v8/src/deoptimizer.cc
2014-07-30 16:21:36 +00:00

3680 lines
134 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/accessors.h"
#include "src/codegen.h"
#include "src/deoptimizer.h"
#include "src/disasm.h"
#include "src/full-codegen.h"
#include "src/global-handles.h"
#include "src/macro-assembler.h"
#include "src/prettyprinter.h"
namespace v8 {
namespace internal {
static MemoryChunk* AllocateCodeChunk(MemoryAllocator* allocator) {
return allocator->AllocateChunk(Deoptimizer::GetMaxDeoptTableSize(),
base::OS::CommitPageSize(),
#if defined(__native_client__)
// The Native Client port of V8 uses an interpreter,
// so code pages don't need PROT_EXEC.
NOT_EXECUTABLE,
#else
EXECUTABLE,
#endif
NULL);
}
DeoptimizerData::DeoptimizerData(MemoryAllocator* allocator)
: allocator_(allocator),
deoptimized_frame_info_(NULL),
current_(NULL) {
for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
deopt_entry_code_entries_[i] = -1;
deopt_entry_code_[i] = AllocateCodeChunk(allocator);
}
}
DeoptimizerData::~DeoptimizerData() {
for (int i = 0; i < Deoptimizer::kBailoutTypesWithCodeEntry; ++i) {
allocator_->Free(deopt_entry_code_[i]);
deopt_entry_code_[i] = NULL;
}
}
void DeoptimizerData::Iterate(ObjectVisitor* v) {
if (deoptimized_frame_info_ != NULL) {
deoptimized_frame_info_->Iterate(v);
}
}
Code* Deoptimizer::FindDeoptimizingCode(Address addr) {
if (function_->IsHeapObject()) {
// Search all deoptimizing code in the native context of the function.
Context* native_context = function_->context()->native_context();
Object* element = native_context->DeoptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
CHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
if (code->contains(addr)) return code;
element = code->next_code_link();
}
}
return NULL;
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
Deoptimizer* Deoptimizer::New(JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Isolate* isolate) {
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
function,
type,
bailout_id,
from,
fp_to_sp_delta,
NULL);
CHECK(isolate->deoptimizer_data()->current_ == NULL);
isolate->deoptimizer_data()->current_ = deoptimizer;
return deoptimizer;
}
// No larger than 2K on all platforms
static const int kDeoptTableMaxEpilogueCodeSize = 2 * KB;
size_t Deoptimizer::GetMaxDeoptTableSize() {
int entries_size =
Deoptimizer::kMaxNumberOfEntries * Deoptimizer::table_entry_size_;
int commit_page_size = static_cast<int>(base::OS::CommitPageSize());
int page_count = ((kDeoptTableMaxEpilogueCodeSize + entries_size - 1) /
commit_page_size) + 1;
return static_cast<size_t>(commit_page_size * page_count);
}
Deoptimizer* Deoptimizer::Grab(Isolate* isolate) {
Deoptimizer* result = isolate->deoptimizer_data()->current_;
CHECK_NE(result, NULL);
result->DeleteFrameDescriptions();
isolate->deoptimizer_data()->current_ = NULL;
return result;
}
int Deoptimizer::ConvertJSFrameIndexToFrameIndex(int jsframe_index) {
if (jsframe_index == 0) return 0;
int frame_index = 0;
while (jsframe_index >= 0) {
FrameDescription* frame = output_[frame_index];
if (frame->GetFrameType() == StackFrame::JAVA_SCRIPT) {
jsframe_index--;
}
frame_index++;
}
return frame_index - 1;
}
DeoptimizedFrameInfo* Deoptimizer::DebuggerInspectableFrame(
JavaScriptFrame* frame,
int jsframe_index,
Isolate* isolate) {
CHECK(frame->is_optimized());
CHECK(isolate->deoptimizer_data()->deoptimized_frame_info_ == NULL);
// Get the function and code from the frame.
JSFunction* function = frame->function();
Code* code = frame->LookupCode();
// Locate the deoptimization point in the code. As we are at a call the
// return address must be at a place in the code with deoptimization support.
SafepointEntry safepoint_entry = code->GetSafepointEntry(frame->pc());
int deoptimization_index = safepoint_entry.deoptimization_index();
CHECK_NE(deoptimization_index, Safepoint::kNoDeoptimizationIndex);
// Always use the actual stack slots when calculating the fp to sp
// delta adding two for the function and context.
unsigned stack_slots = code->stack_slots();
unsigned fp_to_sp_delta = (stack_slots * kPointerSize) +
StandardFrameConstants::kFixedFrameSizeFromFp;
Deoptimizer* deoptimizer = new Deoptimizer(isolate,
function,
Deoptimizer::DEBUGGER,
deoptimization_index,
frame->pc(),
fp_to_sp_delta,
code);
Address tos = frame->fp() - fp_to_sp_delta;
deoptimizer->FillInputFrame(tos, frame);
// Calculate the output frames.
Deoptimizer::ComputeOutputFrames(deoptimizer);
// Create the GC safe output frame information and register it for GC
// handling.
CHECK_LT(jsframe_index, deoptimizer->jsframe_count());
// Convert JS frame index into frame index.
int frame_index = deoptimizer->ConvertJSFrameIndexToFrameIndex(jsframe_index);
bool has_arguments_adaptor =
frame_index > 0 &&
deoptimizer->output_[frame_index - 1]->GetFrameType() ==
StackFrame::ARGUMENTS_ADAPTOR;
int construct_offset = has_arguments_adaptor ? 2 : 1;
bool has_construct_stub =
frame_index >= construct_offset &&
deoptimizer->output_[frame_index - construct_offset]->GetFrameType() ==
StackFrame::CONSTRUCT;
DeoptimizedFrameInfo* info = new DeoptimizedFrameInfo(deoptimizer,
frame_index,
has_arguments_adaptor,
has_construct_stub);
isolate->deoptimizer_data()->deoptimized_frame_info_ = info;
// Get the "simulated" top and size for the requested frame.
FrameDescription* parameters_frame =
deoptimizer->output_[
has_arguments_adaptor ? (frame_index - 1) : frame_index];
uint32_t parameters_size = (info->parameters_count() + 1) * kPointerSize;
Address parameters_top = reinterpret_cast<Address>(
parameters_frame->GetTop() + (parameters_frame->GetFrameSize() -
parameters_size));
uint32_t expressions_size = info->expression_count() * kPointerSize;
Address expressions_top = reinterpret_cast<Address>(
deoptimizer->output_[frame_index]->GetTop());
// Done with the GC-unsafe frame descriptions. This re-enables allocation.
deoptimizer->DeleteFrameDescriptions();
// Allocate a heap number for the doubles belonging to this frame.
deoptimizer->MaterializeHeapNumbersForDebuggerInspectableFrame(
parameters_top, parameters_size, expressions_top, expressions_size, info);
// Finished using the deoptimizer instance.
delete deoptimizer;
return info;
}
void Deoptimizer::DeleteDebuggerInspectableFrame(DeoptimizedFrameInfo* info,
Isolate* isolate) {
CHECK_EQ(isolate->deoptimizer_data()->deoptimized_frame_info_, info);
delete info;
isolate->deoptimizer_data()->deoptimized_frame_info_ = NULL;
}
void Deoptimizer::GenerateDeoptimizationEntries(MacroAssembler* masm,
int count,
BailoutType type) {
TableEntryGenerator generator(masm, type, count);
generator.Generate();
}
void Deoptimizer::VisitAllOptimizedFunctionsForContext(
Context* context, OptimizedFunctionVisitor* visitor) {
DisallowHeapAllocation no_allocation;
CHECK(context->IsNativeContext());
visitor->EnterContext(context);
// Visit the list of optimized functions, removing elements that
// no longer refer to optimized code.
JSFunction* prev = NULL;
Object* element = context->OptimizedFunctionsListHead();
while (!element->IsUndefined()) {
JSFunction* function = JSFunction::cast(element);
Object* next = function->next_function_link();
if (function->code()->kind() != Code::OPTIMIZED_FUNCTION ||
(visitor->VisitFunction(function),
function->code()->kind() != Code::OPTIMIZED_FUNCTION)) {
// The function no longer refers to optimized code, or the visitor
// changed the code to which it refers to no longer be optimized code.
// Remove the function from this list.
if (prev != NULL) {
prev->set_next_function_link(next);
} else {
context->SetOptimizedFunctionsListHead(next);
}
// The visitor should not alter the link directly.
CHECK_EQ(function->next_function_link(), next);
// Set the next function link to undefined to indicate it is no longer
// in the optimized functions list.
function->set_next_function_link(context->GetHeap()->undefined_value());
} else {
// The visitor should not alter the link directly.
CHECK_EQ(function->next_function_link(), next);
// preserve this element.
prev = function;
}
element = next;
}
visitor->LeaveContext(context);
}
void Deoptimizer::VisitAllOptimizedFunctions(
Isolate* isolate,
OptimizedFunctionVisitor* visitor) {
DisallowHeapAllocation no_allocation;
// Run through the list of all native contexts.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
VisitAllOptimizedFunctionsForContext(Context::cast(context), visitor);
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
}
// Unlink functions referring to code marked for deoptimization, then move
// marked code from the optimized code list to the deoptimized code list,
// and patch code for lazy deopt.
void Deoptimizer::DeoptimizeMarkedCodeForContext(Context* context) {
DisallowHeapAllocation no_allocation;
// A "closure" that unlinks optimized code that is going to be
// deoptimized from the functions that refer to it.
class SelectedCodeUnlinker: public OptimizedFunctionVisitor {
public:
virtual void EnterContext(Context* context) { } // Don't care.
virtual void LeaveContext(Context* context) { } // Don't care.
virtual void VisitFunction(JSFunction* function) {
Code* code = function->code();
if (!code->marked_for_deoptimization()) return;
// Unlink this function and evict from optimized code map.
SharedFunctionInfo* shared = function->shared();
function->set_code(shared->code());
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer());
PrintF(scope.file(), "[deoptimizer unlinked: ");
function->PrintName(scope.file());
PrintF(scope.file(),
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
}
}
};
// Unlink all functions that refer to marked code.
SelectedCodeUnlinker unlinker;
VisitAllOptimizedFunctionsForContext(context, &unlinker);
Isolate* isolate = context->GetHeap()->isolate();
#ifdef DEBUG
Code* topmost_optimized_code = NULL;
bool safe_to_deopt_topmost_optimized_code = false;
// Make sure all activations of optimized code can deopt at their current PC.
// The topmost optimized code has special handling because it cannot be
// deoptimized due to weak object dependency.
for (StackFrameIterator it(isolate, isolate->thread_local_top());
!it.done(); it.Advance()) {
StackFrame::Type type = it.frame()->type();
if (type == StackFrame::OPTIMIZED) {
Code* code = it.frame()->LookupCode();
if (FLAG_trace_deopt) {
JSFunction* function =
static_cast<OptimizedFrame*>(it.frame())->function();
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimizer found activation of function: ");
function->PrintName(scope.file());
PrintF(scope.file(),
" / %" V8PRIxPTR "]\n", reinterpret_cast<intptr_t>(function));
}
SafepointEntry safepoint = code->GetSafepointEntry(it.frame()->pc());
int deopt_index = safepoint.deoptimization_index();
// Turbofan deopt is checked when we are patching addresses on stack.
bool turbofanned = code->is_turbofanned();
bool safe_to_deopt =
deopt_index != Safepoint::kNoDeoptimizationIndex || turbofanned;
CHECK(topmost_optimized_code == NULL || safe_to_deopt || turbofanned);
if (topmost_optimized_code == NULL) {
topmost_optimized_code = code;
safe_to_deopt_topmost_optimized_code = safe_to_deopt;
}
}
}
#endif
// Move marked code from the optimized code list to the deoptimized
// code list, collecting them into a ZoneList.
Zone zone(isolate);
ZoneList<Code*> codes(10, &zone);
// Walk over all optimized code objects in this native context.
Code* prev = NULL;
Object* element = context->OptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
Object* next = code->next_code_link();
if (code->marked_for_deoptimization()) {
// Put the code into the list for later patching.
codes.Add(code, &zone);
if (prev != NULL) {
// Skip this code in the optimized code list.
prev->set_next_code_link(next);
} else {
// There was no previous node, the next node is the new head.
context->SetOptimizedCodeListHead(next);
}
// Move the code to the _deoptimized_ code list.
code->set_next_code_link(context->DeoptimizedCodeListHead());
context->SetDeoptimizedCodeListHead(code);
} else {
// Not marked; preserve this element.
prev = code;
}
element = next;
}
if (FLAG_turbo_deoptimization) {
PatchStackForMarkedCode(isolate);
}
// TODO(titzer): we need a handle scope only because of the macro assembler,
// which is only used in EnsureCodeForDeoptimizationEntry.
HandleScope scope(isolate);
// Now patch all the codes for deoptimization.
for (int i = 0; i < codes.length(); i++) {
#ifdef DEBUG
if (codes[i] == topmost_optimized_code) {
ASSERT(safe_to_deopt_topmost_optimized_code);
}
#endif
// It is finally time to die, code object.
// Remove the code from optimized code map.
DeoptimizationInputData* deopt_data =
DeoptimizationInputData::cast(codes[i]->deoptimization_data());
SharedFunctionInfo* shared =
SharedFunctionInfo::cast(deopt_data->SharedFunctionInfo());
shared->EvictFromOptimizedCodeMap(codes[i], "deoptimized code");
// Do platform-specific patching to force any activations to lazy deopt.
//
// We skip patching Turbofan code - we patch return addresses on stack.
// TODO(jarin) We should still zap the code object (but we have to
// be careful not to zap the deoptimization block).
if (!codes[i]->is_turbofanned()) {
PatchCodeForDeoptimization(isolate, codes[i]);
// We might be in the middle of incremental marking with compaction.
// Tell collector to treat this code object in a special way and
// ignore all slots that might have been recorded on it.
isolate->heap()->mark_compact_collector()->InvalidateCode(codes[i]);
}
}
}
static int FindPatchAddressForReturnAddress(Code* code, int pc) {
DeoptimizationInputData* input_data =
DeoptimizationInputData::cast(code->deoptimization_data());
int patch_count = input_data->ReturnAddressPatchCount();
for (int i = 0; i < patch_count; i++) {
int return_pc = input_data->ReturnAddressPc(i)->value();
if (pc == return_pc) {
return input_data->PatchedAddressPc(i)->value();
}
}
return -1;
}
// For all marked Turbofanned code on stack, change the return address to go
// to the deoptimization block.
void Deoptimizer::PatchStackForMarkedCode(Isolate* isolate) {
// TODO(jarin) We should tolerate missing patch entry for the topmost frame.
for (StackFrameIterator it(isolate, isolate->thread_local_top()); !it.done();
it.Advance()) {
StackFrame::Type type = it.frame()->type();
if (type == StackFrame::OPTIMIZED) {
Code* code = it.frame()->LookupCode();
if (code->is_turbofanned() && code->marked_for_deoptimization()) {
JSFunction* function =
static_cast<OptimizedFrame*>(it.frame())->function();
Address* pc_address = it.frame()->pc_address();
int pc_offset =
static_cast<int>(*pc_address - code->instruction_start());
int new_pc_offset = FindPatchAddressForReturnAddress(code, pc_offset);
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[patching stack address for function: ");
function->PrintName(scope.file());
PrintF(scope.file(), " (Pc offset %i -> %i)]\n", pc_offset,
new_pc_offset);
}
CHECK_LE(0, new_pc_offset);
*pc_address += new_pc_offset - pc_offset;
}
}
}
}
void Deoptimizer::DeoptimizeAll(Isolate* isolate) {
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize all code in all contexts]\n");
}
DisallowHeapAllocation no_allocation;
// For all contexts, mark all code, then deoptimize.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
Context* native_context = Context::cast(context);
MarkAllCodeForContext(native_context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context->get(Context::NEXT_CONTEXT_LINK);
}
}
void Deoptimizer::DeoptimizeMarkedCode(Isolate* isolate) {
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(isolate->GetCodeTracer());
PrintF(scope.file(), "[deoptimize marked code in all contexts]\n");
}
DisallowHeapAllocation no_allocation;
// For all contexts, deoptimize code already marked.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
Context* native_context = Context::cast(context);
DeoptimizeMarkedCodeForContext(native_context);
context = native_context->get(Context::NEXT_CONTEXT_LINK);
}
}
void Deoptimizer::DeoptimizeGlobalObject(JSObject* object) {
if (FLAG_trace_deopt) {
CodeTracer::Scope scope(object->GetHeap()->isolate()->GetCodeTracer());
PrintF(scope.file(), "[deoptimize global object @ 0x%08" V8PRIxPTR "]\n",
reinterpret_cast<intptr_t>(object));
}
if (object->IsJSGlobalProxy()) {
PrototypeIterator iter(object->GetIsolate(), object);
// TODO(verwaest): This CHECK will be hit if the global proxy is detached.
CHECK(iter.GetCurrent()->IsJSGlobalObject());
Context* native_context =
GlobalObject::cast(iter.GetCurrent())->native_context();
MarkAllCodeForContext(native_context);
DeoptimizeMarkedCodeForContext(native_context);
} else if (object->IsGlobalObject()) {
Context* native_context = GlobalObject::cast(object)->native_context();
MarkAllCodeForContext(native_context);
DeoptimizeMarkedCodeForContext(native_context);
}
}
void Deoptimizer::MarkAllCodeForContext(Context* context) {
Object* element = context->OptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
CHECK_EQ(code->kind(), Code::OPTIMIZED_FUNCTION);
code->set_marked_for_deoptimization(true);
element = code->next_code_link();
}
}
void Deoptimizer::DeoptimizeFunction(JSFunction* function) {
Code* code = function->code();
if (code->kind() == Code::OPTIMIZED_FUNCTION) {
// Mark the code for deoptimization and unlink any functions that also
// refer to that code. The code cannot be shared across native contexts,
// so we only need to search one.
code->set_marked_for_deoptimization(true);
DeoptimizeMarkedCodeForContext(function->context()->native_context());
}
}
void Deoptimizer::ComputeOutputFrames(Deoptimizer* deoptimizer) {
deoptimizer->DoComputeOutputFrames();
}
bool Deoptimizer::TraceEnabledFor(BailoutType deopt_type,
StackFrame::Type frame_type) {
switch (deopt_type) {
case EAGER:
case SOFT:
case LAZY:
case DEBUGGER:
return (frame_type == StackFrame::STUB)
? FLAG_trace_stub_failures
: FLAG_trace_deopt;
}
FATAL("Unsupported deopt type");
return false;
}
const char* Deoptimizer::MessageFor(BailoutType type) {
switch (type) {
case EAGER: return "eager";
case SOFT: return "soft";
case LAZY: return "lazy";
case DEBUGGER: return "debugger";
}
FATAL("Unsupported deopt type");
return NULL;
}
Deoptimizer::Deoptimizer(Isolate* isolate,
JSFunction* function,
BailoutType type,
unsigned bailout_id,
Address from,
int fp_to_sp_delta,
Code* optimized_code)
: isolate_(isolate),
function_(function),
bailout_id_(bailout_id),
bailout_type_(type),
from_(from),
fp_to_sp_delta_(fp_to_sp_delta),
has_alignment_padding_(0),
input_(NULL),
output_count_(0),
jsframe_count_(0),
output_(NULL),
deferred_objects_tagged_values_(0),
deferred_objects_double_values_(0),
deferred_objects_(0),
deferred_heap_numbers_(0),
jsframe_functions_(0),
jsframe_has_adapted_arguments_(0),
materialized_values_(NULL),
materialized_objects_(NULL),
materialization_value_index_(0),
materialization_object_index_(0),
trace_scope_(NULL) {
// For COMPILED_STUBs called from builtins, the function pointer is a SMI
// indicating an internal frame.
if (function->IsSmi()) {
function = NULL;
}
ASSERT(from != NULL);
if (function != NULL && function->IsOptimized()) {
function->shared()->increment_deopt_count();
if (bailout_type_ == Deoptimizer::SOFT) {
isolate->counters()->soft_deopts_executed()->Increment();
// Soft deopts shouldn't count against the overall re-optimization count
// that can eventually lead to disabling optimization for a function.
int opt_count = function->shared()->opt_count();
if (opt_count > 0) opt_count--;
function->shared()->set_opt_count(opt_count);
}
}
compiled_code_ = FindOptimizedCode(function, optimized_code);
#if DEBUG
ASSERT(compiled_code_ != NULL);
if (type == EAGER || type == SOFT || type == LAZY) {
ASSERT(compiled_code_->kind() != Code::FUNCTION);
}
#endif
StackFrame::Type frame_type = function == NULL
? StackFrame::STUB
: StackFrame::JAVA_SCRIPT;
trace_scope_ = TraceEnabledFor(type, frame_type) ?
new CodeTracer::Scope(isolate->GetCodeTracer()) : NULL;
#ifdef DEBUG
CHECK(AllowHeapAllocation::IsAllowed());
disallow_heap_allocation_ = new DisallowHeapAllocation();
#endif // DEBUG
unsigned size = ComputeInputFrameSize();
input_ = new(size) FrameDescription(size, function);
input_->SetFrameType(frame_type);
}
Code* Deoptimizer::FindOptimizedCode(JSFunction* function,
Code* optimized_code) {
switch (bailout_type_) {
case Deoptimizer::SOFT:
case Deoptimizer::EAGER:
case Deoptimizer::LAZY: {
Code* compiled_code = FindDeoptimizingCode(from_);
return (compiled_code == NULL)
? static_cast<Code*>(isolate_->FindCodeObject(from_))
: compiled_code;
}
case Deoptimizer::DEBUGGER:
ASSERT(optimized_code->contains(from_));
return optimized_code;
}
FATAL("Could not find code for optimized function");
return NULL;
}
void Deoptimizer::PrintFunctionName() {
if (function_->IsJSFunction()) {
function_->PrintName(trace_scope_->file());
} else {
PrintF(trace_scope_->file(),
"%s", Code::Kind2String(compiled_code_->kind()));
}
}
Deoptimizer::~Deoptimizer() {
ASSERT(input_ == NULL && output_ == NULL);
ASSERT(disallow_heap_allocation_ == NULL);
delete trace_scope_;
}
void Deoptimizer::DeleteFrameDescriptions() {
delete input_;
for (int i = 0; i < output_count_; ++i) {
if (output_[i] != input_) delete output_[i];
}
delete[] output_;
input_ = NULL;
output_ = NULL;
#ifdef DEBUG
CHECK(!AllowHeapAllocation::IsAllowed());
CHECK(disallow_heap_allocation_ != NULL);
delete disallow_heap_allocation_;
disallow_heap_allocation_ = NULL;
#endif // DEBUG
}
Address Deoptimizer::GetDeoptimizationEntry(Isolate* isolate,
int id,
BailoutType type,
GetEntryMode mode) {
CHECK_GE(id, 0);
if (id >= kMaxNumberOfEntries) return NULL;
if (mode == ENSURE_ENTRY_CODE) {
EnsureCodeForDeoptimizationEntry(isolate, type, id);
} else {
CHECK_EQ(mode, CALCULATE_ENTRY_ADDRESS);
}
DeoptimizerData* data = isolate->deoptimizer_data();
CHECK_LT(type, kBailoutTypesWithCodeEntry);
MemoryChunk* base = data->deopt_entry_code_[type];
return base->area_start() + (id * table_entry_size_);
}
int Deoptimizer::GetDeoptimizationId(Isolate* isolate,
Address addr,
BailoutType type) {
DeoptimizerData* data = isolate->deoptimizer_data();
MemoryChunk* base = data->deopt_entry_code_[type];
Address start = base->area_start();
if (base == NULL ||
addr < start ||
addr >= start + (kMaxNumberOfEntries * table_entry_size_)) {
return kNotDeoptimizationEntry;
}
ASSERT_EQ(0,
static_cast<int>(addr - start) % table_entry_size_);
return static_cast<int>(addr - start) / table_entry_size_;
}
int Deoptimizer::GetOutputInfo(DeoptimizationOutputData* data,
BailoutId id,
SharedFunctionInfo* shared) {
// TODO(kasperl): For now, we do a simple linear search for the PC
// offset associated with the given node id. This should probably be
// changed to a binary search.
int length = data->DeoptPoints();
for (int i = 0; i < length; i++) {
if (data->AstId(i) == id) {
return data->PcAndState(i)->value();
}
}
OFStream os(stderr);
os << "[couldn't find pc offset for node=" << id.ToInt() << "]\n"
<< "[method: " << shared->DebugName()->ToCString().get() << "]\n"
<< "[source:\n" << SourceCodeOf(shared) << "\n]" << endl;
FATAL("unable to find pc offset during deoptimization");
return -1;
}
int Deoptimizer::GetDeoptimizedCodeCount(Isolate* isolate) {
int length = 0;
// Count all entries in the deoptimizing code list of every context.
Object* context = isolate->heap()->native_contexts_list();
while (!context->IsUndefined()) {
Context* native_context = Context::cast(context);
Object* element = native_context->DeoptimizedCodeListHead();
while (!element->IsUndefined()) {
Code* code = Code::cast(element);
ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
length++;
element = code->next_code_link();
}
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
return length;
}
// We rely on this function not causing a GC. It is called from generated code
// without having a real stack frame in place.
void Deoptimizer::DoComputeOutputFrames() {
// Print some helpful diagnostic information.
if (FLAG_log_timer_events &&
compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
LOG(isolate(), CodeDeoptEvent(compiled_code_));
}
base::ElapsedTimer timer;
// Determine basic deoptimization information. The optimized frame is
// described by the input data.
DeoptimizationInputData* input_data =
DeoptimizationInputData::cast(compiled_code_->deoptimization_data());
if (trace_scope_ != NULL) {
timer.Start();
PrintF(trace_scope_->file(),
"[deoptimizing (DEOPT %s): begin 0x%08" V8PRIxPTR " ",
MessageFor(bailout_type_),
reinterpret_cast<intptr_t>(function_));
PrintFunctionName();
PrintF(trace_scope_->file(),
" (opt #%d) @%d, FP to SP delta: %d]\n",
input_data->OptimizationId()->value(),
bailout_id_,
fp_to_sp_delta_);
if (bailout_type_ == EAGER || bailout_type_ == SOFT ||
(compiled_code_->is_hydrogen_stub())) {
compiled_code_->PrintDeoptLocation(trace_scope_->file(), bailout_id_);
}
}
BailoutId node_id = input_data->AstId(bailout_id_);
ByteArray* translations = input_data->TranslationByteArray();
unsigned translation_index =
input_data->TranslationIndex(bailout_id_)->value();
// Do the input frame to output frame(s) translation.
TranslationIterator iterator(translations, translation_index);
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator.Next());
ASSERT(Translation::BEGIN == opcode);
USE(opcode);
// Read the number of output frames and allocate an array for their
// descriptions.
int count = iterator.Next();
iterator.Next(); // Drop JS frames count.
ASSERT(output_ == NULL);
output_ = new FrameDescription*[count];
for (int i = 0; i < count; ++i) {
output_[i] = NULL;
}
output_count_ = count;
Register fp_reg = JavaScriptFrame::fp_register();
stack_fp_ = reinterpret_cast<Address>(
input_->GetRegister(fp_reg.code()) +
has_alignment_padding_ * kPointerSize);
// Translate each output frame.
for (int i = 0; i < count; ++i) {
// Read the ast node id, function, and frame height for this output frame.
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator.Next());
switch (opcode) {
case Translation::JS_FRAME:
DoComputeJSFrame(&iterator, i);
jsframe_count_++;
break;
case Translation::ARGUMENTS_ADAPTOR_FRAME:
DoComputeArgumentsAdaptorFrame(&iterator, i);
break;
case Translation::CONSTRUCT_STUB_FRAME:
DoComputeConstructStubFrame(&iterator, i);
break;
case Translation::GETTER_STUB_FRAME:
DoComputeAccessorStubFrame(&iterator, i, false);
break;
case Translation::SETTER_STUB_FRAME:
DoComputeAccessorStubFrame(&iterator, i, true);
break;
case Translation::COMPILED_STUB_FRAME:
DoComputeCompiledStubFrame(&iterator, i);
break;
case Translation::BEGIN:
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::DOUBLE_REGISTER:
case Translation::STACK_SLOT:
case Translation::INT32_STACK_SLOT:
case Translation::UINT32_STACK_SLOT:
case Translation::DOUBLE_STACK_SLOT:
case Translation::LITERAL:
case Translation::ARGUMENTS_OBJECT:
default:
FATAL("Unsupported translation");
break;
}
}
// Print some helpful diagnostic information.
if (trace_scope_ != NULL) {
double ms = timer.Elapsed().InMillisecondsF();
int index = output_count_ - 1; // Index of the topmost frame.
JSFunction* function = output_[index]->GetFunction();
PrintF(trace_scope_->file(),
"[deoptimizing (%s): end 0x%08" V8PRIxPTR " ",
MessageFor(bailout_type_),
reinterpret_cast<intptr_t>(function));
PrintFunctionName();
PrintF(trace_scope_->file(),
" @%d => node=%d, pc=0x%08" V8PRIxPTR ", state=%s, alignment=%s,"
" took %0.3f ms]\n",
bailout_id_,
node_id.ToInt(),
output_[index]->GetPc(),
FullCodeGenerator::State2String(
static_cast<FullCodeGenerator::State>(
output_[index]->GetState()->value())),
has_alignment_padding_ ? "with padding" : "no padding",
ms);
}
}
void Deoptimizer::DoComputeJSFrame(TranslationIterator* iterator,
int frame_index) {
BailoutId node_id = BailoutId(iterator->Next());
JSFunction* function;
if (frame_index != 0) {
function = JSFunction::cast(ComputeLiteral(iterator->Next()));
} else {
int closure_id = iterator->Next();
USE(closure_id);
CHECK_EQ(Translation::kSelfLiteralId, closure_id);
function = function_;
}
unsigned height = iterator->Next();
unsigned height_in_bytes = height * kPointerSize;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(), " translating ");
function->PrintName(trace_scope_->file());
PrintF(trace_scope_->file(),
" => node=%d, height=%d\n", node_id.ToInt(), height_in_bytes);
}
// The 'fixed' part of the frame consists of the incoming parameters and
// the part described by JavaScriptFrameConstants.
unsigned fixed_frame_size = ComputeFixedSize(function);
unsigned input_frame_size = input_->GetFrameSize();
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::JAVA_SCRIPT);
bool is_bottommost = (0 == frame_index);
bool is_topmost = (output_count_ - 1 == frame_index);
CHECK(frame_index >= 0 && frame_index < output_count_);
CHECK_EQ(output_[frame_index], NULL);
output_[frame_index] = output_frame;
// The top address for the bottommost output frame can be computed from
// the input frame pointer and the output frame's height. For all
// subsequent output frames, it can be computed from the previous one's
// top address and the current frame's size.
Register fp_reg = JavaScriptFrame::fp_register();
intptr_t top_address;
if (is_bottommost) {
// Determine whether the input frame contains alignment padding.
has_alignment_padding_ =
(!compiled_code_->is_turbofanned() && HasAlignmentPadding(function))
? 1
: 0;
// 2 = context and function in the frame.
// If the optimized frame had alignment padding, adjust the frame pointer
// to point to the new position of the old frame pointer after padding
// is removed. Subtract 2 * kPointerSize for the context and function slots.
top_address = input_->GetRegister(fp_reg.code()) -
StandardFrameConstants::kFixedFrameSizeFromFp -
height_in_bytes + has_alignment_padding_ * kPointerSize;
} else {
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
}
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = function->shared()->formal_parameter_count() + 1;
unsigned output_offset = output_frame_size;
unsigned input_offset = input_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
input_offset -= (parameter_count * kPointerSize);
// There are no translation commands for the caller's pc and fp, the
// context, and the function. Synthesize their values and set them up
// explicitly.
//
// The caller's pc for the bottommost output frame is the same as in the
// input frame. For all subsequent output frames, it can be read from the
// previous one. This frame's pc can be computed from the non-optimized
// function code and AST id of the bailout.
output_offset -= kPCOnStackSize;
input_offset -= kPCOnStackSize;
intptr_t value;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetPc();
}
output_frame->SetCallerPc(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's pc\n",
top_address + output_offset, output_offset, value);
}
// The caller's frame pointer for the bottommost output frame is the same
// as in the input frame. For all subsequent output frames, it can be
// read from the previous one. Also compute and set this frame's frame
// pointer.
output_offset -= kFPOnStackSize;
input_offset -= kFPOnStackSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetFp();
}
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
ASSERT(!is_bottommost || (input_->GetRegister(fp_reg.code()) +
has_alignment_padding_ * kPointerSize) == fp_value);
output_frame->SetFp(fp_value);
if (is_topmost) output_frame->SetRegister(fp_reg.code(), fp_value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's fp\n",
fp_value, output_offset, value);
}
ASSERT(!is_bottommost || !has_alignment_padding_ ||
(fp_value & kPointerSize) != 0);
if (FLAG_enable_ool_constant_pool) {
// For the bottommost output frame the constant pool pointer can be gotten
// from the input frame. For subsequent output frames, it can be read from
// the previous frame.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = output_[frame_index - 1]->GetConstantPool();
}
output_frame->SetCallerConstantPool(output_offset, value);
if (trace_scope_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR "; caller's constant_pool\n",
top_address + output_offset, output_offset, value);
}
}
// For the bottommost output frame the context can be gotten from the input
// frame. For all subsequent output frames it can be gotten from the function
// so long as we don't inline functions that need local contexts.
Register context_reg = JavaScriptFrame::context_register();
output_offset -= kPointerSize;
input_offset -= kPointerSize;
if (is_bottommost) {
value = input_->GetFrameSlot(input_offset);
} else {
value = reinterpret_cast<intptr_t>(function->context());
}
output_frame->SetFrameSlot(output_offset, value);
output_frame->SetContext(value);
if (is_topmost) output_frame->SetRegister(context_reg.code(), value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR "; context\n",
top_address + output_offset, output_offset, value);
}
// The function was mentioned explicitly in the BEGIN_FRAME.
output_offset -= kPointerSize;
input_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
// The function for the bottommost output frame should also agree with the
// input frame.
ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value);
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR "; function\n",
top_address + output_offset, output_offset, value);
}
// Translate the rest of the frame.
for (unsigned i = 0; i < height; ++i) {
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
CHECK_EQ(0, output_offset);
// Compute this frame's PC, state, and continuation.
Code* non_optimized_code = function->shared()->code();
FixedArray* raw_data = non_optimized_code->deoptimization_data();
DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data);
Address start = non_optimized_code->instruction_start();
unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared());
unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state);
intptr_t pc_value = reinterpret_cast<intptr_t>(start + pc_offset);
output_frame->SetPc(pc_value);
// Update constant pool.
if (FLAG_enable_ool_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(non_optimized_code->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
if (is_topmost) {
Register constant_pool_reg =
JavaScriptFrame::constant_pool_pointer_register();
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
}
FullCodeGenerator::State state =
FullCodeGenerator::StateField::decode(pc_and_state);
output_frame->SetState(Smi::FromInt(state));
// Set the continuation for the topmost frame.
if (is_topmost && bailout_type_ != DEBUGGER) {
Builtins* builtins = isolate_->builtins();
Code* continuation = builtins->builtin(Builtins::kNotifyDeoptimized);
if (bailout_type_ == LAZY) {
continuation = builtins->builtin(Builtins::kNotifyLazyDeoptimized);
} else if (bailout_type_ == SOFT) {
continuation = builtins->builtin(Builtins::kNotifySoftDeoptimized);
} else {
CHECK_EQ(bailout_type_, EAGER);
}
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(continuation->entry()));
}
}
void Deoptimizer::DoComputeArgumentsAdaptorFrame(TranslationIterator* iterator,
int frame_index) {
JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
unsigned height = iterator->Next();
unsigned height_in_bytes = height * kPointerSize;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating arguments adaptor => height=%d\n", height_in_bytes);
}
unsigned fixed_frame_size = ArgumentsAdaptorFrameConstants::kFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::ARGUMENTS_ADAPTOR);
// Arguments adaptor can not be topmost or bottommost.
CHECK(frame_index > 0 && frame_index < output_count_ - 1);
CHECK(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous
// frame's top and this frame's size.
intptr_t top_address;
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = height;
unsigned output_offset = output_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's pc\n",
top_address + output_offset, output_offset, callers_pc);
}
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's fp\n",
fp_value, output_offset, value);
}
if (FLAG_enable_ool_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetConstantPool();
output_frame->SetCallerConstantPool(output_offset, value);
if (trace_scope_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR "; caller's constant_pool\n",
top_address + output_offset, output_offset, value);
}
}
// A marker value is used in place of the context.
output_offset -= kPointerSize;
intptr_t context = reinterpret_cast<intptr_t>(
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
output_frame->SetFrameSlot(output_offset, context);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; context (adaptor sentinel)\n",
top_address + output_offset, output_offset, context);
}
// The function was mentioned explicitly in the ARGUMENTS_ADAPTOR_FRAME.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; function\n",
top_address + output_offset, output_offset, value);
}
// Number of incoming arguments.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; argc (%d)\n",
top_address + output_offset, output_offset, value, height - 1);
}
ASSERT(0 == output_offset);
Builtins* builtins = isolate_->builtins();
Code* adaptor_trampoline =
builtins->builtin(Builtins::kArgumentsAdaptorTrampoline);
intptr_t pc_value = reinterpret_cast<intptr_t>(
adaptor_trampoline->instruction_start() +
isolate_->heap()->arguments_adaptor_deopt_pc_offset()->value());
output_frame->SetPc(pc_value);
if (FLAG_enable_ool_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(adaptor_trampoline->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeConstructStubFrame(TranslationIterator* iterator,
int frame_index) {
Builtins* builtins = isolate_->builtins();
Code* construct_stub = builtins->builtin(Builtins::kJSConstructStubGeneric);
JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next()));
unsigned height = iterator->Next();
unsigned height_in_bytes = height * kPointerSize;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating construct stub => height=%d\n", height_in_bytes);
}
unsigned fixed_frame_size = ConstructFrameConstants::kFrameSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, function);
output_frame->SetFrameType(StackFrame::CONSTRUCT);
// Construct stub can not be topmost or bottommost.
ASSERT(frame_index > 0 && frame_index < output_count_ - 1);
ASSERT(output_[frame_index] == NULL);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous
// frame's top and this frame's size.
intptr_t top_address;
top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
// Compute the incoming parameter translation.
int parameter_count = height;
unsigned output_offset = output_frame_size;
for (int i = 0; i < parameter_count; ++i) {
output_offset -= kPointerSize;
int deferred_object_index = deferred_objects_.length();
DoTranslateCommand(iterator, frame_index, output_offset);
// The allocated receiver of a construct stub frame is passed as the
// receiver parameter through the translation. It might be encoding
// a captured object, patch the slot address for a captured object.
if (i == 0 && deferred_objects_.length() > deferred_object_index) {
CHECK(!deferred_objects_[deferred_object_index].is_arguments());
deferred_objects_[deferred_object_index].patch_slot_address(top_address);
}
}
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's pc\n",
top_address + output_offset, output_offset, callers_pc);
}
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's fp\n",
fp_value, output_offset, value);
}
if (FLAG_enable_ool_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetConstantPool();
output_frame->SetCallerConstantPool(output_offset, value);
if (trace_scope_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's constant pool\n",
top_address + output_offset, output_offset, value);
}
}
// The context can be gotten from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetContext();
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; context\n",
top_address + output_offset, output_offset, value);
}
// A marker value is used in place of the function.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::CONSTRUCT));
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; function (construct sentinel)\n",
top_address + output_offset, output_offset, value);
}
// The output frame reflects a JSConstructStubGeneric frame.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(construct_stub);
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; code object\n",
top_address + output_offset, output_offset, value);
}
// Number of incoming arguments.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(height - 1));
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; argc (%d)\n",
top_address + output_offset, output_offset, value, height - 1);
}
// Constructor function being invoked by the stub (only present on some
// architectures, indicated by kConstructorOffset).
if (ConstructFrameConstants::kConstructorOffset != kMinInt) {
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(function);
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; constructor function\n",
top_address + output_offset, output_offset, value);
}
}
// The newly allocated object was passed as receiver in the artificial
// constructor stub environment created by HEnvironment::CopyForInlining().
output_offset -= kPointerSize;
value = output_frame->GetFrameSlot(output_frame_size - kPointerSize);
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; allocated receiver\n",
top_address + output_offset, output_offset, value);
}
CHECK_EQ(0, output_offset);
intptr_t pc = reinterpret_cast<intptr_t>(
construct_stub->instruction_start() +
isolate_->heap()->construct_stub_deopt_pc_offset()->value());
output_frame->SetPc(pc);
if (FLAG_enable_ool_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(construct_stub->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeAccessorStubFrame(TranslationIterator* iterator,
int frame_index,
bool is_setter_stub_frame) {
JSFunction* accessor = JSFunction::cast(ComputeLiteral(iterator->Next()));
// The receiver (and the implicit return value, if any) are expected in
// registers by the LoadIC/StoreIC, so they don't belong to the output stack
// frame. This means that we have to use a height of 0.
unsigned height = 0;
unsigned height_in_bytes = height * kPointerSize;
const char* kind = is_setter_stub_frame ? "setter" : "getter";
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating %s stub => height=%u\n", kind, height_in_bytes);
}
// We need 1 stack entry for the return address and enough entries for the
// StackFrame::INTERNAL (FP, context, frame type, code object and constant
// pool (if FLAG_enable_ool_constant_pool)- see MacroAssembler::EnterFrame).
// For a setter stub frame we need one additional entry for the implicit
// return value, see StoreStubCompiler::CompileStoreViaSetter.
unsigned fixed_frame_entries =
(StandardFrameConstants::kFixedFrameSize / kPointerSize) + 1 +
(is_setter_stub_frame ? 1 : 0);
unsigned fixed_frame_size = fixed_frame_entries * kPointerSize;
unsigned output_frame_size = height_in_bytes + fixed_frame_size;
// Allocate and store the output frame description.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, accessor);
output_frame->SetFrameType(StackFrame::INTERNAL);
// A frame for an accessor stub can not be the topmost or bottommost one.
CHECK(frame_index > 0 && frame_index < output_count_ - 1);
CHECK_EQ(output_[frame_index], NULL);
output_[frame_index] = output_frame;
// The top address of the frame is computed from the previous frame's top and
// this frame's size.
intptr_t top_address = output_[frame_index - 1]->GetTop() - output_frame_size;
output_frame->SetTop(top_address);
unsigned output_offset = output_frame_size;
// Read caller's PC from the previous frame.
output_offset -= kPCOnStackSize;
intptr_t callers_pc = output_[frame_index - 1]->GetPc();
output_frame->SetCallerPc(output_offset, callers_pc);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
" ; caller's pc\n",
top_address + output_offset, output_offset, callers_pc);
}
// Read caller's FP from the previous frame, and set this frame's FP.
output_offset -= kFPOnStackSize;
intptr_t value = output_[frame_index - 1]->GetFp();
output_frame->SetCallerFp(output_offset, value);
intptr_t fp_value = top_address + output_offset;
output_frame->SetFp(fp_value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
" ; caller's fp\n",
fp_value, output_offset, value);
}
if (FLAG_enable_ool_constant_pool) {
// Read the caller's constant pool from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetConstantPool();
output_frame->SetCallerConstantPool(output_offset, value);
if (trace_scope_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's constant pool\n",
top_address + output_offset, output_offset, value);
}
}
// The context can be gotten from the previous frame.
output_offset -= kPointerSize;
value = output_[frame_index - 1]->GetContext();
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
" ; context\n",
top_address + output_offset, output_offset, value);
}
// A marker value is used in place of the function.
output_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(Smi::FromInt(StackFrame::INTERNAL));
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
" ; function (%s sentinel)\n",
top_address + output_offset, output_offset, value, kind);
}
// Get Code object from accessor stub.
output_offset -= kPointerSize;
Builtins::Name name = is_setter_stub_frame ?
Builtins::kStoreIC_Setter_ForDeopt :
Builtins::kLoadIC_Getter_ForDeopt;
Code* accessor_stub = isolate_->builtins()->builtin(name);
value = reinterpret_cast<intptr_t>(accessor_stub);
output_frame->SetFrameSlot(output_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %u] <- 0x%08" V8PRIxPTR
" ; code object\n",
top_address + output_offset, output_offset, value);
}
// Skip receiver.
DoTranslateObjectAndSkip(iterator);
if (is_setter_stub_frame) {
// The implicit return value was part of the artificial setter stub
// environment.
output_offset -= kPointerSize;
DoTranslateCommand(iterator, frame_index, output_offset);
}
CHECK_EQ(output_offset, 0);
Smi* offset = is_setter_stub_frame ?
isolate_->heap()->setter_stub_deopt_pc_offset() :
isolate_->heap()->getter_stub_deopt_pc_offset();
intptr_t pc = reinterpret_cast<intptr_t>(
accessor_stub->instruction_start() + offset->value());
output_frame->SetPc(pc);
if (FLAG_enable_ool_constant_pool) {
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(accessor_stub->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
}
}
void Deoptimizer::DoComputeCompiledStubFrame(TranslationIterator* iterator,
int frame_index) {
//
// FROM TO
// | .... | | .... |
// +-------------------------+ +-------------------------+
// | JSFunction continuation | | JSFunction continuation |
// +-------------------------+ +-------------------------+
// | | saved frame (FP) | | saved frame (FP) |
// | +=========================+<-fpreg +=========================+<-fpreg
// | |constant pool (if ool_cp)| |constant pool (if ool_cp)|
// | +-------------------------+ +-------------------------|
// | | JSFunction context | | JSFunction context |
// v +-------------------------+ +-------------------------|
// | COMPILED_STUB marker | | STUB_FAILURE marker |
// +-------------------------+ +-------------------------+
// | | | caller args.arguments_ |
// | ... | +-------------------------+
// | | | caller args.length_ |
// |-------------------------|<-spreg +-------------------------+
// | caller args pointer |
// +-------------------------+
// | caller stack param 1 |
// parameters in registers +-------------------------+
// and spilled to stack | .... |
// +-------------------------+
// | caller stack param n |
// +-------------------------+<-spreg
// reg = number of parameters
// reg = failure handler address
// reg = saved frame
// reg = JSFunction context
//
CHECK(compiled_code_->is_hydrogen_stub());
int major_key = CodeStub::GetMajorKey(compiled_code_);
CodeStubInterfaceDescriptor* descriptor =
isolate_->code_stub_interface_descriptor(major_key);
// The output frame must have room for all pushed register parameters
// and the standard stack frame slots. Include space for an argument
// object to the callee and optionally the space to pass the argument
// object to the stub failure handler.
int param_count = descriptor->GetEnvironmentParameterCount();
CHECK_GE(param_count, 0);
int height_in_bytes = kPointerSize * param_count + sizeof(Arguments) +
kPointerSize;
int fixed_frame_size = StandardFrameConstants::kFixedFrameSize;
int input_frame_size = input_->GetFrameSize();
int output_frame_size = height_in_bytes + fixed_frame_size;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" translating %s => StubFailureTrampolineStub, height=%d\n",
CodeStub::MajorName(static_cast<CodeStub::Major>(major_key), false),
height_in_bytes);
}
// The stub failure trampoline is a single frame.
FrameDescription* output_frame =
new(output_frame_size) FrameDescription(output_frame_size, NULL);
output_frame->SetFrameType(StackFrame::STUB_FAILURE_TRAMPOLINE);
CHECK_EQ(frame_index, 0);
output_[frame_index] = output_frame;
// The top address for the output frame can be computed from the input
// frame pointer and the output frame's height. Subtract space for the
// context and function slots.
Register fp_reg = StubFailureTrampolineFrame::fp_register();
intptr_t top_address = input_->GetRegister(fp_reg.code()) -
StandardFrameConstants::kFixedFrameSizeFromFp - height_in_bytes;
output_frame->SetTop(top_address);
// Read caller's PC (JSFunction continuation) from the input frame.
unsigned input_frame_offset = input_frame_size - kPCOnStackSize;
unsigned output_frame_offset = output_frame_size - kFPOnStackSize;
intptr_t value = input_->GetFrameSlot(input_frame_offset);
output_frame->SetCallerPc(output_frame_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's pc\n",
top_address + output_frame_offset, output_frame_offset, value);
}
// Read caller's FP from the input frame, and set this frame's FP.
input_frame_offset -= kFPOnStackSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame_offset -= kFPOnStackSize;
output_frame->SetCallerFp(output_frame_offset, value);
intptr_t frame_ptr = input_->GetRegister(fp_reg.code());
output_frame->SetRegister(fp_reg.code(), frame_ptr);
output_frame->SetFp(frame_ptr);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's fp\n",
top_address + output_frame_offset, output_frame_offset, value);
}
if (FLAG_enable_ool_constant_pool) {
// Read the caller's constant pool from the input frame.
input_frame_offset -= kPointerSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame_offset -= kPointerSize;
output_frame->SetCallerConstantPool(output_frame_offset, value);
if (trace_scope_) {
PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; caller's constant_pool\n",
top_address + output_frame_offset, output_frame_offset, value);
}
}
// The context can be gotten from the input frame.
Register context_reg = StubFailureTrampolineFrame::context_register();
input_frame_offset -= kPointerSize;
value = input_->GetFrameSlot(input_frame_offset);
output_frame->SetRegister(context_reg.code(), value);
output_frame_offset -= kPointerSize;
output_frame->SetFrameSlot(output_frame_offset, value);
CHECK(reinterpret_cast<Object*>(value)->IsContext());
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; context\n",
top_address + output_frame_offset, output_frame_offset, value);
}
// A marker value is used in place of the function.
output_frame_offset -= kPointerSize;
value = reinterpret_cast<intptr_t>(
Smi::FromInt(StackFrame::STUB_FAILURE_TRAMPOLINE));
output_frame->SetFrameSlot(output_frame_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; function (stub failure sentinel)\n",
top_address + output_frame_offset, output_frame_offset, value);
}
intptr_t caller_arg_count = 0;
bool arg_count_known = !descriptor->stack_parameter_count().is_valid();
// Build the Arguments object for the caller's parameters and a pointer to it.
output_frame_offset -= kPointerSize;
int args_arguments_offset = output_frame_offset;
intptr_t the_hole = reinterpret_cast<intptr_t>(
isolate_->heap()->the_hole_value());
if (arg_count_known) {
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
(caller_arg_count - 1) * kPointerSize;
} else {
value = the_hole;
}
output_frame->SetFrameSlot(args_arguments_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; args.arguments %s\n",
top_address + args_arguments_offset, args_arguments_offset, value,
arg_count_known ? "" : "(the hole)");
}
output_frame_offset -= kPointerSize;
int length_frame_offset = output_frame_offset;
value = arg_count_known ? caller_arg_count : the_hole;
output_frame->SetFrameSlot(length_frame_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; args.length %s\n",
top_address + length_frame_offset, length_frame_offset, value,
arg_count_known ? "" : "(the hole)");
}
output_frame_offset -= kPointerSize;
value = frame_ptr + StandardFrameConstants::kCallerSPOffset -
(output_frame_size - output_frame_offset) + kPointerSize;
output_frame->SetFrameSlot(output_frame_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; args*\n",
top_address + output_frame_offset, output_frame_offset, value);
}
// Copy the register parameters to the failure frame.
int arguments_length_offset = -1;
for (int i = 0; i < param_count; ++i) {
output_frame_offset -= kPointerSize;
DoTranslateCommand(iterator, 0, output_frame_offset);
if (!arg_count_known &&
descriptor->IsEnvironmentParameterCountRegister(i)) {
arguments_length_offset = output_frame_offset;
}
}
CHECK_EQ(output_frame_offset, 0);
if (!arg_count_known) {
CHECK_GE(arguments_length_offset, 0);
// We know it's a smi because 1) the code stub guarantees the stack
// parameter count is in smi range, and 2) the DoTranslateCommand in the
// parameter loop above translated that to a tagged value.
Smi* smi_caller_arg_count = reinterpret_cast<Smi*>(
output_frame->GetFrameSlot(arguments_length_offset));
caller_arg_count = smi_caller_arg_count->value();
output_frame->SetFrameSlot(length_frame_offset, caller_arg_count);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; args.length\n",
top_address + length_frame_offset, length_frame_offset,
caller_arg_count);
}
value = frame_ptr + StandardFrameConstants::kCallerSPOffset +
(caller_arg_count - 1) * kPointerSize;
output_frame->SetFrameSlot(args_arguments_offset, value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08"
V8PRIxPTR " ; args.arguments\n",
top_address + args_arguments_offset, args_arguments_offset,
value);
}
}
// Copy the double registers from the input into the output frame.
CopyDoubleRegisters(output_frame);
// Fill registers containing handler and number of parameters.
SetPlatformCompiledStubRegisters(output_frame, descriptor);
// Compute this frame's PC, state, and continuation.
Code* trampoline = NULL;
StubFunctionMode function_mode = descriptor->function_mode();
StubFailureTrampolineStub(isolate_,
function_mode).FindCodeInCache(&trampoline);
ASSERT(trampoline != NULL);
output_frame->SetPc(reinterpret_cast<intptr_t>(
trampoline->instruction_start()));
if (FLAG_enable_ool_constant_pool) {
Register constant_pool_reg =
StubFailureTrampolineFrame::constant_pool_pointer_register();
intptr_t constant_pool_value =
reinterpret_cast<intptr_t>(trampoline->constant_pool());
output_frame->SetConstantPool(constant_pool_value);
output_frame->SetRegister(constant_pool_reg.code(), constant_pool_value);
}
output_frame->SetState(Smi::FromInt(FullCodeGenerator::NO_REGISTERS));
Code* notify_failure =
isolate_->builtins()->builtin(Builtins::kNotifyStubFailureSaveDoubles);
output_frame->SetContinuation(
reinterpret_cast<intptr_t>(notify_failure->entry()));
}
Handle<Object> Deoptimizer::MaterializeNextHeapObject() {
int object_index = materialization_object_index_++;
ObjectMaterializationDescriptor desc = deferred_objects_[object_index];
const int length = desc.object_length();
if (desc.duplicate_object() >= 0) {
// Found a previously materialized object by de-duplication.
object_index = desc.duplicate_object();
materialized_objects_->Add(Handle<Object>());
} else if (desc.is_arguments() && ArgumentsObjectIsAdapted(object_index)) {
// Use the arguments adapter frame we just built to materialize the
// arguments object. FunctionGetArguments can't throw an exception.
Handle<JSFunction> function = ArgumentsObjectFunction(object_index);
Handle<JSObject> arguments = Handle<JSObject>::cast(
Accessors::FunctionGetArguments(function));
materialized_objects_->Add(arguments);
// To keep consistent object counters, we still materialize the
// nested values (but we throw them away).
for (int i = 0; i < length; ++i) {
MaterializeNextValue();
}
} else if (desc.is_arguments()) {
// Construct an arguments object and copy the parameters to a newly
// allocated arguments object backing store.
Handle<JSFunction> function = ArgumentsObjectFunction(object_index);
Handle<JSObject> arguments =
isolate_->factory()->NewArgumentsObject(function, length);
Handle<FixedArray> array = isolate_->factory()->NewFixedArray(length);
ASSERT_EQ(array->length(), length);
arguments->set_elements(*array);
materialized_objects_->Add(arguments);
for (int i = 0; i < length; ++i) {
Handle<Object> value = MaterializeNextValue();
array->set(i, *value);
}
} else {
// Dispatch on the instance type of the object to be materialized.
// We also need to make sure that the representation of all fields
// in the given object are general enough to hold a tagged value.
Handle<Map> map = Map::GeneralizeAllFieldRepresentations(
Handle<Map>::cast(MaterializeNextValue()));
switch (map->instance_type()) {
case MUTABLE_HEAP_NUMBER_TYPE:
case HEAP_NUMBER_TYPE: {
// Reuse the HeapNumber value directly as it is already properly
// tagged and skip materializing the HeapNumber explicitly. Turn mutable
// heap numbers immutable.
Handle<Object> object = MaterializeNextValue();
if (object_index < prev_materialized_count_) {
materialized_objects_->Add(Handle<Object>(
previously_materialized_objects_->get(object_index), isolate_));
} else {
materialized_objects_->Add(object);
}
materialization_value_index_ += kDoubleSize / kPointerSize - 1;
break;
}
case JS_OBJECT_TYPE: {
Handle<JSObject> object =
isolate_->factory()->NewJSObjectFromMap(map, NOT_TENURED, false);
if (object_index < prev_materialized_count_) {
materialized_objects_->Add(Handle<Object>(
previously_materialized_objects_->get(object_index), isolate_));
} else {
materialized_objects_->Add(object);
}
Handle<Object> properties = MaterializeNextValue();
Handle<Object> elements = MaterializeNextValue();
object->set_properties(FixedArray::cast(*properties));
object->set_elements(FixedArrayBase::cast(*elements));
for (int i = 0; i < length - 3; ++i) {
Handle<Object> value = MaterializeNextValue();
FieldIndex index = FieldIndex::ForPropertyIndex(object->map(), i);
object->FastPropertyAtPut(index, *value);
}
break;
}
case JS_ARRAY_TYPE: {
Handle<JSArray> object =
isolate_->factory()->NewJSArray(0, map->elements_kind());
if (object_index < prev_materialized_count_) {
materialized_objects_->Add(Handle<Object>(
previously_materialized_objects_->get(object_index), isolate_));
} else {
materialized_objects_->Add(object);
}
Handle<Object> properties = MaterializeNextValue();
Handle<Object> elements = MaterializeNextValue();
Handle<Object> length = MaterializeNextValue();
object->set_properties(FixedArray::cast(*properties));
object->set_elements(FixedArrayBase::cast(*elements));
object->set_length(*length);
break;
}
default:
PrintF(stderr,
"[couldn't handle instance type %d]\n", map->instance_type());
FATAL("Unsupported instance type");
}
}
return materialized_objects_->at(object_index);
}
Handle<Object> Deoptimizer::MaterializeNextValue() {
int value_index = materialization_value_index_++;
Handle<Object> value = materialized_values_->at(value_index);
if (value->IsMutableHeapNumber()) {
HeapNumber::cast(*value)->set_map(isolate_->heap()->heap_number_map());
}
if (*value == isolate_->heap()->arguments_marker()) {
value = MaterializeNextHeapObject();
}
return value;
}
void Deoptimizer::MaterializeHeapObjects(JavaScriptFrameIterator* it) {
ASSERT_NE(DEBUGGER, bailout_type_);
MaterializedObjectStore* materialized_store =
isolate_->materialized_object_store();
previously_materialized_objects_ = materialized_store->Get(stack_fp_);
prev_materialized_count_ = previously_materialized_objects_.is_null() ?
0 : previously_materialized_objects_->length();
// Walk all JavaScript output frames with the given frame iterator.
for (int frame_index = 0; frame_index < jsframe_count(); ++frame_index) {
if (frame_index != 0) it->Advance();
JavaScriptFrame* frame = it->frame();
jsframe_functions_.Add(handle(frame->function(), isolate_));
jsframe_has_adapted_arguments_.Add(frame->has_adapted_arguments());
}
// Handlify all tagged object values before triggering any allocation.
List<Handle<Object> > values(deferred_objects_tagged_values_.length());
for (int i = 0; i < deferred_objects_tagged_values_.length(); ++i) {
values.Add(Handle<Object>(deferred_objects_tagged_values_[i], isolate_));
}
// Play it safe and clear all unhandlified values before we continue.
deferred_objects_tagged_values_.Clear();
// Materialize all heap numbers before looking at arguments because when the
// output frames are used to materialize arguments objects later on they need
// to already contain valid heap numbers.
for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
HeapNumberMaterializationDescriptor<Address> d = deferred_heap_numbers_[i];
Handle<Object> num = isolate_->factory()->NewNumber(d.value());
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
"Materialized a new heap number %p [%e] in slot %p\n",
reinterpret_cast<void*>(*num),
d.value(),
d.destination());
}
Memory::Object_at(d.destination()) = *num;
}
// Materialize all heap numbers required for arguments/captured objects.
for (int i = 0; i < deferred_objects_double_values_.length(); i++) {
HeapNumberMaterializationDescriptor<int> d =
deferred_objects_double_values_[i];
Handle<Object> num = isolate_->factory()->NewNumber(d.value());
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
"Materialized a new heap number %p [%e] for object at %d\n",
reinterpret_cast<void*>(*num),
d.value(),
d.destination());
}
ASSERT(values.at(d.destination())->IsTheHole());
values.Set(d.destination(), num);
}
// Play it safe and clear all object double values before we continue.
deferred_objects_double_values_.Clear();
// Materialize arguments/captured objects.
if (!deferred_objects_.is_empty()) {
List<Handle<Object> > materialized_objects(deferred_objects_.length());
materialized_objects_ = &materialized_objects;
materialized_values_ = &values;
while (materialization_object_index_ < deferred_objects_.length()) {
int object_index = materialization_object_index_;
ObjectMaterializationDescriptor descriptor =
deferred_objects_.at(object_index);
// Find a previously materialized object by de-duplication or
// materialize a new instance of the object if necessary. Store
// the materialized object into the frame slot.
Handle<Object> object = MaterializeNextHeapObject();
if (descriptor.slot_address() != NULL) {
Memory::Object_at(descriptor.slot_address()) = *object;
}
if (trace_scope_ != NULL) {
if (descriptor.is_arguments()) {
PrintF(trace_scope_->file(),
"Materialized %sarguments object of length %d for %p: ",
ArgumentsObjectIsAdapted(object_index) ? "(adapted) " : "",
Handle<JSObject>::cast(object)->elements()->length(),
reinterpret_cast<void*>(descriptor.slot_address()));
} else {
PrintF(trace_scope_->file(),
"Materialized captured object of size %d for %p: ",
Handle<HeapObject>::cast(object)->Size(),
reinterpret_cast<void*>(descriptor.slot_address()));
}
object->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(), "\n");
}
}
CHECK_EQ(materialization_object_index_, materialized_objects_->length());
CHECK_EQ(materialization_value_index_, materialized_values_->length());
}
if (prev_materialized_count_ > 0) {
materialized_store->Remove(stack_fp_);
}
}
void Deoptimizer::MaterializeHeapNumbersForDebuggerInspectableFrame(
Address parameters_top,
uint32_t parameters_size,
Address expressions_top,
uint32_t expressions_size,
DeoptimizedFrameInfo* info) {
CHECK_EQ(DEBUGGER, bailout_type_);
Address parameters_bottom = parameters_top + parameters_size;
Address expressions_bottom = expressions_top + expressions_size;
for (int i = 0; i < deferred_heap_numbers_.length(); i++) {
HeapNumberMaterializationDescriptor<Address> d = deferred_heap_numbers_[i];
// Check of the heap number to materialize actually belong to the frame
// being extracted.
Address slot = d.destination();
if (parameters_top <= slot && slot < parameters_bottom) {
Handle<Object> num = isolate_->factory()->NewNumber(d.value());
int index = (info->parameters_count() - 1) -
static_cast<int>(slot - parameters_top) / kPointerSize;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
"Materializing a new heap number %p [%e] in slot %p"
"for parameter slot #%d\n",
reinterpret_cast<void*>(*num),
d.value(),
d.destination(),
index);
}
info->SetParameter(index, *num);
} else if (expressions_top <= slot && slot < expressions_bottom) {
Handle<Object> num = isolate_->factory()->NewNumber(d.value());
int index = info->expression_count() - 1 -
static_cast<int>(slot - expressions_top) / kPointerSize;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
"Materializing a new heap number %p [%e] in slot %p"
"for expression slot #%d\n",
reinterpret_cast<void*>(*num),
d.value(),
d.destination(),
index);
}
info->SetExpression(index, *num);
}
}
}
static const char* TraceValueType(bool is_smi) {
if (is_smi) {
return "smi";
}
return "heap number";
}
void Deoptimizer::DoTranslateObjectAndSkip(TranslationIterator* iterator) {
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
case Translation::COMPILED_STUB_FRAME: {
FATAL("Unexpected frame start translation opcode");
return;
}
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::DOUBLE_REGISTER:
case Translation::STACK_SLOT:
case Translation::INT32_STACK_SLOT:
case Translation::UINT32_STACK_SLOT:
case Translation::DOUBLE_STACK_SLOT:
case Translation::LITERAL: {
// The value is not part of any materialized object, so we can ignore it.
iterator->Skip(Translation::NumberOfOperandsFor(opcode));
return;
}
case Translation::DUPLICATED_OBJECT: {
int object_index = iterator->Next();
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(), " skipping object ");
PrintF(trace_scope_->file(),
" ; duplicate of object #%d\n", object_index);
}
AddObjectDuplication(0, object_index);
return;
}
case Translation::ARGUMENTS_OBJECT:
case Translation::CAPTURED_OBJECT: {
int length = iterator->Next();
bool is_args = opcode == Translation::ARGUMENTS_OBJECT;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(), " skipping object ");
PrintF(trace_scope_->file(),
" ; object (length = %d, is_args = %d)\n", length, is_args);
}
AddObjectStart(0, length, is_args);
// We save the object values on the side and materialize the actual
// object after the deoptimized frame is built.
int object_index = deferred_objects_.length() - 1;
for (int i = 0; i < length; i++) {
DoTranslateObject(iterator, object_index, i);
}
return;
}
}
FATAL("Unexpected translation opcode");
}
void Deoptimizer::DoTranslateObject(TranslationIterator* iterator,
int object_index,
int field_index) {
disasm::NameConverter converter;
Address object_slot = deferred_objects_[object_index].slot_address();
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
case Translation::COMPILED_STUB_FRAME:
FATAL("Unexpected frame start translation opcode");
return;
case Translation::REGISTER: {
int input_reg = iterator->Next();
intptr_t input_value = input_->GetRegister(input_reg);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF(trace_scope_->file(),
"0x%08" V8PRIxPTR " ; %s ", input_value,
converter.NameOfCPURegister(input_reg));
reinterpret_cast<Object*>(input_value)->ShortPrint(
trace_scope_->file());
PrintF(trace_scope_->file(),
"\n");
}
AddObjectTaggedValue(input_value);
return;
}
case Translation::INT32_REGISTER: {
int input_reg = iterator->Next();
intptr_t value = input_->GetRegister(input_reg);
bool is_smi = Smi::IsValid(value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF(trace_scope_->file(),
"%" V8PRIdPTR " ; %s (%s)\n", value,
converter.NameOfCPURegister(input_reg),
TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
AddObjectTaggedValue(tagged_value);
} else {
double double_value = static_cast<double>(static_cast<int32_t>(value));
AddObjectDoubleValue(double_value);
}
return;
}
case Translation::UINT32_REGISTER: {
int input_reg = iterator->Next();
uintptr_t value = static_cast<uintptr_t>(input_->GetRegister(input_reg));
bool is_smi = (value <= static_cast<uintptr_t>(Smi::kMaxValue));
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF(trace_scope_->file(),
"%" V8PRIdPTR " ; uint %s (%s)\n", value,
converter.NameOfCPURegister(input_reg),
TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
AddObjectTaggedValue(tagged_value);
} else {
double double_value = static_cast<double>(static_cast<uint32_t>(value));
AddObjectDoubleValue(double_value);
}
return;
}
case Translation::DOUBLE_REGISTER: {
int input_reg = iterator->Next();
double value = input_->GetDoubleRegister(input_reg);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF(trace_scope_->file(),
"%e ; %s\n", value,
DoubleRegister::AllocationIndexToString(input_reg));
}
AddObjectDoubleValue(value);
return;
}
case Translation::STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
intptr_t input_value = input_->GetFrameSlot(input_offset);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF(trace_scope_->file(),
"0x%08" V8PRIxPTR " ; [sp + %d] ", input_value, input_offset);
reinterpret_cast<Object*>(input_value)->ShortPrint(
trace_scope_->file());
PrintF(trace_scope_->file(),
"\n");
}
AddObjectTaggedValue(input_value);
return;
}
case Translation::INT32_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
intptr_t value = input_->GetFrameSlot(input_offset);
bool is_smi = Smi::IsValid(value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF(trace_scope_->file(),
"%" V8PRIdPTR " ; [sp + %d] (%s)\n",
value, input_offset, TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
AddObjectTaggedValue(tagged_value);
} else {
double double_value = static_cast<double>(static_cast<int32_t>(value));
AddObjectDoubleValue(double_value);
}
return;
}
case Translation::UINT32_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
uintptr_t value =
static_cast<uintptr_t>(input_->GetFrameSlot(input_offset));
bool is_smi = (value <= static_cast<uintptr_t>(Smi::kMaxValue));
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF(trace_scope_->file(),
"%" V8PRIdPTR " ; [sp + %d] (uint %s)\n",
value, input_offset, TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
AddObjectTaggedValue(tagged_value);
} else {
double double_value = static_cast<double>(static_cast<uint32_t>(value));
AddObjectDoubleValue(double_value);
}
return;
}
case Translation::DOUBLE_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
double value = input_->GetDoubleFrameSlot(input_offset);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
PrintF(trace_scope_->file(),
"%e ; [sp + %d]\n", value, input_offset);
}
AddObjectDoubleValue(value);
return;
}
case Translation::LITERAL: {
Object* literal = ComputeLiteral(iterator->Next());
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" object @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
literal->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(),
" ; literal\n");
}
intptr_t value = reinterpret_cast<intptr_t>(literal);
AddObjectTaggedValue(value);
return;
}
case Translation::DUPLICATED_OBJECT: {
int object_index = iterator->Next();
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" nested @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(),
" ; duplicate of object #%d\n", object_index);
}
// Use the materialization marker value as a sentinel and fill in
// the object after the deoptimized frame is built.
intptr_t value = reinterpret_cast<intptr_t>(
isolate_->heap()->arguments_marker());
AddObjectDuplication(0, object_index);
AddObjectTaggedValue(value);
return;
}
case Translation::ARGUMENTS_OBJECT:
case Translation::CAPTURED_OBJECT: {
int length = iterator->Next();
bool is_args = opcode == Translation::ARGUMENTS_OBJECT;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" nested @0x%08" V8PRIxPTR ": [field #%d] <- ",
reinterpret_cast<intptr_t>(object_slot),
field_index);
isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(),
" ; object (length = %d, is_args = %d)\n", length, is_args);
}
// Use the materialization marker value as a sentinel and fill in
// the object after the deoptimized frame is built.
intptr_t value = reinterpret_cast<intptr_t>(
isolate_->heap()->arguments_marker());
AddObjectStart(0, length, is_args);
AddObjectTaggedValue(value);
// We save the object values on the side and materialize the actual
// object after the deoptimized frame is built.
int object_index = deferred_objects_.length() - 1;
for (int i = 0; i < length; i++) {
DoTranslateObject(iterator, object_index, i);
}
return;
}
}
FATAL("Unexpected translation opcode");
}
void Deoptimizer::DoTranslateCommand(TranslationIterator* iterator,
int frame_index,
unsigned output_offset) {
disasm::NameConverter converter;
// A GC-safe temporary placeholder that we can put in the output frame.
const intptr_t kPlaceholder = reinterpret_cast<intptr_t>(Smi::FromInt(0));
Translation::Opcode opcode =
static_cast<Translation::Opcode>(iterator->Next());
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
case Translation::COMPILED_STUB_FRAME:
FATAL("Unexpected translation opcode");
return;
case Translation::REGISTER: {
int input_reg = iterator->Next();
intptr_t input_value = input_->GetRegister(input_reg);
if (trace_scope_ != NULL) {
PrintF(
trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; %s ",
output_[frame_index]->GetTop() + output_offset,
output_offset,
input_value,
converter.NameOfCPURegister(input_reg));
reinterpret_cast<Object*>(input_value)->ShortPrint(
trace_scope_->file());
PrintF(trace_scope_->file(), "\n");
}
output_[frame_index]->SetFrameSlot(output_offset, input_value);
return;
}
case Translation::INT32_REGISTER: {
int input_reg = iterator->Next();
intptr_t value = input_->GetRegister(input_reg);
bool is_smi = Smi::IsValid(value);
if (trace_scope_ != NULL) {
PrintF(
trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIdPTR " ; %s (%s)\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
converter.NameOfCPURegister(input_reg),
TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<int32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::UINT32_REGISTER: {
int input_reg = iterator->Next();
uintptr_t value = static_cast<uintptr_t>(input_->GetRegister(input_reg));
bool is_smi = value <= static_cast<uintptr_t>(Smi::kMaxValue);
if (trace_scope_ != NULL) {
PrintF(
trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- %" V8PRIuPTR
" ; uint %s (%s)\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
converter.NameOfCPURegister(input_reg),
TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<uint32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::DOUBLE_REGISTER: {
int input_reg = iterator->Next();
double value = input_->GetDoubleRegister(input_reg);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- %e ; %s\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
DoubleRegister::AllocationIndexToString(input_reg));
}
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
return;
}
case Translation::STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
intptr_t input_value = input_->GetFrameSlot(input_offset);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": ",
output_[frame_index]->GetTop() + output_offset);
PrintF(trace_scope_->file(),
"[top + %d] <- 0x%08" V8PRIxPTR " ; [sp + %d] ",
output_offset,
input_value,
input_offset);
reinterpret_cast<Object*>(input_value)->ShortPrint(
trace_scope_->file());
PrintF(trace_scope_->file(), "\n");
}
output_[frame_index]->SetFrameSlot(output_offset, input_value);
return;
}
case Translation::INT32_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
intptr_t value = input_->GetFrameSlot(input_offset);
bool is_smi = Smi::IsValid(value);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": ",
output_[frame_index]->GetTop() + output_offset);
PrintF(trace_scope_->file(),
"[top + %d] <- %" V8PRIdPTR " ; [sp + %d] (%s)\n",
output_offset,
value,
input_offset,
TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<int32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::UINT32_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
uintptr_t value =
static_cast<uintptr_t>(input_->GetFrameSlot(input_offset));
bool is_smi = value <= static_cast<uintptr_t>(Smi::kMaxValue);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": ",
output_[frame_index]->GetTop() + output_offset);
PrintF(trace_scope_->file(),
"[top + %d] <- %" V8PRIuPTR " ; [sp + %d] (uint32 %s)\n",
output_offset,
value,
input_offset,
TraceValueType(is_smi));
}
if (is_smi) {
intptr_t tagged_value =
reinterpret_cast<intptr_t>(Smi::FromInt(static_cast<int>(value)));
output_[frame_index]->SetFrameSlot(output_offset, tagged_value);
} else {
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset,
static_cast<double>(static_cast<uint32_t>(value)));
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
}
return;
}
case Translation::DOUBLE_STACK_SLOT: {
int input_slot_index = iterator->Next();
unsigned input_offset = input_->GetOffsetFromSlotIndex(input_slot_index);
double value = input_->GetDoubleFrameSlot(input_offset);
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- %e ; [sp + %d]\n",
output_[frame_index]->GetTop() + output_offset,
output_offset,
value,
input_offset);
}
// We save the untagged value on the side and store a GC-safe
// temporary placeholder in the frame.
AddDoubleValue(output_[frame_index]->GetTop() + output_offset, value);
output_[frame_index]->SetFrameSlot(output_offset, kPlaceholder);
return;
}
case Translation::LITERAL: {
Object* literal = ComputeLiteral(iterator->Next());
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- ",
output_[frame_index]->GetTop() + output_offset,
output_offset);
literal->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(), " ; literal\n");
}
intptr_t value = reinterpret_cast<intptr_t>(literal);
output_[frame_index]->SetFrameSlot(output_offset, value);
return;
}
case Translation::DUPLICATED_OBJECT: {
int object_index = iterator->Next();
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- ",
output_[frame_index]->GetTop() + output_offset,
output_offset);
isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(),
" ; duplicate of object #%d\n", object_index);
}
// Use the materialization marker value as a sentinel and fill in
// the object after the deoptimized frame is built.
intptr_t value = reinterpret_cast<intptr_t>(
isolate_->heap()->arguments_marker());
AddObjectDuplication(output_[frame_index]->GetTop() + output_offset,
object_index);
output_[frame_index]->SetFrameSlot(output_offset, value);
return;
}
case Translation::ARGUMENTS_OBJECT:
case Translation::CAPTURED_OBJECT: {
int length = iterator->Next();
bool is_args = opcode == Translation::ARGUMENTS_OBJECT;
if (trace_scope_ != NULL) {
PrintF(trace_scope_->file(),
" 0x%08" V8PRIxPTR ": [top + %d] <- ",
output_[frame_index]->GetTop() + output_offset,
output_offset);
isolate_->heap()->arguments_marker()->ShortPrint(trace_scope_->file());
PrintF(trace_scope_->file(),
" ; object (length = %d, is_args = %d)\n", length, is_args);
}
// Use the materialization marker value as a sentinel and fill in
// the object after the deoptimized frame is built.
intptr_t value = reinterpret_cast<intptr_t>(
isolate_->heap()->arguments_marker());
AddObjectStart(output_[frame_index]->GetTop() + output_offset,
length, is_args);
output_[frame_index]->SetFrameSlot(output_offset, value);
// We save the object values on the side and materialize the actual
// object after the deoptimized frame is built.
int object_index = deferred_objects_.length() - 1;
for (int i = 0; i < length; i++) {
DoTranslateObject(iterator, object_index, i);
}
return;
}
}
}
unsigned Deoptimizer::ComputeInputFrameSize() const {
unsigned fixed_size = ComputeFixedSize(function_);
// The fp-to-sp delta already takes the context, constant pool pointer and the
// function into account so we have to avoid double counting them.
unsigned result = fixed_size + fp_to_sp_delta_ -
StandardFrameConstants::kFixedFrameSizeFromFp;
if (compiled_code_->kind() == Code::OPTIMIZED_FUNCTION) {
unsigned stack_slots = compiled_code_->stack_slots();
unsigned outgoing_size = ComputeOutgoingArgumentSize();
CHECK(result == fixed_size + (stack_slots * kPointerSize) + outgoing_size);
}
return result;
}
unsigned Deoptimizer::ComputeFixedSize(JSFunction* function) const {
// The fixed part of the frame consists of the return address, frame
// pointer, function, context, and all the incoming arguments.
return ComputeIncomingArgumentSize(function) +
StandardFrameConstants::kFixedFrameSize;
}
unsigned Deoptimizer::ComputeIncomingArgumentSize(JSFunction* function) const {
// The incoming arguments is the values for formal parameters and
// the receiver. Every slot contains a pointer.
if (function->IsSmi()) {
CHECK_EQ(Smi::cast(function), Smi::FromInt(StackFrame::STUB));
return 0;
}
unsigned arguments = function->shared()->formal_parameter_count() + 1;
return arguments * kPointerSize;
}
unsigned Deoptimizer::ComputeOutgoingArgumentSize() const {
DeoptimizationInputData* data = DeoptimizationInputData::cast(
compiled_code_->deoptimization_data());
unsigned height = data->ArgumentsStackHeight(bailout_id_)->value();
return height * kPointerSize;
}
Object* Deoptimizer::ComputeLiteral(int index) const {
DeoptimizationInputData* data = DeoptimizationInputData::cast(
compiled_code_->deoptimization_data());
FixedArray* literals = data->LiteralArray();
return literals->get(index);
}
void Deoptimizer::AddObjectStart(intptr_t slot, int length, bool is_args) {
ObjectMaterializationDescriptor object_desc(
reinterpret_cast<Address>(slot), jsframe_count_, length, -1, is_args);
deferred_objects_.Add(object_desc);
}
void Deoptimizer::AddObjectDuplication(intptr_t slot, int object_index) {
ObjectMaterializationDescriptor object_desc(
reinterpret_cast<Address>(slot), jsframe_count_, -1, object_index, false);
deferred_objects_.Add(object_desc);
}
void Deoptimizer::AddObjectTaggedValue(intptr_t value) {
deferred_objects_tagged_values_.Add(reinterpret_cast<Object*>(value));
}
void Deoptimizer::AddObjectDoubleValue(double value) {
deferred_objects_tagged_values_.Add(isolate()->heap()->the_hole_value());
HeapNumberMaterializationDescriptor<int> value_desc(
deferred_objects_tagged_values_.length() - 1, value);
deferred_objects_double_values_.Add(value_desc);
}
void Deoptimizer::AddDoubleValue(intptr_t slot_address, double value) {
HeapNumberMaterializationDescriptor<Address> value_desc(
reinterpret_cast<Address>(slot_address), value);
deferred_heap_numbers_.Add(value_desc);
}
void Deoptimizer::EnsureCodeForDeoptimizationEntry(Isolate* isolate,
BailoutType type,
int max_entry_id) {
// We cannot run this if the serializer is enabled because this will
// cause us to emit relocation information for the external
// references. This is fine because the deoptimizer's code section
// isn't meant to be serialized at all.
CHECK(type == EAGER || type == SOFT || type == LAZY);
DeoptimizerData* data = isolate->deoptimizer_data();
int entry_count = data->deopt_entry_code_entries_[type];
if (max_entry_id < entry_count) return;
entry_count = Max(entry_count, Deoptimizer::kMinNumberOfEntries);
while (max_entry_id >= entry_count) entry_count *= 2;
CHECK(entry_count <= Deoptimizer::kMaxNumberOfEntries);
MacroAssembler masm(isolate, NULL, 16 * KB);
masm.set_emit_debug_code(false);
GenerateDeoptimizationEntries(&masm, entry_count, type);
CodeDesc desc;
masm.GetCode(&desc);
ASSERT(!RelocInfo::RequiresRelocation(desc));
MemoryChunk* chunk = data->deopt_entry_code_[type];
CHECK(static_cast<int>(Deoptimizer::GetMaxDeoptTableSize()) >=
desc.instr_size);
chunk->CommitArea(desc.instr_size);
CopyBytes(chunk->area_start(), desc.buffer,
static_cast<size_t>(desc.instr_size));
CpuFeatures::FlushICache(chunk->area_start(), desc.instr_size);
data->deopt_entry_code_entries_[type] = entry_count;
}
FrameDescription::FrameDescription(uint32_t frame_size,
JSFunction* function)
: frame_size_(frame_size),
function_(function),
top_(kZapUint32),
pc_(kZapUint32),
fp_(kZapUint32),
context_(kZapUint32),
constant_pool_(kZapUint32) {
// Zap all the registers.
for (int r = 0; r < Register::kNumRegisters; r++) {
// TODO(jbramley): It isn't safe to use kZapUint32 here. If the register
// isn't used before the next safepoint, the GC will try to scan it as a
// tagged value. kZapUint32 looks like a valid tagged pointer, but it isn't.
SetRegister(r, kZapUint32);
}
// Zap all the slots.
for (unsigned o = 0; o < frame_size; o += kPointerSize) {
SetFrameSlot(o, kZapUint32);
}
}
int FrameDescription::ComputeFixedSize() {
return StandardFrameConstants::kFixedFrameSize +
(ComputeParametersCount() + 1) * kPointerSize;
}
unsigned FrameDescription::GetOffsetFromSlotIndex(int slot_index) {
if (slot_index >= 0) {
// Local or spill slots. Skip the fixed part of the frame
// including all arguments.
unsigned base = GetFrameSize() - ComputeFixedSize();
return base - ((slot_index + 1) * kPointerSize);
} else {
// Incoming parameter.
int arg_size = (ComputeParametersCount() + 1) * kPointerSize;
unsigned base = GetFrameSize() - arg_size;
return base - ((slot_index + 1) * kPointerSize);
}
}
int FrameDescription::ComputeParametersCount() {
switch (type_) {
case StackFrame::JAVA_SCRIPT:
return function_->shared()->formal_parameter_count();
case StackFrame::ARGUMENTS_ADAPTOR: {
// Last slot contains number of incomming arguments as a smi.
// Can't use GetExpression(0) because it would cause infinite recursion.
return reinterpret_cast<Smi*>(*GetFrameSlotPointer(0))->value();
}
case StackFrame::STUB:
return -1; // Minus receiver.
default:
FATAL("Unexpected stack frame type");
return 0;
}
}
Object* FrameDescription::GetParameter(int index) {
CHECK_GE(index, 0);
CHECK_LT(index, ComputeParametersCount());
// The slot indexes for incoming arguments are negative.
unsigned offset = GetOffsetFromSlotIndex(index - ComputeParametersCount());
return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}
unsigned FrameDescription::GetExpressionCount() {
CHECK_EQ(StackFrame::JAVA_SCRIPT, type_);
unsigned size = GetFrameSize() - ComputeFixedSize();
return size / kPointerSize;
}
Object* FrameDescription::GetExpression(int index) {
ASSERT_EQ(StackFrame::JAVA_SCRIPT, type_);
unsigned offset = GetOffsetFromSlotIndex(index);
return reinterpret_cast<Object*>(*GetFrameSlotPointer(offset));
}
void TranslationBuffer::Add(int32_t value, Zone* zone) {
// Encode the sign bit in the least significant bit.
bool is_negative = (value < 0);
uint32_t bits = ((is_negative ? -value : value) << 1) |
static_cast<int32_t>(is_negative);
// Encode the individual bytes using the least significant bit of
// each byte to indicate whether or not more bytes follow.
do {
uint32_t next = bits >> 7;
contents_.Add(((bits << 1) & 0xFF) | (next != 0), zone);
bits = next;
} while (bits != 0);
}
int32_t TranslationIterator::Next() {
// Run through the bytes until we reach one with a least significant
// bit of zero (marks the end).
uint32_t bits = 0;
for (int i = 0; true; i += 7) {
ASSERT(HasNext());
uint8_t next = buffer_->get(index_++);
bits |= (next >> 1) << i;
if ((next & 1) == 0) break;
}
// The bits encode the sign in the least significant bit.
bool is_negative = (bits & 1) == 1;
int32_t result = bits >> 1;
return is_negative ? -result : result;
}
Handle<ByteArray> TranslationBuffer::CreateByteArray(Factory* factory) {
int length = contents_.length();
Handle<ByteArray> result = factory->NewByteArray(length, TENURED);
MemCopy(result->GetDataStartAddress(), contents_.ToVector().start(), length);
return result;
}
void Translation::BeginConstructStubFrame(int literal_id, unsigned height) {
buffer_->Add(CONSTRUCT_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginGetterStubFrame(int literal_id) {
buffer_->Add(GETTER_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
}
void Translation::BeginSetterStubFrame(int literal_id) {
buffer_->Add(SETTER_STUB_FRAME, zone());
buffer_->Add(literal_id, zone());
}
void Translation::BeginArgumentsAdaptorFrame(int literal_id, unsigned height) {
buffer_->Add(ARGUMENTS_ADAPTOR_FRAME, zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginJSFrame(BailoutId node_id,
int literal_id,
unsigned height) {
buffer_->Add(JS_FRAME, zone());
buffer_->Add(node_id.ToInt(), zone());
buffer_->Add(literal_id, zone());
buffer_->Add(height, zone());
}
void Translation::BeginCompiledStubFrame() {
buffer_->Add(COMPILED_STUB_FRAME, zone());
}
void Translation::BeginArgumentsObject(int args_length) {
buffer_->Add(ARGUMENTS_OBJECT, zone());
buffer_->Add(args_length, zone());
}
void Translation::BeginCapturedObject(int length) {
buffer_->Add(CAPTURED_OBJECT, zone());
buffer_->Add(length, zone());
}
void Translation::DuplicateObject(int object_index) {
buffer_->Add(DUPLICATED_OBJECT, zone());
buffer_->Add(object_index, zone());
}
void Translation::StoreRegister(Register reg) {
buffer_->Add(REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreInt32Register(Register reg) {
buffer_->Add(INT32_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreUint32Register(Register reg) {
buffer_->Add(UINT32_REGISTER, zone());
buffer_->Add(reg.code(), zone());
}
void Translation::StoreDoubleRegister(DoubleRegister reg) {
buffer_->Add(DOUBLE_REGISTER, zone());
buffer_->Add(DoubleRegister::ToAllocationIndex(reg), zone());
}
void Translation::StoreStackSlot(int index) {
buffer_->Add(STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreInt32StackSlot(int index) {
buffer_->Add(INT32_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreUint32StackSlot(int index) {
buffer_->Add(UINT32_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreDoubleStackSlot(int index) {
buffer_->Add(DOUBLE_STACK_SLOT, zone());
buffer_->Add(index, zone());
}
void Translation::StoreLiteral(int literal_id) {
buffer_->Add(LITERAL, zone());
buffer_->Add(literal_id, zone());
}
void Translation::StoreArgumentsObject(bool args_known,
int args_index,
int args_length) {
buffer_->Add(ARGUMENTS_OBJECT, zone());
buffer_->Add(args_known, zone());
buffer_->Add(args_index, zone());
buffer_->Add(args_length, zone());
}
int Translation::NumberOfOperandsFor(Opcode opcode) {
switch (opcode) {
case GETTER_STUB_FRAME:
case SETTER_STUB_FRAME:
case DUPLICATED_OBJECT:
case ARGUMENTS_OBJECT:
case CAPTURED_OBJECT:
case REGISTER:
case INT32_REGISTER:
case UINT32_REGISTER:
case DOUBLE_REGISTER:
case STACK_SLOT:
case INT32_STACK_SLOT:
case UINT32_STACK_SLOT:
case DOUBLE_STACK_SLOT:
case LITERAL:
case COMPILED_STUB_FRAME:
return 1;
case BEGIN:
case ARGUMENTS_ADAPTOR_FRAME:
case CONSTRUCT_STUB_FRAME:
return 2;
case JS_FRAME:
return 3;
}
FATAL("Unexpected translation type");
return -1;
}
#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
const char* Translation::StringFor(Opcode opcode) {
#define TRANSLATION_OPCODE_CASE(item) case item: return #item;
switch (opcode) {
TRANSLATION_OPCODE_LIST(TRANSLATION_OPCODE_CASE)
}
#undef TRANSLATION_OPCODE_CASE
UNREACHABLE();
return "";
}
#endif
// We can't intermix stack decoding and allocations because
// deoptimization infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
SlotRef SlotRefValueBuilder::ComputeSlotForNextArgument(
Translation::Opcode opcode,
TranslationIterator* iterator,
DeoptimizationInputData* data,
JavaScriptFrame* frame) {
switch (opcode) {
case Translation::BEGIN:
case Translation::JS_FRAME:
case Translation::ARGUMENTS_ADAPTOR_FRAME:
case Translation::CONSTRUCT_STUB_FRAME:
case Translation::GETTER_STUB_FRAME:
case Translation::SETTER_STUB_FRAME:
// Peeled off before getting here.
break;
case Translation::DUPLICATED_OBJECT: {
return SlotRef::NewDuplicateObject(iterator->Next());
}
case Translation::ARGUMENTS_OBJECT:
return SlotRef::NewArgumentsObject(iterator->Next());
case Translation::CAPTURED_OBJECT: {
return SlotRef::NewDeferredObject(iterator->Next());
}
case Translation::REGISTER:
case Translation::INT32_REGISTER:
case Translation::UINT32_REGISTER:
case Translation::DOUBLE_REGISTER:
// We are at safepoint which corresponds to call. All registers are
// saved by caller so there would be no live registers at this
// point. Thus these translation commands should not be used.
break;
case Translation::STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::TAGGED);
}
case Translation::INT32_STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::INT32);
}
case Translation::UINT32_STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::UINT32);
}
case Translation::DOUBLE_STACK_SLOT: {
int slot_index = iterator->Next();
Address slot_addr = SlotAddress(frame, slot_index);
return SlotRef(slot_addr, SlotRef::DOUBLE);
}
case Translation::LITERAL: {
int literal_index = iterator->Next();
return SlotRef(data->GetIsolate(),
data->LiteralArray()->get(literal_index));
}
case Translation::COMPILED_STUB_FRAME:
UNREACHABLE();
break;
}
FATAL("We should never get here - unexpected deopt info.");
return SlotRef();
}
SlotRefValueBuilder::SlotRefValueBuilder(JavaScriptFrame* frame,
int inlined_jsframe_index,
int formal_parameter_count)
: current_slot_(0), args_length_(-1), first_slot_index_(-1) {
DisallowHeapAllocation no_gc;
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* data =
static_cast<OptimizedFrame*>(frame)->GetDeoptimizationData(&deopt_index);
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
CHECK_EQ(opcode, Translation::BEGIN);
it.Next(); // Drop frame count.
stack_frame_id_ = frame->fp();
int jsframe_count = it.Next();
CHECK_GT(jsframe_count, inlined_jsframe_index);
int jsframes_to_skip = inlined_jsframe_index;
int number_of_slots = -1; // Number of slots inside our frame (yet unknown)
bool should_deopt = false;
while (number_of_slots != 0) {
opcode = static_cast<Translation::Opcode>(it.Next());
bool processed = false;
if (opcode == Translation::ARGUMENTS_ADAPTOR_FRAME) {
if (jsframes_to_skip == 0) {
CHECK_EQ(Translation::NumberOfOperandsFor(opcode), 2);
it.Skip(1); // literal id
int height = it.Next();
// Skip the translation command for the receiver.
it.Skip(Translation::NumberOfOperandsFor(
static_cast<Translation::Opcode>(it.Next())));
// We reached the arguments adaptor frame corresponding to the
// inlined function in question. Number of arguments is height - 1.
first_slot_index_ = slot_refs_.length();
args_length_ = height - 1;
number_of_slots = height - 1;
processed = true;
}
} else if (opcode == Translation::JS_FRAME) {
if (jsframes_to_skip == 0) {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
// Skip the translation command for the receiver.
it.Skip(Translation::NumberOfOperandsFor(
static_cast<Translation::Opcode>(it.Next())));
// We reached the frame corresponding to the inlined function
// in question. Process the translation commands for the
// arguments. Number of arguments is equal to the number of
// format parameter count.
first_slot_index_ = slot_refs_.length();
args_length_ = formal_parameter_count;
number_of_slots = formal_parameter_count;
processed = true;
}
jsframes_to_skip--;
} else if (opcode != Translation::BEGIN &&
opcode != Translation::CONSTRUCT_STUB_FRAME &&
opcode != Translation::GETTER_STUB_FRAME &&
opcode != Translation::SETTER_STUB_FRAME &&
opcode != Translation::COMPILED_STUB_FRAME) {
slot_refs_.Add(ComputeSlotForNextArgument(opcode, &it, data, frame));
if (first_slot_index_ >= 0) {
// We have found the beginning of our frame -> make sure we count
// the nested slots of captured objects
number_of_slots--;
SlotRef& slot = slot_refs_.last();
CHECK_NE(slot.Representation(), SlotRef::ARGUMENTS_OBJECT);
number_of_slots += slot.GetChildrenCount();
if (slot.Representation() == SlotRef::DEFERRED_OBJECT ||
slot.Representation() == SlotRef::DUPLICATE_OBJECT) {
should_deopt = true;
}
}
processed = true;
}
if (!processed) {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
}
if (should_deopt) {
List<JSFunction*> functions(2);
frame->GetFunctions(&functions);
Deoptimizer::DeoptimizeFunction(functions[0]);
}
}
Handle<Object> SlotRef::GetValue(Isolate* isolate) {
switch (representation_) {
case TAGGED:
return Handle<Object>(Memory::Object_at(addr_), isolate);
case INT32: {
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
int value = Memory::int32_at(addr_ + kIntSize);
#else
int value = Memory::int32_at(addr_);
#endif
if (Smi::IsValid(value)) {
return Handle<Object>(Smi::FromInt(value), isolate);
} else {
return isolate->factory()->NewNumberFromInt(value);
}
}
case UINT32: {
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
uint32_t value = Memory::uint32_at(addr_ + kIntSize);
#else
uint32_t value = Memory::uint32_at(addr_);
#endif
if (value <= static_cast<uint32_t>(Smi::kMaxValue)) {
return Handle<Object>(Smi::FromInt(static_cast<int>(value)), isolate);
} else {
return isolate->factory()->NewNumber(static_cast<double>(value));
}
}
case DOUBLE: {
double value = read_double_value(addr_);
return isolate->factory()->NewNumber(value);
}
case LITERAL:
return literal_;
default:
FATAL("We should never get here - unexpected deopt info.");
return Handle<Object>::null();
}
}
void SlotRefValueBuilder::Prepare(Isolate* isolate) {
MaterializedObjectStore* materialized_store =
isolate->materialized_object_store();
previously_materialized_objects_ = materialized_store->Get(stack_frame_id_);
prev_materialized_count_ = previously_materialized_objects_.is_null()
? 0 : previously_materialized_objects_->length();
// Skip any materialized objects of the inlined "parent" frames.
// (Note that we still need to materialize them because they might be
// referred to as duplicated objects.)
while (current_slot_ < first_slot_index_) {
GetNext(isolate, 0);
}
CHECK_EQ(current_slot_, first_slot_index_);
}
Handle<Object> SlotRefValueBuilder::GetPreviouslyMaterialized(
Isolate* isolate, int length) {
int object_index = materialized_objects_.length();
Handle<Object> return_value = Handle<Object>(
previously_materialized_objects_->get(object_index), isolate);
materialized_objects_.Add(return_value);
// Now need to skip all the nested objects (and possibly read them from
// the materialization store, too).
for (int i = 0; i < length; i++) {
SlotRef& slot = slot_refs_[current_slot_];
current_slot_++;
// We need to read all the nested objects - add them to the
// number of objects we need to process.
length += slot.GetChildrenCount();
// Put the nested deferred/duplicate objects into our materialization
// array.
if (slot.Representation() == SlotRef::DEFERRED_OBJECT ||
slot.Representation() == SlotRef::DUPLICATE_OBJECT) {
int nested_object_index = materialized_objects_.length();
Handle<Object> nested_object = Handle<Object>(
previously_materialized_objects_->get(nested_object_index),
isolate);
materialized_objects_.Add(nested_object);
}
}
return return_value;
}
Handle<Object> SlotRefValueBuilder::GetNext(Isolate* isolate, int lvl) {
SlotRef& slot = slot_refs_[current_slot_];
current_slot_++;
switch (slot.Representation()) {
case SlotRef::TAGGED:
case SlotRef::INT32:
case SlotRef::UINT32:
case SlotRef::DOUBLE:
case SlotRef::LITERAL: {
return slot.GetValue(isolate);
}
case SlotRef::ARGUMENTS_OBJECT: {
// We should never need to materialize an arguments object,
// but we still need to put something into the array
// so that the indexing is consistent.
materialized_objects_.Add(isolate->factory()->undefined_value());
int length = slot.GetChildrenCount();
for (int i = 0; i < length; ++i) {
// We don't need the argument, just ignore it
GetNext(isolate, lvl + 1);
}
return isolate->factory()->undefined_value();
}
case SlotRef::DEFERRED_OBJECT: {
int length = slot.GetChildrenCount();
CHECK(slot_refs_[current_slot_].Representation() == SlotRef::LITERAL ||
slot_refs_[current_slot_].Representation() == SlotRef::TAGGED);
int object_index = materialized_objects_.length();
if (object_index < prev_materialized_count_) {
return GetPreviouslyMaterialized(isolate, length);
}
Handle<Object> map_object = slot_refs_[current_slot_].GetValue(isolate);
Handle<Map> map = Map::GeneralizeAllFieldRepresentations(
Handle<Map>::cast(map_object));
current_slot_++;
// TODO(jarin) this should be unified with the code in
// Deoptimizer::MaterializeNextHeapObject()
switch (map->instance_type()) {
case MUTABLE_HEAP_NUMBER_TYPE:
case HEAP_NUMBER_TYPE: {
// Reuse the HeapNumber value directly as it is already properly
// tagged and skip materializing the HeapNumber explicitly.
Handle<Object> object = GetNext(isolate, lvl + 1);
materialized_objects_.Add(object);
// On 32-bit architectures, there is an extra slot there because
// the escape analysis calculates the number of slots as
// object-size/pointer-size. To account for this, we read out
// any extra slots.
for (int i = 0; i < length - 2; i++) {
GetNext(isolate, lvl + 1);
}
return object;
}
case JS_OBJECT_TYPE: {
Handle<JSObject> object =
isolate->factory()->NewJSObjectFromMap(map, NOT_TENURED, false);
materialized_objects_.Add(object);
Handle<Object> properties = GetNext(isolate, lvl + 1);
Handle<Object> elements = GetNext(isolate, lvl + 1);
object->set_properties(FixedArray::cast(*properties));
object->set_elements(FixedArrayBase::cast(*elements));
for (int i = 0; i < length - 3; ++i) {
Handle<Object> value = GetNext(isolate, lvl + 1);
FieldIndex index = FieldIndex::ForPropertyIndex(object->map(), i);
object->FastPropertyAtPut(index, *value);
}
return object;
}
case JS_ARRAY_TYPE: {
Handle<JSArray> object =
isolate->factory()->NewJSArray(0, map->elements_kind());
materialized_objects_.Add(object);
Handle<Object> properties = GetNext(isolate, lvl + 1);
Handle<Object> elements = GetNext(isolate, lvl + 1);
Handle<Object> length = GetNext(isolate, lvl + 1);
object->set_properties(FixedArray::cast(*properties));
object->set_elements(FixedArrayBase::cast(*elements));
object->set_length(*length);
return object;
}
default:
PrintF(stderr,
"[couldn't handle instance type %d]\n", map->instance_type());
UNREACHABLE();
break;
}
UNREACHABLE();
break;
}
case SlotRef::DUPLICATE_OBJECT: {
int object_index = slot.DuplicateObjectId();
Handle<Object> object = materialized_objects_[object_index];
materialized_objects_.Add(object);
return object;
}
default:
UNREACHABLE();
break;
}
FATAL("We should never get here - unexpected deopt slot kind.");
return Handle<Object>::null();
}
void SlotRefValueBuilder::Finish(Isolate* isolate) {
// We should have processed all the slots
CHECK_EQ(slot_refs_.length(), current_slot_);
if (materialized_objects_.length() > prev_materialized_count_) {
// We have materialized some new objects, so we have to store them
// to prevent duplicate materialization
Handle<FixedArray> array = isolate->factory()->NewFixedArray(
materialized_objects_.length());
for (int i = 0; i < materialized_objects_.length(); i++) {
array->set(i, *(materialized_objects_.at(i)));
}
isolate->materialized_object_store()->Set(stack_frame_id_, array);
}
}
Handle<FixedArray> MaterializedObjectStore::Get(Address fp) {
int index = StackIdToIndex(fp);
if (index == -1) {
return Handle<FixedArray>::null();
}
Handle<FixedArray> array = GetStackEntries();
CHECK_GT(array->length(), index);
return Handle<FixedArray>::cast(Handle<Object>(array->get(index),
isolate()));
}
void MaterializedObjectStore::Set(Address fp,
Handle<FixedArray> materialized_objects) {
int index = StackIdToIndex(fp);
if (index == -1) {
index = frame_fps_.length();
frame_fps_.Add(fp);
}
Handle<FixedArray> array = EnsureStackEntries(index + 1);
array->set(index, *materialized_objects);
}
void MaterializedObjectStore::Remove(Address fp) {
int index = StackIdToIndex(fp);
CHECK_GE(index, 0);
frame_fps_.Remove(index);
Handle<FixedArray> array = GetStackEntries();
CHECK_LT(index, array->length());
for (int i = index; i < frame_fps_.length(); i++) {
array->set(i, array->get(i + 1));
}
array->set(frame_fps_.length(), isolate()->heap()->undefined_value());
}
int MaterializedObjectStore::StackIdToIndex(Address fp) {
for (int i = 0; i < frame_fps_.length(); i++) {
if (frame_fps_[i] == fp) {
return i;
}
}
return -1;
}
Handle<FixedArray> MaterializedObjectStore::GetStackEntries() {
return Handle<FixedArray>(isolate()->heap()->materialized_objects());
}
Handle<FixedArray> MaterializedObjectStore::EnsureStackEntries(int length) {
Handle<FixedArray> array = GetStackEntries();
if (array->length() >= length) {
return array;
}
int new_length = length > 10 ? length : 10;
if (new_length < 2 * array->length()) {
new_length = 2 * array->length();
}
Handle<FixedArray> new_array =
isolate()->factory()->NewFixedArray(new_length, TENURED);
for (int i = 0; i < array->length(); i++) {
new_array->set(i, array->get(i));
}
for (int i = array->length(); i < length; i++) {
new_array->set(i, isolate()->heap()->undefined_value());
}
isolate()->heap()->public_set_materialized_objects(*new_array);
return new_array;
}
DeoptimizedFrameInfo::DeoptimizedFrameInfo(Deoptimizer* deoptimizer,
int frame_index,
bool has_arguments_adaptor,
bool has_construct_stub) {
FrameDescription* output_frame = deoptimizer->output_[frame_index];
function_ = output_frame->GetFunction();
has_construct_stub_ = has_construct_stub;
expression_count_ = output_frame->GetExpressionCount();
expression_stack_ = new Object*[expression_count_];
// Get the source position using the unoptimized code.
Address pc = reinterpret_cast<Address>(output_frame->GetPc());
Code* code = Code::cast(deoptimizer->isolate()->FindCodeObject(pc));
source_position_ = code->SourcePosition(pc);
for (int i = 0; i < expression_count_; i++) {
SetExpression(i, output_frame->GetExpression(i));
}
if (has_arguments_adaptor) {
output_frame = deoptimizer->output_[frame_index - 1];
CHECK_EQ(output_frame->GetFrameType(), StackFrame::ARGUMENTS_ADAPTOR);
}
parameters_count_ = output_frame->ComputeParametersCount();
parameters_ = new Object*[parameters_count_];
for (int i = 0; i < parameters_count_; i++) {
SetParameter(i, output_frame->GetParameter(i));
}
}
DeoptimizedFrameInfo::~DeoptimizedFrameInfo() {
delete[] expression_stack_;
delete[] parameters_;
}
void DeoptimizedFrameInfo::Iterate(ObjectVisitor* v) {
v->VisitPointer(BitCast<Object**>(&function_));
v->VisitPointers(parameters_, parameters_ + parameters_count_);
v->VisitPointers(expression_stack_, expression_stack_ + expression_count_);
}
} } // namespace v8::internal