891ae83e18
git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@397 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1503 lines
46 KiB
C++
1503 lines
46 KiB
C++
// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
|
// All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
//
|
|
// - Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// - Redistribution in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the
|
|
// distribution.
|
|
//
|
|
// - Neither the name of Sun Microsystems or the names of contributors may
|
|
// be used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
// OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// The original source code covered by the above license above has been modified
|
|
// significantly by Google Inc.
|
|
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "assembler-arm-inl.h"
|
|
#include "serialize.h"
|
|
|
|
namespace v8 { namespace internal {
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of Register and CRegister
|
|
|
|
Register no_reg = { -1 };
|
|
|
|
Register r0 = { 0 };
|
|
Register r1 = { 1 };
|
|
Register r2 = { 2 };
|
|
Register r3 = { 3 };
|
|
Register r4 = { 4 };
|
|
Register r5 = { 5 };
|
|
Register r6 = { 6 };
|
|
Register r7 = { 7 };
|
|
Register r8 = { 8 };
|
|
Register r9 = { 9 };
|
|
Register r10 = { 10 };
|
|
Register fp = { 11 };
|
|
Register ip = { 12 };
|
|
Register sp = { 13 };
|
|
Register lr = { 14 };
|
|
Register pc = { 15 };
|
|
|
|
|
|
CRegister no_creg = { -1 };
|
|
|
|
CRegister cr0 = { 0 };
|
|
CRegister cr1 = { 1 };
|
|
CRegister cr2 = { 2 };
|
|
CRegister cr3 = { 3 };
|
|
CRegister cr4 = { 4 };
|
|
CRegister cr5 = { 5 };
|
|
CRegister cr6 = { 6 };
|
|
CRegister cr7 = { 7 };
|
|
CRegister cr8 = { 8 };
|
|
CRegister cr9 = { 9 };
|
|
CRegister cr10 = { 10 };
|
|
CRegister cr11 = { 11 };
|
|
CRegister cr12 = { 12 };
|
|
CRegister cr13 = { 13 };
|
|
CRegister cr14 = { 14 };
|
|
CRegister cr15 = { 15 };
|
|
|
|
|
|
// In order to determine the pc store offset, we execute a small code sequence.
|
|
// See ARM Architecture Reference Manual section A-2.4.3
|
|
// Note that 'str pc, [sp]' and 'stmia sp, {pc}' were using different offsets
|
|
// under the QEMU emulator (now fixed), so we are careful to test the actual
|
|
// instruction we are interested in (stmia).
|
|
int PcStoreOffset() {
|
|
#if !defined(__arm__)
|
|
// Building an ARM emulator based target. The emulator is wired for 8 byte
|
|
// pc offsets as is the default in the spec.
|
|
static int pc_store_offset = 8;
|
|
#elif defined(__arm__) && !defined(__thumb__)
|
|
// __arm__ may be defined in thumb mode.
|
|
static int pc_store_offset = -1;
|
|
asm volatile(
|
|
"sub sp, sp, #4 \n\t"
|
|
"sub r1, pc, #4 \n\t"
|
|
"stmia sp, {pc} \n\t"
|
|
"ldr r0, [sp] \n\t"
|
|
"add sp, sp, #4 \n\t"
|
|
"sub %0, r0, r1 \n\t"
|
|
: "=r" (pc_store_offset) : : "r0", "r1", "memory");
|
|
#elif defined(__thumb__)
|
|
static int pc_store_offset = -1;
|
|
asm volatile(
|
|
"@ Enter ARM Mode \n\t"
|
|
"adr r2, 1f \n\t"
|
|
"bx r2 \n\t"
|
|
".ALIGN 4 \n\t"
|
|
".ARM \n"
|
|
"1: sub sp, sp, #4 \n\t"
|
|
"sub r1, pc, #4 \n\t"
|
|
"stmia sp, {pc} \n\t"
|
|
"ldr r0, [sp] \n\t"
|
|
"add sp, sp, #4 \n\t"
|
|
"sub %0, r0, r1 \n"
|
|
"@ Enter THUMB Mode\n\t"
|
|
"adr r2, 2f+1 \n\t"
|
|
"bx r2 \n\t"
|
|
".THUMB \n"
|
|
"2: \n\t"
|
|
: "=r" (pc_store_offset) : : "r0", "r1", "r2", "memory");
|
|
#else
|
|
#error unsupported architecture
|
|
#endif
|
|
ASSERT(pc_store_offset == 8 || pc_store_offset == 12);
|
|
return pc_store_offset;
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of RelocInfo
|
|
|
|
const int RelocInfo::kApplyMask = 0;
|
|
|
|
|
|
void RelocInfo::patch_code(byte* instructions, int instruction_count) {
|
|
// Patch the code at the current address with the supplied instructions.
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
|
|
// Patch the code at the current PC with a call to the target address.
|
|
// Additional guard int3 instructions can be added if required.
|
|
void RelocInfo::patch_code_with_call(Address target, int guard_bytes) {
|
|
// Patch the code at the current address with a call to the target.
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of Operand and MemOperand
|
|
// See assembler-arm-inl.h for inlined constructors
|
|
|
|
Operand::Operand(Handle<Object> handle) {
|
|
rm_ = no_reg;
|
|
// Verify all Objects referred by code are NOT in new space.
|
|
Object* obj = *handle;
|
|
ASSERT(!Heap::InNewSpace(obj));
|
|
if (obj->IsHeapObject()) {
|
|
imm32_ = reinterpret_cast<intptr_t>(handle.location());
|
|
rmode_ = RelocInfo::EMBEDDED_OBJECT;
|
|
} else {
|
|
// no relocation needed
|
|
imm32_ = reinterpret_cast<intptr_t>(obj);
|
|
rmode_ = RelocInfo::NONE;
|
|
}
|
|
}
|
|
|
|
|
|
Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
|
|
ASSERT(is_uint5(shift_imm));
|
|
ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it
|
|
rm_ = rm;
|
|
rs_ = no_reg;
|
|
shift_op_ = shift_op;
|
|
shift_imm_ = shift_imm & 31;
|
|
if (shift_op == RRX) {
|
|
// encoded as ROR with shift_imm == 0
|
|
ASSERT(shift_imm == 0);
|
|
shift_op_ = ROR;
|
|
shift_imm_ = 0;
|
|
}
|
|
}
|
|
|
|
|
|
Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
|
|
ASSERT(shift_op != RRX);
|
|
rm_ = rm;
|
|
rs_ = no_reg;
|
|
shift_op_ = shift_op;
|
|
rs_ = rs;
|
|
}
|
|
|
|
|
|
MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
|
|
rn_ = rn;
|
|
rm_ = no_reg;
|
|
offset_ = offset;
|
|
am_ = am;
|
|
}
|
|
|
|
MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
|
|
rn_ = rn;
|
|
rm_ = rm;
|
|
shift_op_ = LSL;
|
|
shift_imm_ = 0;
|
|
am_ = am;
|
|
}
|
|
|
|
|
|
MemOperand::MemOperand(Register rn, Register rm,
|
|
ShiftOp shift_op, int shift_imm, AddrMode am) {
|
|
ASSERT(is_uint5(shift_imm));
|
|
rn_ = rn;
|
|
rm_ = rm;
|
|
shift_op_ = shift_op;
|
|
shift_imm_ = shift_imm & 31;
|
|
am_ = am;
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Implementation of Assembler
|
|
|
|
// Instruction encoding bits
|
|
enum {
|
|
H = 1 << 5, // halfword (or byte)
|
|
S6 = 1 << 6, // signed (or unsigned)
|
|
L = 1 << 20, // load (or store)
|
|
S = 1 << 20, // set condition code (or leave unchanged)
|
|
W = 1 << 21, // writeback base register (or leave unchanged)
|
|
A = 1 << 21, // accumulate in multiply instruction (or not)
|
|
B = 1 << 22, // unsigned byte (or word)
|
|
N = 1 << 22, // long (or short)
|
|
U = 1 << 23, // positive (or negative) offset/index
|
|
P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing)
|
|
I = 1 << 25, // immediate shifter operand (or not)
|
|
|
|
B4 = 1 << 4,
|
|
B5 = 1 << 5,
|
|
B7 = 1 << 7,
|
|
B8 = 1 << 8,
|
|
B12 = 1 << 12,
|
|
B16 = 1 << 16,
|
|
B20 = 1 << 20,
|
|
B21 = 1 << 21,
|
|
B22 = 1 << 22,
|
|
B23 = 1 << 23,
|
|
B24 = 1 << 24,
|
|
B25 = 1 << 25,
|
|
B26 = 1 << 26,
|
|
B27 = 1 << 27,
|
|
|
|
// Instruction bit masks
|
|
RdMask = 15 << 12, // in str instruction
|
|
CondMask = 15 << 28,
|
|
OpCodeMask = 15 << 21, // in data-processing instructions
|
|
Imm24Mask = (1 << 24) - 1,
|
|
Off12Mask = (1 << 12) - 1,
|
|
// Reserved condition
|
|
nv = 15 << 28
|
|
};
|
|
|
|
|
|
// add(sp, sp, 4) instruction (aka Pop())
|
|
static const Instr kPopInstruction =
|
|
al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12;
|
|
// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
|
|
// register r is not encoded.
|
|
static const Instr kPushRegPattern =
|
|
al | B26 | 4 | NegPreIndex | sp.code() * B16;
|
|
// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
|
|
// register r is not encoded.
|
|
static const Instr kPopRegPattern =
|
|
al | B26 | L | 4 | PostIndex | sp.code() * B16;
|
|
|
|
// spare_buffer_
|
|
static const int kMinimalBufferSize = 4*KB;
|
|
static byte* spare_buffer_ = NULL;
|
|
|
|
Assembler::Assembler(void* buffer, int buffer_size) {
|
|
if (buffer == NULL) {
|
|
// do our own buffer management
|
|
if (buffer_size <= kMinimalBufferSize) {
|
|
buffer_size = kMinimalBufferSize;
|
|
|
|
if (spare_buffer_ != NULL) {
|
|
buffer = spare_buffer_;
|
|
spare_buffer_ = NULL;
|
|
}
|
|
}
|
|
if (buffer == NULL) {
|
|
buffer_ = NewArray<byte>(buffer_size);
|
|
} else {
|
|
buffer_ = static_cast<byte*>(buffer);
|
|
}
|
|
buffer_size_ = buffer_size;
|
|
own_buffer_ = true;
|
|
|
|
} else {
|
|
// use externally provided buffer instead
|
|
ASSERT(buffer_size > 0);
|
|
buffer_ = static_cast<byte*>(buffer);
|
|
buffer_size_ = buffer_size;
|
|
own_buffer_ = false;
|
|
}
|
|
|
|
// setup buffer pointers
|
|
ASSERT(buffer_ != NULL);
|
|
pc_ = buffer_;
|
|
reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
|
|
num_prinfo_ = 0;
|
|
next_buffer_check_ = 0;
|
|
no_const_pool_before_ = 0;
|
|
last_const_pool_end_ = 0;
|
|
last_bound_pos_ = 0;
|
|
last_position_ = RelocInfo::kNoPosition;
|
|
last_position_is_statement_ = false;
|
|
}
|
|
|
|
|
|
Assembler::~Assembler() {
|
|
if (own_buffer_) {
|
|
if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) {
|
|
spare_buffer_ = buffer_;
|
|
} else {
|
|
DeleteArray(buffer_);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::GetCode(CodeDesc* desc) {
|
|
// emit constant pool if necessary
|
|
CheckConstPool(true, false);
|
|
ASSERT(num_prinfo_ == 0);
|
|
|
|
// setup desc
|
|
desc->buffer = buffer_;
|
|
desc->buffer_size = buffer_size_;
|
|
desc->instr_size = pc_offset();
|
|
desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
|
|
}
|
|
|
|
|
|
void Assembler::Align(int m) {
|
|
ASSERT(m >= 4 && IsPowerOf2(m));
|
|
while ((pc_offset() & (m - 1)) != 0) {
|
|
nop();
|
|
}
|
|
}
|
|
|
|
|
|
// Labels refer to positions in the (to be) generated code.
|
|
// There are bound, linked, and unused labels.
|
|
//
|
|
// Bound labels refer to known positions in the already
|
|
// generated code. pos() is the position the label refers to.
|
|
//
|
|
// Linked labels refer to unknown positions in the code
|
|
// to be generated; pos() is the position of the last
|
|
// instruction using the label.
|
|
|
|
|
|
// The link chain is terminated by a negative code position (must be aligned)
|
|
const int kEndOfChain = -4;
|
|
|
|
|
|
int Assembler::target_at(int pos) {
|
|
Instr instr = instr_at(pos);
|
|
ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
|
|
int imm26 = ((instr & Imm24Mask) << 8) >> 6;
|
|
if ((instr & CondMask) == nv && (instr & B24) != 0)
|
|
// blx uses bit 24 to encode bit 2 of imm26
|
|
imm26 += 2;
|
|
|
|
return pos + 8 + imm26;
|
|
}
|
|
|
|
|
|
void Assembler::target_at_put(int pos, int target_pos) {
|
|
int imm26 = target_pos - pos - 8;
|
|
Instr instr = instr_at(pos);
|
|
ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
|
|
if ((instr & CondMask) == nv) {
|
|
// blx uses bit 24 to encode bit 2 of imm26
|
|
ASSERT((imm26 & 1) == 0);
|
|
instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24;
|
|
} else {
|
|
ASSERT((imm26 & 3) == 0);
|
|
instr &= ~Imm24Mask;
|
|
}
|
|
int imm24 = imm26 >> 2;
|
|
ASSERT(is_int24(imm24));
|
|
instr_at_put(pos, instr | (imm24 & Imm24Mask));
|
|
}
|
|
|
|
|
|
void Assembler::print(Label* L) {
|
|
if (L->is_unused()) {
|
|
PrintF("unused label\n");
|
|
} else if (L->is_bound()) {
|
|
PrintF("bound label to %d\n", L->pos());
|
|
} else if (L->is_linked()) {
|
|
Label l = *L;
|
|
PrintF("unbound label");
|
|
while (l.is_linked()) {
|
|
PrintF("@ %d ", l.pos());
|
|
Instr instr = instr_at(l.pos());
|
|
ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx
|
|
int cond = instr & CondMask;
|
|
const char* b;
|
|
const char* c;
|
|
if (cond == nv) {
|
|
b = "blx";
|
|
c = "";
|
|
} else {
|
|
if ((instr & B24) != 0)
|
|
b = "bl";
|
|
else
|
|
b = "b";
|
|
|
|
switch (cond) {
|
|
case eq: c = "eq"; break;
|
|
case ne: c = "ne"; break;
|
|
case hs: c = "hs"; break;
|
|
case lo: c = "lo"; break;
|
|
case mi: c = "mi"; break;
|
|
case pl: c = "pl"; break;
|
|
case vs: c = "vs"; break;
|
|
case vc: c = "vc"; break;
|
|
case hi: c = "hi"; break;
|
|
case ls: c = "ls"; break;
|
|
case ge: c = "ge"; break;
|
|
case lt: c = "lt"; break;
|
|
case gt: c = "gt"; break;
|
|
case le: c = "le"; break;
|
|
case al: c = ""; break;
|
|
default:
|
|
c = "";
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
PrintF("%s%s\n", b, c);
|
|
next(&l);
|
|
}
|
|
} else {
|
|
PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::bind_to(Label* L, int pos) {
|
|
ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
|
|
while (L->is_linked()) {
|
|
int fixup_pos = L->pos();
|
|
next(L); // call next before overwriting link with target at fixup_pos
|
|
target_at_put(fixup_pos, pos);
|
|
}
|
|
L->bind_to(pos);
|
|
|
|
// Keep track of the last bound label so we don't eliminate any instructions
|
|
// before a bound label.
|
|
if (pos > last_bound_pos_)
|
|
last_bound_pos_ = pos;
|
|
}
|
|
|
|
|
|
void Assembler::link_to(Label* L, Label* appendix) {
|
|
if (appendix->is_linked()) {
|
|
if (L->is_linked()) {
|
|
// append appendix to L's list
|
|
int fixup_pos;
|
|
int link = L->pos();
|
|
do {
|
|
fixup_pos = link;
|
|
link = target_at(fixup_pos);
|
|
} while (link > 0);
|
|
ASSERT(link == kEndOfChain);
|
|
target_at_put(fixup_pos, appendix->pos());
|
|
} else {
|
|
// L is empty, simply use appendix
|
|
*L = *appendix;
|
|
}
|
|
}
|
|
appendix->Unuse(); // appendix should not be used anymore
|
|
}
|
|
|
|
|
|
void Assembler::bind(Label* L) {
|
|
ASSERT(!L->is_bound()); // label can only be bound once
|
|
bind_to(L, pc_offset());
|
|
}
|
|
|
|
|
|
void Assembler::next(Label* L) {
|
|
ASSERT(L->is_linked());
|
|
int link = target_at(L->pos());
|
|
if (link > 0) {
|
|
L->link_to(link);
|
|
} else {
|
|
ASSERT(link == kEndOfChain);
|
|
L->Unuse();
|
|
}
|
|
}
|
|
|
|
|
|
// Low-level code emission routines depending on the addressing mode
|
|
static bool fits_shifter(uint32_t imm32,
|
|
uint32_t* rotate_imm,
|
|
uint32_t* immed_8,
|
|
Instr* instr) {
|
|
// imm32 must be unsigned
|
|
for (int rot = 0; rot < 16; rot++) {
|
|
uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
|
|
if ((imm8 <= 0xff)) {
|
|
*rotate_imm = rot;
|
|
*immed_8 = imm8;
|
|
return true;
|
|
}
|
|
}
|
|
// if the opcode is mov or mvn and if ~imm32 fits, change the opcode
|
|
if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) {
|
|
if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
|
|
*instr ^= 0x2*B21;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
void Assembler::addrmod1(Instr instr,
|
|
Register rn,
|
|
Register rd,
|
|
const Operand& x) {
|
|
CheckBuffer();
|
|
ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0);
|
|
if (!x.rm_.is_valid()) {
|
|
// immediate
|
|
uint32_t rotate_imm;
|
|
uint32_t immed_8;
|
|
if ((x.rmode_ != RelocInfo::NONE &&
|
|
x.rmode_ != RelocInfo::EXTERNAL_REFERENCE) ||
|
|
!fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
|
|
// The immediate operand cannot be encoded as a shifter operand, so load
|
|
// it first to register ip and change the original instruction to use ip.
|
|
// However, if the original instruction is a 'mov rd, x' (not setting the
|
|
// condition code), then replace it with a 'ldr rd, [pc]'
|
|
RecordRelocInfo(x.rmode_, x.imm32_);
|
|
ASSERT(!rn.is(ip)); // rn should never be ip, or will be trashed
|
|
Condition cond = static_cast<Condition>(instr & CondMask);
|
|
if ((instr & ~CondMask) == 13*B21) { // mov, S not set
|
|
ldr(rd, MemOperand(pc, 0), cond);
|
|
} else {
|
|
ldr(ip, MemOperand(pc, 0), cond);
|
|
addrmod1(instr, rn, rd, Operand(ip));
|
|
}
|
|
return;
|
|
}
|
|
instr |= I | rotate_imm*B8 | immed_8;
|
|
} else if (!x.rs_.is_valid()) {
|
|
// immediate shift
|
|
instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
|
|
} else {
|
|
// register shift
|
|
ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
|
|
instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
|
|
}
|
|
emit(instr | rn.code()*B16 | rd.code()*B12);
|
|
if (rn.is(pc) || x.rm_.is(pc))
|
|
// block constant pool emission for one instruction after reading pc
|
|
BlockConstPoolBefore(pc_offset() + kInstrSize);
|
|
}
|
|
|
|
|
|
void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
|
|
ASSERT((instr & ~(CondMask | B | L)) == B26);
|
|
int am = x.am_;
|
|
if (!x.rm_.is_valid()) {
|
|
// immediate offset
|
|
int offset_12 = x.offset_;
|
|
if (offset_12 < 0) {
|
|
offset_12 = -offset_12;
|
|
am ^= U;
|
|
}
|
|
if (!is_uint12(offset_12)) {
|
|
// immediate offset cannot be encoded, load it first to register ip
|
|
// rn (and rd in a load) should never be ip, or will be trashed
|
|
ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
|
|
mov(ip, Operand(x.offset_), LeaveCC,
|
|
static_cast<Condition>(instr & CondMask));
|
|
addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
|
|
return;
|
|
}
|
|
ASSERT(offset_12 >= 0); // no masking needed
|
|
instr |= offset_12;
|
|
} else {
|
|
// register offset (shift_imm_ and shift_op_ are 0) or scaled
|
|
// register offset the constructors make sure than both shift_imm_
|
|
// and shift_op_ are initialized
|
|
ASSERT(!x.rm_.is(pc));
|
|
instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
|
|
}
|
|
ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
|
|
emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
|
|
}
|
|
|
|
|
|
void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
|
|
ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7));
|
|
ASSERT(x.rn_.is_valid());
|
|
int am = x.am_;
|
|
if (!x.rm_.is_valid()) {
|
|
// immediate offset
|
|
int offset_8 = x.offset_;
|
|
if (offset_8 < 0) {
|
|
offset_8 = -offset_8;
|
|
am ^= U;
|
|
}
|
|
if (!is_uint8(offset_8)) {
|
|
// immediate offset cannot be encoded, load it first to register ip
|
|
// rn (and rd in a load) should never be ip, or will be trashed
|
|
ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
|
|
mov(ip, Operand(x.offset_), LeaveCC,
|
|
static_cast<Condition>(instr & CondMask));
|
|
addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
|
|
return;
|
|
}
|
|
ASSERT(offset_8 >= 0); // no masking needed
|
|
instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
|
|
} else if (x.shift_imm_ != 0) {
|
|
// scaled register offset not supported, load index first
|
|
// rn (and rd in a load) should never be ip, or will be trashed
|
|
ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
|
|
mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
|
|
static_cast<Condition>(instr & CondMask));
|
|
addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
|
|
return;
|
|
} else {
|
|
// register offset
|
|
ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback
|
|
instr |= x.rm_.code();
|
|
}
|
|
ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
|
|
emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
|
|
}
|
|
|
|
|
|
void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
|
|
ASSERT((instr & ~(CondMask | P | U | W | L)) == B27);
|
|
ASSERT(rl != 0);
|
|
ASSERT(!rn.is(pc));
|
|
emit(instr | rn.code()*B16 | rl);
|
|
}
|
|
|
|
|
|
void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
|
|
// unindexed addressing is not encoded by this function
|
|
ASSERT((instr & ~(CondMask | P | U | N | W | L)) == (B27 | B26));
|
|
ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
|
|
int am = x.am_;
|
|
int offset_8 = x.offset_;
|
|
ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset
|
|
offset_8 >>= 2;
|
|
if (offset_8 < 0) {
|
|
offset_8 = -offset_8;
|
|
am ^= U;
|
|
}
|
|
ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte
|
|
ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
|
|
|
|
// post-indexed addressing requires W == 1; different than in addrmod2/3
|
|
if ((am & P) == 0)
|
|
am |= W;
|
|
|
|
ASSERT(offset_8 >= 0); // no masking needed
|
|
emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
|
|
}
|
|
|
|
|
|
int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
|
|
int target_pos;
|
|
if (L->is_bound()) {
|
|
target_pos = L->pos();
|
|
} else {
|
|
if (L->is_linked()) {
|
|
target_pos = L->pos(); // L's link
|
|
} else {
|
|
target_pos = kEndOfChain;
|
|
}
|
|
L->link_to(pc_offset());
|
|
}
|
|
|
|
// Block the emission of the constant pool, since the branch instruction must
|
|
// be emitted at the pc offset recorded by the label
|
|
BlockConstPoolBefore(pc_offset() + kInstrSize);
|
|
|
|
return target_pos - pc_offset() - 8;
|
|
}
|
|
|
|
|
|
// Branch instructions
|
|
void Assembler::b(int branch_offset, Condition cond) {
|
|
ASSERT((branch_offset & 3) == 0);
|
|
int imm24 = branch_offset >> 2;
|
|
ASSERT(is_int24(imm24));
|
|
emit(cond | B27 | B25 | (imm24 & Imm24Mask));
|
|
|
|
if (cond == al)
|
|
// dead code is a good location to emit the constant pool
|
|
CheckConstPool(false, false);
|
|
}
|
|
|
|
|
|
void Assembler::bl(int branch_offset, Condition cond) {
|
|
ASSERT((branch_offset & 3) == 0);
|
|
int imm24 = branch_offset >> 2;
|
|
ASSERT(is_int24(imm24));
|
|
emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask));
|
|
}
|
|
|
|
|
|
void Assembler::blx(int branch_offset) { // v5 and above
|
|
ASSERT((branch_offset & 1) == 0);
|
|
int h = ((branch_offset & 2) >> 1)*B24;
|
|
int imm24 = branch_offset >> 2;
|
|
ASSERT(is_int24(imm24));
|
|
emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask));
|
|
}
|
|
|
|
|
|
void Assembler::blx(Register target, Condition cond) { // v5 and above
|
|
ASSERT(!target.is(pc));
|
|
emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code());
|
|
}
|
|
|
|
|
|
void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t
|
|
ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged
|
|
emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code());
|
|
}
|
|
|
|
|
|
// Data-processing instructions
|
|
void Assembler::and_(Register dst, Register src1, const Operand& src2,
|
|
SBit s, Condition cond) {
|
|
addrmod1(cond | 0*B21 | s, src1, dst, src2);
|
|
}
|
|
|
|
|
|
void Assembler::eor(Register dst, Register src1, const Operand& src2,
|
|
SBit s, Condition cond) {
|
|
addrmod1(cond | 1*B21 | s, src1, dst, src2);
|
|
}
|
|
|
|
|
|
void Assembler::sub(Register dst, Register src1, const Operand& src2,
|
|
SBit s, Condition cond) {
|
|
addrmod1(cond | 2*B21 | s, src1, dst, src2);
|
|
}
|
|
|
|
|
|
void Assembler::rsb(Register dst, Register src1, const Operand& src2,
|
|
SBit s, Condition cond) {
|
|
addrmod1(cond | 3*B21 | s, src1, dst, src2);
|
|
}
|
|
|
|
|
|
void Assembler::add(Register dst, Register src1, const Operand& src2,
|
|
SBit s, Condition cond) {
|
|
addrmod1(cond | 4*B21 | s, src1, dst, src2);
|
|
|
|
// Eliminate pattern: push(r), pop()
|
|
// str(src, MemOperand(sp, 4, NegPreIndex), al);
|
|
// add(sp, sp, Operand(kPointerSize));
|
|
// Both instructions can be eliminated.
|
|
int pattern_size = 2 * kInstrSize;
|
|
if (FLAG_push_pop_elimination &&
|
|
last_bound_pos_ <= (pc_offset() - pattern_size) &&
|
|
reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
|
|
// pattern
|
|
instr_at(pc_ - 1 * kInstrSize) == kPopInstruction &&
|
|
(instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) {
|
|
pc_ -= 2 * kInstrSize;
|
|
if (FLAG_print_push_pop_elimination) {
|
|
PrintF("%x push(reg)/pop() eliminated\n", pc_offset());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::adc(Register dst, Register src1, const Operand& src2,
|
|
SBit s, Condition cond) {
|
|
addrmod1(cond | 5*B21 | s, src1, dst, src2);
|
|
}
|
|
|
|
|
|
void Assembler::sbc(Register dst, Register src1, const Operand& src2,
|
|
SBit s, Condition cond) {
|
|
addrmod1(cond | 6*B21 | s, src1, dst, src2);
|
|
}
|
|
|
|
|
|
void Assembler::rsc(Register dst, Register src1, const Operand& src2,
|
|
SBit s, Condition cond) {
|
|
addrmod1(cond | 7*B21 | s, src1, dst, src2);
|
|
}
|
|
|
|
|
|
void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
|
|
addrmod1(cond | 8*B21 | S, src1, r0, src2);
|
|
}
|
|
|
|
|
|
void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
|
|
addrmod1(cond | 9*B21 | S, src1, r0, src2);
|
|
}
|
|
|
|
|
|
void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
|
|
addrmod1(cond | 10*B21 | S, src1, r0, src2);
|
|
}
|
|
|
|
|
|
void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
|
|
addrmod1(cond | 11*B21 | S, src1, r0, src2);
|
|
}
|
|
|
|
|
|
void Assembler::orr(Register dst, Register src1, const Operand& src2,
|
|
SBit s, Condition cond) {
|
|
addrmod1(cond | 12*B21 | s, src1, dst, src2);
|
|
}
|
|
|
|
|
|
void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
|
|
addrmod1(cond | 13*B21 | s, r0, dst, src);
|
|
}
|
|
|
|
|
|
void Assembler::bic(Register dst, Register src1, const Operand& src2,
|
|
SBit s, Condition cond) {
|
|
addrmod1(cond | 14*B21 | s, src1, dst, src2);
|
|
}
|
|
|
|
|
|
void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
|
|
addrmod1(cond | 15*B21 | s, r0, dst, src);
|
|
}
|
|
|
|
|
|
// Multiply instructions
|
|
void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
|
|
SBit s, Condition cond) {
|
|
ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
|
|
ASSERT(!dst.is(src1));
|
|
emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
|
|
src2.code()*B8 | B7 | B4 | src1.code());
|
|
}
|
|
|
|
|
|
void Assembler::mul(Register dst, Register src1, Register src2,
|
|
SBit s, Condition cond) {
|
|
ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
|
|
ASSERT(!dst.is(src1));
|
|
emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
|
|
}
|
|
|
|
|
|
void Assembler::smlal(Register dstL,
|
|
Register dstH,
|
|
Register src1,
|
|
Register src2,
|
|
SBit s,
|
|
Condition cond) {
|
|
ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
|
|
ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL));
|
|
emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
|
|
src2.code()*B8 | B7 | B4 | src1.code());
|
|
}
|
|
|
|
|
|
void Assembler::smull(Register dstL,
|
|
Register dstH,
|
|
Register src1,
|
|
Register src2,
|
|
SBit s,
|
|
Condition cond) {
|
|
ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
|
|
ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL));
|
|
emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
|
|
src2.code()*B8 | B7 | B4 | src1.code());
|
|
}
|
|
|
|
|
|
void Assembler::umlal(Register dstL,
|
|
Register dstH,
|
|
Register src1,
|
|
Register src2,
|
|
SBit s,
|
|
Condition cond) {
|
|
ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
|
|
ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL));
|
|
emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
|
|
src2.code()*B8 | B7 | B4 | src1.code());
|
|
}
|
|
|
|
|
|
void Assembler::umull(Register dstL,
|
|
Register dstH,
|
|
Register src1,
|
|
Register src2,
|
|
SBit s,
|
|
Condition cond) {
|
|
ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
|
|
ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL));
|
|
emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
|
|
src2.code()*B8 | B7 | B4 | src1.code());
|
|
}
|
|
|
|
|
|
// Miscellaneous arithmetic instructions
|
|
void Assembler::clz(Register dst, Register src, Condition cond) {
|
|
// v5 and above.
|
|
ASSERT(!dst.is(pc) && !src.is(pc));
|
|
emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
|
|
15*B8 | B4 | src.code());
|
|
}
|
|
|
|
|
|
// Status register access instructions
|
|
void Assembler::mrs(Register dst, SRegister s, Condition cond) {
|
|
ASSERT(!dst.is(pc));
|
|
emit(cond | B24 | s | 15*B16 | dst.code()*B12);
|
|
}
|
|
|
|
|
|
void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
|
|
Condition cond) {
|
|
ASSERT(fields >= B16 && fields < B20); // at least one field set
|
|
Instr instr;
|
|
if (!src.rm_.is_valid()) {
|
|
// immediate
|
|
uint32_t rotate_imm;
|
|
uint32_t immed_8;
|
|
if ((src.rmode_ != RelocInfo::NONE &&
|
|
src.rmode_ != RelocInfo::EXTERNAL_REFERENCE)||
|
|
!fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
|
|
// immediate operand cannot be encoded, load it first to register ip
|
|
RecordRelocInfo(src.rmode_, src.imm32_);
|
|
ldr(ip, MemOperand(pc, 0), cond);
|
|
msr(fields, Operand(ip), cond);
|
|
return;
|
|
}
|
|
instr = I | rotate_imm*B8 | immed_8;
|
|
} else {
|
|
ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed
|
|
instr = src.rm_.code();
|
|
}
|
|
emit(cond | instr | B24 | B21 | fields | 15*B12);
|
|
}
|
|
|
|
|
|
// Load/Store instructions
|
|
void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
|
|
addrmod2(cond | B26 | L, dst, src);
|
|
|
|
// Eliminate pattern: push(r), pop(r)
|
|
// str(r, MemOperand(sp, 4, NegPreIndex), al)
|
|
// ldr(r, MemOperand(sp, 4, PostIndex), al)
|
|
// Both instructions can be eliminated.
|
|
int pattern_size = 2 * kInstrSize;
|
|
if (FLAG_push_pop_elimination &&
|
|
last_bound_pos_ <= (pc_offset() - pattern_size) &&
|
|
reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
|
|
// pattern
|
|
instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) &&
|
|
instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) {
|
|
pc_ -= 2 * kInstrSize;
|
|
if (FLAG_print_push_pop_elimination) {
|
|
PrintF("%x push/pop (same reg) eliminated\n", pc_offset());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
|
|
addrmod2(cond | B26, src, dst);
|
|
|
|
// Eliminate pattern: pop(), push(r)
|
|
// add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al
|
|
// -> str r, [sp, 0], al
|
|
int pattern_size = 2 * kInstrSize;
|
|
if (FLAG_push_pop_elimination &&
|
|
last_bound_pos_ <= (pc_offset() - pattern_size) &&
|
|
reloc_info_writer.last_pc() <= (pc_ - pattern_size) &&
|
|
instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) &&
|
|
instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) {
|
|
pc_ -= 2 * kInstrSize;
|
|
emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12);
|
|
if (FLAG_print_push_pop_elimination) {
|
|
PrintF("%x pop()/push(reg) eliminated\n", pc_offset());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
|
|
addrmod2(cond | B26 | B | L, dst, src);
|
|
}
|
|
|
|
|
|
void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
|
|
addrmod2(cond | B26 | B, src, dst);
|
|
}
|
|
|
|
|
|
void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
|
|
addrmod3(cond | L | B7 | H | B4, dst, src);
|
|
}
|
|
|
|
|
|
void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
|
|
addrmod3(cond | B7 | H | B4, src, dst);
|
|
}
|
|
|
|
|
|
void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
|
|
addrmod3(cond | L | B7 | S6 | B4, dst, src);
|
|
}
|
|
|
|
|
|
void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
|
|
addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
|
|
}
|
|
|
|
|
|
// Load/Store multiple instructions
|
|
void Assembler::ldm(BlockAddrMode am,
|
|
Register base,
|
|
RegList dst,
|
|
Condition cond) {
|
|
// ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable
|
|
ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
|
|
|
|
addrmod4(cond | B27 | am | L, base, dst);
|
|
|
|
// emit the constant pool after a function return implemented by ldm ..{..pc}
|
|
if (cond == al && (dst & pc.bit()) != 0) {
|
|
// There is a slight chance that the ldm instruction was actually a call,
|
|
// in which case it would be wrong to return into the constant pool; we
|
|
// recognize this case by checking if the emission of the pool was blocked
|
|
// at the pc of the ldm instruction by a mov lr, pc instruction; if this is
|
|
// the case, we emit a jump over the pool.
|
|
CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::stm(BlockAddrMode am,
|
|
Register base,
|
|
RegList src,
|
|
Condition cond) {
|
|
addrmod4(cond | B27 | am, base, src);
|
|
}
|
|
|
|
|
|
// Semaphore instructions
|
|
void Assembler::swp(Register dst, Register src, Register base, Condition cond) {
|
|
ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc));
|
|
ASSERT(!dst.is(base) && !src.is(base));
|
|
emit(cond | P | base.code()*B16 | dst.code()*B12 |
|
|
B7 | B4 | src.code());
|
|
}
|
|
|
|
|
|
void Assembler::swpb(Register dst,
|
|
Register src,
|
|
Register base,
|
|
Condition cond) {
|
|
ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc));
|
|
ASSERT(!dst.is(base) && !src.is(base));
|
|
emit(cond | P | B | base.code()*B16 | dst.code()*B12 |
|
|
B7 | B4 | src.code());
|
|
}
|
|
|
|
|
|
// Exception-generating instructions and debugging support
|
|
void Assembler::stop(const char* msg) {
|
|
#if !defined(__arm__)
|
|
// The simulator handles these special instructions and stops execution.
|
|
emit(15 << 28 | ((intptr_t) msg));
|
|
#else
|
|
// Just issue a simple break instruction for now. Alternatively we could use
|
|
// the swi(0x9f0001) instruction on Linux.
|
|
bkpt(0);
|
|
#endif
|
|
}
|
|
|
|
|
|
void Assembler::bkpt(uint32_t imm16) { // v5 and above
|
|
ASSERT(is_uint16(imm16));
|
|
emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf));
|
|
}
|
|
|
|
|
|
void Assembler::swi(uint32_t imm24, Condition cond) {
|
|
ASSERT(is_uint24(imm24));
|
|
emit(cond | 15*B24 | imm24);
|
|
}
|
|
|
|
|
|
// Coprocessor instructions
|
|
void Assembler::cdp(Coprocessor coproc,
|
|
int opcode_1,
|
|
CRegister crd,
|
|
CRegister crn,
|
|
CRegister crm,
|
|
int opcode_2,
|
|
Condition cond) {
|
|
ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
|
|
emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
|
|
crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
|
|
}
|
|
|
|
|
|
void Assembler::cdp2(Coprocessor coproc,
|
|
int opcode_1,
|
|
CRegister crd,
|
|
CRegister crn,
|
|
CRegister crm,
|
|
int opcode_2) { // v5 and above
|
|
cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv));
|
|
}
|
|
|
|
|
|
void Assembler::mcr(Coprocessor coproc,
|
|
int opcode_1,
|
|
Register rd,
|
|
CRegister crn,
|
|
CRegister crm,
|
|
int opcode_2,
|
|
Condition cond) {
|
|
ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
|
|
emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
|
|
rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
|
|
}
|
|
|
|
|
|
void Assembler::mcr2(Coprocessor coproc,
|
|
int opcode_1,
|
|
Register rd,
|
|
CRegister crn,
|
|
CRegister crm,
|
|
int opcode_2) { // v5 and above
|
|
mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
|
|
}
|
|
|
|
|
|
void Assembler::mrc(Coprocessor coproc,
|
|
int opcode_1,
|
|
Register rd,
|
|
CRegister crn,
|
|
CRegister crm,
|
|
int opcode_2,
|
|
Condition cond) {
|
|
ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
|
|
emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
|
|
rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
|
|
}
|
|
|
|
|
|
void Assembler::mrc2(Coprocessor coproc,
|
|
int opcode_1,
|
|
Register rd,
|
|
CRegister crn,
|
|
CRegister crm,
|
|
int opcode_2) { // v5 and above
|
|
mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv));
|
|
}
|
|
|
|
|
|
void Assembler::ldc(Coprocessor coproc,
|
|
CRegister crd,
|
|
const MemOperand& src,
|
|
LFlag l,
|
|
Condition cond) {
|
|
addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
|
|
}
|
|
|
|
|
|
void Assembler::ldc(Coprocessor coproc,
|
|
CRegister crd,
|
|
Register rn,
|
|
int option,
|
|
LFlag l,
|
|
Condition cond) {
|
|
// unindexed addressing
|
|
ASSERT(is_uint8(option));
|
|
emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
|
|
coproc*B8 | (option & 255));
|
|
}
|
|
|
|
|
|
void Assembler::ldc2(Coprocessor coproc,
|
|
CRegister crd,
|
|
const MemOperand& src,
|
|
LFlag l) { // v5 and above
|
|
ldc(coproc, crd, src, l, static_cast<Condition>(nv));
|
|
}
|
|
|
|
|
|
void Assembler::ldc2(Coprocessor coproc,
|
|
CRegister crd,
|
|
Register rn,
|
|
int option,
|
|
LFlag l) { // v5 and above
|
|
ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
|
|
}
|
|
|
|
|
|
void Assembler::stc(Coprocessor coproc,
|
|
CRegister crd,
|
|
const MemOperand& dst,
|
|
LFlag l,
|
|
Condition cond) {
|
|
addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst);
|
|
}
|
|
|
|
|
|
void Assembler::stc(Coprocessor coproc,
|
|
CRegister crd,
|
|
Register rn,
|
|
int option,
|
|
LFlag l,
|
|
Condition cond) {
|
|
// unindexed addressing
|
|
ASSERT(is_uint8(option));
|
|
emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 |
|
|
coproc*B8 | (option & 255));
|
|
}
|
|
|
|
|
|
void Assembler::stc2(Coprocessor
|
|
coproc, CRegister crd,
|
|
const MemOperand& dst,
|
|
LFlag l) { // v5 and above
|
|
stc(coproc, crd, dst, l, static_cast<Condition>(nv));
|
|
}
|
|
|
|
|
|
void Assembler::stc2(Coprocessor coproc,
|
|
CRegister crd,
|
|
Register rn,
|
|
int option,
|
|
LFlag l) { // v5 and above
|
|
stc(coproc, crd, rn, option, l, static_cast<Condition>(nv));
|
|
}
|
|
|
|
|
|
// Pseudo instructions
|
|
void Assembler::lea(Register dst,
|
|
const MemOperand& x,
|
|
SBit s,
|
|
Condition cond) {
|
|
int am = x.am_;
|
|
if (!x.rm_.is_valid()) {
|
|
// immediate offset
|
|
if ((am & P) == 0) // post indexing
|
|
mov(dst, Operand(x.rn_), s, cond);
|
|
else if ((am & U) == 0) // negative indexing
|
|
sub(dst, x.rn_, Operand(x.offset_), s, cond);
|
|
else
|
|
add(dst, x.rn_, Operand(x.offset_), s, cond);
|
|
} else {
|
|
// Register offset (shift_imm_ and shift_op_ are 0) or scaled
|
|
// register offset the constructors make sure than both shift_imm_
|
|
// and shift_op_ are initialized.
|
|
ASSERT(!x.rm_.is(pc));
|
|
if ((am & P) == 0) // post indexing
|
|
mov(dst, Operand(x.rn_), s, cond);
|
|
else if ((am & U) == 0) // negative indexing
|
|
sub(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond);
|
|
else
|
|
add(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond);
|
|
}
|
|
}
|
|
|
|
|
|
// Debugging
|
|
void Assembler::RecordComment(const char* msg) {
|
|
if (FLAG_debug_code) {
|
|
CheckBuffer();
|
|
RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::RecordPosition(int pos) {
|
|
if (pos == RelocInfo::kNoPosition) return;
|
|
ASSERT(pos >= 0);
|
|
if (pos == last_position_) return;
|
|
CheckBuffer();
|
|
RecordRelocInfo(RelocInfo::POSITION, pos);
|
|
last_position_ = pos;
|
|
last_position_is_statement_ = false;
|
|
}
|
|
|
|
|
|
void Assembler::RecordStatementPosition(int pos) {
|
|
if (pos == last_position_) return;
|
|
CheckBuffer();
|
|
RecordRelocInfo(RelocInfo::STATEMENT_POSITION, pos);
|
|
last_position_ = pos;
|
|
last_position_is_statement_ = true;
|
|
}
|
|
|
|
|
|
void Assembler::GrowBuffer() {
|
|
if (!own_buffer_) FATAL("external code buffer is too small");
|
|
|
|
// compute new buffer size
|
|
CodeDesc desc; // the new buffer
|
|
if (buffer_size_ < 4*KB) {
|
|
desc.buffer_size = 4*KB;
|
|
} else if (buffer_size_ < 1*MB) {
|
|
desc.buffer_size = 2*buffer_size_;
|
|
} else {
|
|
desc.buffer_size = buffer_size_ + 1*MB;
|
|
}
|
|
CHECK_GT(desc.buffer_size, 0); // no overflow
|
|
|
|
// setup new buffer
|
|
desc.buffer = NewArray<byte>(desc.buffer_size);
|
|
|
|
desc.instr_size = pc_offset();
|
|
desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
|
|
|
|
// copy the data
|
|
int pc_delta = desc.buffer - buffer_;
|
|
int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
|
|
memmove(desc.buffer, buffer_, desc.instr_size);
|
|
memmove(reloc_info_writer.pos() + rc_delta,
|
|
reloc_info_writer.pos(), desc.reloc_size);
|
|
|
|
// switch buffers
|
|
DeleteArray(buffer_);
|
|
buffer_ = desc.buffer;
|
|
buffer_size_ = desc.buffer_size;
|
|
pc_ += pc_delta;
|
|
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
|
|
reloc_info_writer.last_pc() + pc_delta);
|
|
|
|
// none of our relocation types are pc relative pointing outside the code
|
|
// buffer nor pc absolute pointing inside the code buffer, so there is no need
|
|
// to relocate any emitted relocation entries
|
|
|
|
// relocate pending relocation entries
|
|
for (int i = 0; i < num_prinfo_; i++) {
|
|
RelocInfo& rinfo = prinfo_[i];
|
|
ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
|
|
rinfo.rmode() != RelocInfo::POSITION);
|
|
rinfo.set_pc(rinfo.pc() + pc_delta);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
|
|
RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants
|
|
if (rmode >= RelocInfo::COMMENT && rmode <= RelocInfo::STATEMENT_POSITION) {
|
|
// adjust code for new modes
|
|
ASSERT(RelocInfo::IsComment(rmode) || RelocInfo::IsPosition(rmode));
|
|
// these modes do not need an entry in the constant pool
|
|
} else {
|
|
ASSERT(num_prinfo_ < kMaxNumPRInfo);
|
|
prinfo_[num_prinfo_++] = rinfo;
|
|
// Make sure the constant pool is not emitted in place of the next
|
|
// instruction for which we just recorded relocation info
|
|
BlockConstPoolBefore(pc_offset() + kInstrSize);
|
|
}
|
|
if (rinfo.rmode() != RelocInfo::NONE) {
|
|
// Don't record external references unless the heap will be serialized.
|
|
if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
|
|
!Serializer::enabled() &&
|
|
!FLAG_debug_code) {
|
|
return;
|
|
}
|
|
ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
|
|
reloc_info_writer.Write(&rinfo);
|
|
}
|
|
}
|
|
|
|
|
|
void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
|
|
// Calculate the offset of the next check. It will be overwritten
|
|
// when a const pool is generated or when const pools are being
|
|
// blocked for a specific range.
|
|
next_buffer_check_ = pc_offset() + kCheckConstInterval;
|
|
|
|
// There is nothing to do if there are no pending relocation info entries
|
|
if (num_prinfo_ == 0) return;
|
|
|
|
// We emit a constant pool at regular intervals of about kDistBetweenPools
|
|
// or when requested by parameter force_emit (e.g. after each function).
|
|
// We prefer not to emit a jump unless the max distance is reached or if we
|
|
// are running low on slots, which can happen if a lot of constants are being
|
|
// emitted (e.g. --debug-code and many static references).
|
|
int dist = pc_offset() - last_const_pool_end_;
|
|
if (!force_emit && dist < kMaxDistBetweenPools &&
|
|
(require_jump || dist < kDistBetweenPools) &&
|
|
// TODO(1236125): Cleanup the "magic" number below. We know that
|
|
// the code generation will test every kCheckConstIntervalInst.
|
|
// Thus we are safe as long as we generate less than 7 constant
|
|
// entries per instruction.
|
|
(num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) {
|
|
return;
|
|
}
|
|
|
|
// If we did not return by now, we need to emit the constant pool soon.
|
|
|
|
// However, some small sequences of instructions must not be broken up by the
|
|
// insertion of a constant pool; such sequences are protected by setting
|
|
// no_const_pool_before_, which is checked here. Also, recursive calls to
|
|
// CheckConstPool are blocked by no_const_pool_before_.
|
|
if (pc_offset() < no_const_pool_before_) {
|
|
// Emission is currently blocked; make sure we try again as soon as possible
|
|
next_buffer_check_ = no_const_pool_before_;
|
|
|
|
// Something is wrong if emission is forced and blocked at the same time
|
|
ASSERT(!force_emit);
|
|
return;
|
|
}
|
|
|
|
int jump_instr = require_jump ? kInstrSize : 0;
|
|
|
|
// Check that the code buffer is large enough before emitting the constant
|
|
// pool and relocation information (include the jump over the pool and the
|
|
// constant pool marker).
|
|
int max_needed_space =
|
|
jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize);
|
|
while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer();
|
|
|
|
// Block recursive calls to CheckConstPool
|
|
BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize +
|
|
num_prinfo_*kInstrSize);
|
|
// Don't bother to check for the emit calls below.
|
|
next_buffer_check_ = no_const_pool_before_;
|
|
|
|
// Emit jump over constant pool if necessary
|
|
Label after_pool;
|
|
if (require_jump) b(&after_pool);
|
|
|
|
RecordComment("[ Constant Pool");
|
|
|
|
// Put down constant pool marker
|
|
// "Undefined instruction" as specified by A3.1 Instruction set encoding
|
|
emit(0x03000000 | num_prinfo_);
|
|
|
|
// Emit constant pool entries
|
|
for (int i = 0; i < num_prinfo_; i++) {
|
|
RelocInfo& rinfo = prinfo_[i];
|
|
ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
|
|
rinfo.rmode() != RelocInfo::POSITION &&
|
|
rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
|
|
Instr instr = instr_at(rinfo.pc());
|
|
// Instruction to patch must be a ldr/str [pc, #offset]
|
|
// P and U set, B and W clear, Rn == pc, offset12 still 0
|
|
ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) ==
|
|
(2*B25 | P | U | pc.code()*B16));
|
|
int delta = pc_ - rinfo.pc() - 8;
|
|
ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32
|
|
if (delta < 0) {
|
|
instr &= ~U;
|
|
delta = -delta;
|
|
}
|
|
ASSERT(is_uint12(delta));
|
|
instr_at_put(rinfo.pc(), instr + delta);
|
|
emit(rinfo.data());
|
|
}
|
|
num_prinfo_ = 0;
|
|
last_const_pool_end_ = pc_offset();
|
|
|
|
RecordComment("]");
|
|
|
|
if (after_pool.is_linked()) {
|
|
bind(&after_pool);
|
|
}
|
|
|
|
// Since a constant pool was just emitted, move the check offset forward by
|
|
// the standard interval.
|
|
next_buffer_check_ = pc_offset() + kCheckConstInterval;
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|