // exports
NO_NAME, // --
kExternalFunction,
FUNC_INDEX(0), // --
};
for (size_t length = 33; length < sizeof(data); length++) {
ModuleResult result = DecodeModule(data, data + length);
EXPECT_FALSE(result.ok());
}
}
TEST_F(WasmModuleVerifyTest, FunctionSignatures_empty) {
static const byte data[] = {
SECTION(Type, 1), 0, // --
SECTION(Function, 1), 0 // --
}; // --
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionSignatures_one) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0) // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Regression_648070) {
static const byte data[] = {
SECTION(Type, 1), 0, // --
SECTION(Function, 5), // --
U32V_5(3500228624) // function count = 3500228624
}; // --
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, Regression_738097) {
// The function body size caused an integer overflow in the module decoder.
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0), // --
SECTION(Code, 1 + 5 + 1), // --
1, // --
U32V_5(0xFFFFFFFF), // function size,
0 // No real body
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodySizeLimit) {
const uint32_t delta = 3;
for (uint32_t body_size = kV8MaxWasmFunctionSize - delta;
body_size < kV8MaxWasmFunctionSize + delta; body_size++) {
byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0), // --
kCodeSectionCode, // code section
U32V_5(1 + body_size + 5), // section size
1, // # functions
U32V_5(body_size) // body size
};
size_t total = sizeof(data) + body_size;
byte* buffer = reinterpret_cast<byte*>(calloc(1, total));
memcpy(buffer, data, sizeof(data));
ModuleResult result = DecodeModule(buffer, buffer + total);
if (body_size <= kV8MaxWasmFunctionSize) {
EXPECT_TRUE(result.ok());
} else {
EXPECT_FALSE(result.ok());
}
free(buffer);
}
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_empty) {
static const byte data[] = {
EMPTY_SIGNATURES_SECTION, // --
EMPTY_FUNCTION_SIGNATURES_SECTION, // --
EMPTY_FUNCTION_BODIES_SECTION // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_one_empty) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0), // --
SECTION(Code, 1 + SIZEOF_EMPTY_BODY), 1, EMPTY_BODY // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_one_nop) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0), // --
SECTION(Code, 1 + SIZEOF_NOP_BODY), 1, NOP_BODY // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_count_mismatch1) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(2, 0, 0), // --
SECTION(Code, 1 + SIZEOF_EMPTY_BODY), 1, // --
EMPTY_BODY // --
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_count_mismatch2) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0), // --
SECTION(Code, 1 + 2 * SIZEOF_NOP_BODY), // --
ENTRY_COUNT(2), // --
NOP_BODY, // --
NOP_BODY // --
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, Names_empty) {
static const byte data[] = {
EMPTY_SIGNATURES_SECTION, EMPTY_FUNCTION_SIGNATURES_SECTION,
EMPTY_FUNCTION_BODIES_SECTION, EMPTY_NAMES_SECTION};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Names_one_empty) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(1, 0), // --
SECTION(Code, 1 + SIZEOF_EMPTY_BODY),
ENTRY_COUNT(1),
EMPTY_BODY, // --
SECTION_NAMES(1 + 5),
ENTRY_COUNT(1),
FOO_STRING,
NO_LOCAL_NAMES // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Names_two_empty) {
static const byte data[] = {
SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SIGNATURES_SECTION(2, 0, 0), // --
SECTION(Code, 1 + 2 * SIZEOF_EMPTY_BODY), // --
ENTRY_COUNT(2),
EMPTY_BODY,
EMPTY_BODY, // --
SECTION_NAMES(1 + 10),
ENTRY_COUNT(2), // --
FOO_STRING,
NO_LOCAL_NAMES, // --
FOO_STRING,
NO_LOCAL_NAMES, // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Regression684855) {
static const byte data[] = {
SECTION_NAMES(12),
0xFB, // functions count
0x27, // |
0x00, // function name length
0xFF, // local names count
0xFF, // |
0xFF, // |
0xFF, // |
0xFF, // |
0xFF, // error: "varint too large"
0xFF, // |
0x00, // --
0x00 // --
};
EXPECT_VERIFIES(data);
}
#define EXPECT_INIT_EXPR(Type, type, value, ...) \
{ \
static const byte data[] = {__VA_ARGS__, kExprEnd}; \
WasmInitExpr expr = \
DecodeWasmInitExprForTesting(data, data + sizeof(data)); \
EXPECT_EQ(WasmInitExpr::k##Type##Const, expr.kind); \
EXPECT_EQ(value, expr.val.type##_const); \
}
TEST_F(WasmModuleVerifyTest, InitExpr_i32) {
EXPECT_INIT_EXPR(I32, i32, 33, WASM_I32V_1(33));
EXPECT_INIT_EXPR(I32, i32, -21, WASM_I32V_1(-21));
EXPECT_INIT_EXPR(I32, i32, 437, WASM_I32V_2(437));
EXPECT_INIT_EXPR(I32, i32, 77777, WASM_I32V_3(77777));
}
TEST_F(WasmModuleVerifyTest, InitExpr_f32) {
EXPECT_INIT_EXPR(F32, f32, static_cast<float>(13.1), WASM_F32(13.1));
EXPECT_INIT_EXPR(F32, f32, static_cast<float>(-21.1), WASM_F32(-21.1));
EXPECT_INIT_EXPR(F32, f32, static_cast<float>(437.2), WASM_F32(437.2));
EXPECT_INIT_EXPR(F32, f32, static_cast<float>(77777.3), WASM_F32(77777.3));
}
TEST_F(WasmModuleVerifyTest, InitExpr_i64) {
EXPECT_INIT_EXPR(I64, i64, 33, WASM_I64V_1(33));
EXPECT_INIT_EXPR(I64, i64, -21, WASM_I64V_2(-21));
EXPECT_INIT_EXPR(I64, i64, 437, WASM_I64V_5(437));
EXPECT_INIT_EXPR(I64, i64, 77777, WASM_I64V_7(77777));
}
TEST_F(WasmModuleVerifyTest, InitExpr_f64) {
EXPECT_INIT_EXPR(F64, f64, 83.22, WASM_F64(83.22));
EXPECT_INIT_EXPR(F64, f64, -771.3, WASM_F64(-771.3));
EXPECT_INIT_EXPR(F64, f64, 43703.0, WASM_F64(43703.0));
EXPECT_INIT_EXPR(F64, f64, 77999.1, WASM_F64(77999.1));
}
TEST_F(WasmModuleVerifyTest, InitExpr_AnyRef) {
EXPERIMENTAL_FLAG_SCOPE(anyref);
static const byte data[] = {kExprRefNull, kExprEnd};
WasmInitExpr expr = DecodeWasmInitExprForTesting(data, data + sizeof(data));
EXPECT_EQ(WasmInitExpr::kAnyRefConst, expr.kind);
}
#undef EXPECT_INIT_EXPR
#define EXPECT_INIT_EXPR_FAIL(...) \
{ \
static const byte data[] = {__VA_ARGS__, kExprEnd}; \
WasmInitExpr expr = \
DecodeWasmInitExprForTesting(data, data + sizeof(data)); \
EXPECT_EQ(WasmInitExpr::kNone, expr.kind); \
}
TEST_F(WasmModuleVerifyTest, InitExpr_illegal) {
EXPECT_INIT_EXPR_FAIL(WASM_I32V_1(0), WASM_I32V_1(0));
EXPECT_INIT_EXPR_FAIL(WASM_GET_LOCAL(0));
EXPECT_INIT_EXPR_FAIL(WASM_SET_LOCAL(0, WASM_I32V_1(0)));
EXPECT_INIT_EXPR_FAIL(WASM_I32_ADD(WASM_I32V_1(0), WASM_I32V_1(0)));
EXPECT_INIT_EXPR_FAIL(WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO));
}
#undef EXPECT_INIT_EXPR_FAIL
TEST_F(WasmModuleVerifyTest, Multiple_Named_Sections) {
static const byte data[] = {
SECTION(Unknown, 4), 1, 'X', 17, 18, // --
SECTION(Unknown, 9), 3, 'f', 'o', 'o', 5, 6, 7, 8, 9, // --
SECTION(Unknown, 8), 5, 'o', 't', 'h', 'e', 'r', 7, 8, // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Section_Name_No_UTF8) {
static const byte data[] = {SECTION(Unknown, 4), 1, 0xFF, 17, 18};
EXPECT_FAILURE(data);
}
class WasmModuleCustomSectionTest : public TestWithIsolateAndZone {
public:
void CheckSections(const byte* module_start, const byte* module_end,
const CustomSectionOffset* expected, size_t num_expected) {
std::vector<CustomSectionOffset> custom_sections =
DecodeCustomSections(module_start, module_end);
CHECK_EQ(num_expected, custom_sections.size());
for (size_t i = 0; i < num_expected; i++) {
EXPECT_EQ(expected[i].section.offset(),
custom_sections[i].section.offset());
EXPECT_EQ(expected[i].section.length(),
custom_sections[i].section.length());
EXPECT_EQ(expected[i].name.offset(), custom_sections[i].name.offset());
EXPECT_EQ(expected[i].name.length(), custom_sections[i].name.length());
EXPECT_EQ(expected[i].payload.offset(),
custom_sections[i].payload.offset());
EXPECT_EQ(expected[i].payload.length(),
custom_sections[i].payload.length());
}
}
};
TEST_F(WasmModuleCustomSectionTest, ThreeUnknownSections) {
static constexpr byte data[] = {
U32_LE(kWasmMagic), // --
U32_LE(kWasmVersion), // --
SECTION(Unknown, 4), 1, 'X', 17, 18, // --
SECTION(Unknown, 9), 3, 'f', 'o', 'o', 5, 6, 7, 8, 9, // --
SECTION(Unknown, 8), 5, 'o', 't', 'h', 'e', 'r', 7, 8, // --
};
static const CustomSectionOffset expected[] = {
// section, name, payload
{{10, 4}, {11, 1}, {12, 2}}, // --
{{16, 9}, {17, 3}, {20, 5}}, // --
{{27, 8}, {28, 5}, {33, 2}}, // --
};
CheckSections(data, data + sizeof(data), expected, arraysize(expected));
}
TEST_F(WasmModuleCustomSectionTest, TwoKnownTwoUnknownSections) {
static const byte data[] = {
U32_LE(kWasmMagic), // --
U32_LE(kWasmVersion), // --
SIGNATURES_SECTION(2, SIG_ENTRY_v_v, SIG_ENTRY_v_v), // --
SECTION(Unknown, 4),
1,
'X',
17,
18, // --
ONE_EMPTY_FUNCTION,
SECTION(Unknown, 8),
5,
'o',
't',
'h',
'e',
'r',
7,
8, // --
};
static const CustomSectionOffset expected[] = {
// section, name, payload
{{19, 4}, {20, 1}, {21, 2}}, // --
{{29, 8}, {30, 5}, {35, 2}}, // --
};
CheckSections(data, data + sizeof(data), expected, arraysize(expected));
}
#undef WASM_INIT_EXPR_I32V_1
#undef WASM_INIT_EXPR_I32V_2
#undef WASM_INIT_EXPR_I32V_3
#undef WASM_INIT_EXPR_I32V_4
#undef WASM_INIT_EXPR_I32V_5
#undef WASM_INIT_EXPR_F32
#undef WASM_INIT_EXPR_I64
#undef WASM_INIT_EXPR_F64
#undef WASM_INIT_EXPR_ANYREF
#undef WASM_INIT_EXPR_GLOBAL
#undef SIZEOF_EMPTY_FUNCTION
#undef EMPTY_BODY
#undef SIZEOF_EMPTY_BODY
#undef NOP_BODY
#undef SIZEOF_NOP_BODY
#undef SIG_ENTRY_i_i
#undef UNKNOWN_SECTION
#undef SECTION
#undef SIGNATURES_SECTION
#undef FUNCTION_SIGNATURES_SECTION
#undef FOO_STRING
#undef NO_LOCAL_NAMES
#undef EMPTY_SIGNATURES_SECTION
#undef EMPTY_FUNCTION_SIGNATURES_SECTION
#undef EMPTY_FUNCTION_BODIES_SECTION
#undef SECTION_NAMES
#undef SECTION_EXCEPTIONS
#undef EMPTY_NAMES_SECTION
#undef FAIL_IF_NO_EXPERIMENTAL_EH
#undef X1
#undef X2
#undef X3
#undef X4
#undef ONE_EMPTY_FUNCTION
#undef TWO_EMPTY_FUNCTIONS
#undef THREE_EMPTY_FUNCTIONS
#undef FOUR_EMPTY_FUNCTIONS
#undef ONE_EMPTY_BODY
#undef TWO_EMPTY_BODIES
#undef THREE_EMPTY_BODIES
#undef FOUR_EMPTY_BODIES
#undef SIGNATURES_SECTION_VOID_VOID
#undef LINEAR_MEMORY_INDEX_0
#undef EXPECT_VERIFIES
#undef EXPECT_FAILURE_LEN
#undef EXPECT_FAILURE
#undef EXPECT_OFF_END_FAILURE
#undef EXPECT_OK
} // namespace module_decoder_unittest
} // namespace wasm
} // namespace internal
} // namespace v8