509faa8545
- Split GCTracer::~GCTracer into printing functions and update of variables tracked on Heap. - Clean-up recording of time, object size and memory size at the beginning and end of GC. - Consistently use enum notation in ScopeId. - Disallow copy and assign for Scope and GCTracer. - Remove unused stats on GCTracer. R=hpayer@chromium.org BUG= Review URL: https://codereview.chromium.org/396893004 git-svn-id: https://v8.googlecode.com/svn/branches/bleeding_edge@22439 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
810 lines
26 KiB
C++
810 lines
26 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#ifndef V8_HEAP_INL_H_
|
|
#define V8_HEAP_INL_H_
|
|
|
|
#include <cmath>
|
|
|
|
#include "src/base/platform/platform.h"
|
|
#include "src/cpu-profiler.h"
|
|
#include "src/heap.h"
|
|
#include "src/heap-profiler.h"
|
|
#include "src/isolate.h"
|
|
#include "src/list-inl.h"
|
|
#include "src/objects.h"
|
|
#include "src/store-buffer.h"
|
|
#include "src/store-buffer-inl.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
void PromotionQueue::insert(HeapObject* target, int size) {
|
|
if (emergency_stack_ != NULL) {
|
|
emergency_stack_->Add(Entry(target, size));
|
|
return;
|
|
}
|
|
|
|
if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
|
|
NewSpacePage* rear_page =
|
|
NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
|
|
ASSERT(!rear_page->prev_page()->is_anchor());
|
|
rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
|
|
ActivateGuardIfOnTheSamePage();
|
|
}
|
|
|
|
if (guard_) {
|
|
ASSERT(GetHeadPage() ==
|
|
Page::FromAllocationTop(reinterpret_cast<Address>(limit_)));
|
|
|
|
if ((rear_ - 2) < limit_) {
|
|
RelocateQueueHead();
|
|
emergency_stack_->Add(Entry(target, size));
|
|
return;
|
|
}
|
|
}
|
|
|
|
*(--rear_) = reinterpret_cast<intptr_t>(target);
|
|
*(--rear_) = size;
|
|
// Assert no overflow into live objects.
|
|
#ifdef DEBUG
|
|
SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
|
|
reinterpret_cast<Address>(rear_));
|
|
#endif
|
|
}
|
|
|
|
|
|
void PromotionQueue::ActivateGuardIfOnTheSamePage() {
|
|
guard_ = guard_ ||
|
|
heap_->new_space()->active_space()->current_page()->address() ==
|
|
GetHeadPage()->address();
|
|
}
|
|
|
|
|
|
template<>
|
|
bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
|
|
// TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
|
|
// ASCII only check.
|
|
return chars == str.length();
|
|
}
|
|
|
|
|
|
template<>
|
|
bool inline Heap::IsOneByte(String* str, int chars) {
|
|
return str->IsOneByteRepresentation();
|
|
}
|
|
|
|
|
|
AllocationResult Heap::AllocateInternalizedStringFromUtf8(
|
|
Vector<const char> str, int chars, uint32_t hash_field) {
|
|
if (IsOneByte(str, chars)) {
|
|
return AllocateOneByteInternalizedString(
|
|
Vector<const uint8_t>::cast(str), hash_field);
|
|
}
|
|
return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
AllocationResult Heap::AllocateInternalizedStringImpl(
|
|
T t, int chars, uint32_t hash_field) {
|
|
if (IsOneByte(t, chars)) {
|
|
return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
|
|
}
|
|
return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
|
|
}
|
|
|
|
|
|
AllocationResult Heap::AllocateOneByteInternalizedString(
|
|
Vector<const uint8_t> str,
|
|
uint32_t hash_field) {
|
|
CHECK_GE(String::kMaxLength, str.length());
|
|
// Compute map and object size.
|
|
Map* map = ascii_internalized_string_map();
|
|
int size = SeqOneByteString::SizeFor(str.length());
|
|
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
|
|
|
|
// Allocate string.
|
|
HeapObject* result;
|
|
{ AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
|
if (!allocation.To(&result)) return allocation;
|
|
}
|
|
|
|
// String maps are all immortal immovable objects.
|
|
result->set_map_no_write_barrier(map);
|
|
// Set length and hash fields of the allocated string.
|
|
String* answer = String::cast(result);
|
|
answer->set_length(str.length());
|
|
answer->set_hash_field(hash_field);
|
|
|
|
ASSERT_EQ(size, answer->Size());
|
|
|
|
// Fill in the characters.
|
|
MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
|
|
str.length());
|
|
|
|
return answer;
|
|
}
|
|
|
|
|
|
AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
|
|
uint32_t hash_field) {
|
|
CHECK_GE(String::kMaxLength, str.length());
|
|
// Compute map and object size.
|
|
Map* map = internalized_string_map();
|
|
int size = SeqTwoByteString::SizeFor(str.length());
|
|
AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
|
|
|
|
// Allocate string.
|
|
HeapObject* result;
|
|
{ AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
|
|
if (!allocation.To(&result)) return allocation;
|
|
}
|
|
|
|
result->set_map(map);
|
|
// Set length and hash fields of the allocated string.
|
|
String* answer = String::cast(result);
|
|
answer->set_length(str.length());
|
|
answer->set_hash_field(hash_field);
|
|
|
|
ASSERT_EQ(size, answer->Size());
|
|
|
|
// Fill in the characters.
|
|
MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
|
|
str.length() * kUC16Size);
|
|
|
|
return answer;
|
|
}
|
|
|
|
AllocationResult Heap::CopyFixedArray(FixedArray* src) {
|
|
if (src->length() == 0) return src;
|
|
return CopyFixedArrayWithMap(src, src->map());
|
|
}
|
|
|
|
|
|
AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
|
|
if (src->length() == 0) return src;
|
|
return CopyFixedDoubleArrayWithMap(src, src->map());
|
|
}
|
|
|
|
|
|
AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) {
|
|
if (src->length() == 0) return src;
|
|
return CopyConstantPoolArrayWithMap(src, src->map());
|
|
}
|
|
|
|
|
|
AllocationResult Heap::AllocateRaw(int size_in_bytes,
|
|
AllocationSpace space,
|
|
AllocationSpace retry_space) {
|
|
ASSERT(AllowHandleAllocation::IsAllowed());
|
|
ASSERT(AllowHeapAllocation::IsAllowed());
|
|
ASSERT(gc_state_ == NOT_IN_GC);
|
|
#ifdef DEBUG
|
|
if (FLAG_gc_interval >= 0 &&
|
|
AllowAllocationFailure::IsAllowed(isolate_) &&
|
|
Heap::allocation_timeout_-- <= 0) {
|
|
return AllocationResult::Retry(space);
|
|
}
|
|
isolate_->counters()->objs_since_last_full()->Increment();
|
|
isolate_->counters()->objs_since_last_young()->Increment();
|
|
#endif
|
|
|
|
HeapObject* object;
|
|
AllocationResult allocation;
|
|
if (NEW_SPACE == space) {
|
|
allocation = new_space_.AllocateRaw(size_in_bytes);
|
|
if (always_allocate() &&
|
|
allocation.IsRetry() &&
|
|
retry_space != NEW_SPACE) {
|
|
space = retry_space;
|
|
} else {
|
|
if (allocation.To(&object)) {
|
|
OnAllocationEvent(object, size_in_bytes);
|
|
}
|
|
return allocation;
|
|
}
|
|
}
|
|
|
|
if (OLD_POINTER_SPACE == space) {
|
|
allocation = old_pointer_space_->AllocateRaw(size_in_bytes);
|
|
} else if (OLD_DATA_SPACE == space) {
|
|
allocation = old_data_space_->AllocateRaw(size_in_bytes);
|
|
} else if (CODE_SPACE == space) {
|
|
if (size_in_bytes <= code_space()->AreaSize()) {
|
|
allocation = code_space_->AllocateRaw(size_in_bytes);
|
|
} else {
|
|
// Large code objects are allocated in large object space.
|
|
allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
|
|
}
|
|
} else if (LO_SPACE == space) {
|
|
allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
|
|
} else if (CELL_SPACE == space) {
|
|
allocation = cell_space_->AllocateRaw(size_in_bytes);
|
|
} else if (PROPERTY_CELL_SPACE == space) {
|
|
allocation = property_cell_space_->AllocateRaw(size_in_bytes);
|
|
} else {
|
|
ASSERT(MAP_SPACE == space);
|
|
allocation = map_space_->AllocateRaw(size_in_bytes);
|
|
}
|
|
if (allocation.To(&object)) {
|
|
OnAllocationEvent(object, size_in_bytes);
|
|
} else {
|
|
old_gen_exhausted_ = true;
|
|
}
|
|
return allocation;
|
|
}
|
|
|
|
|
|
void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
|
|
HeapProfiler* profiler = isolate_->heap_profiler();
|
|
if (profiler->is_tracking_allocations()) {
|
|
profiler->AllocationEvent(object->address(), size_in_bytes);
|
|
}
|
|
|
|
if (FLAG_verify_predictable) {
|
|
++allocations_count_;
|
|
|
|
UpdateAllocationsHash(object);
|
|
UpdateAllocationsHash(size_in_bytes);
|
|
|
|
if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
|
|
(--dump_allocations_hash_countdown_ == 0)) {
|
|
dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
|
|
PrintAlloctionsHash();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::OnMoveEvent(HeapObject* target,
|
|
HeapObject* source,
|
|
int size_in_bytes) {
|
|
HeapProfiler* heap_profiler = isolate_->heap_profiler();
|
|
if (heap_profiler->is_tracking_object_moves()) {
|
|
heap_profiler->ObjectMoveEvent(source->address(), target->address(),
|
|
size_in_bytes);
|
|
}
|
|
|
|
if (isolate_->logger()->is_logging_code_events() ||
|
|
isolate_->cpu_profiler()->is_profiling()) {
|
|
if (target->IsSharedFunctionInfo()) {
|
|
PROFILE(isolate_, SharedFunctionInfoMoveEvent(
|
|
source->address(), target->address()));
|
|
}
|
|
}
|
|
|
|
if (FLAG_verify_predictable) {
|
|
++allocations_count_;
|
|
|
|
UpdateAllocationsHash(source);
|
|
UpdateAllocationsHash(target);
|
|
UpdateAllocationsHash(size_in_bytes);
|
|
|
|
if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
|
|
(--dump_allocations_hash_countdown_ == 0)) {
|
|
dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
|
|
PrintAlloctionsHash();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::UpdateAllocationsHash(HeapObject* object) {
|
|
Address object_address = object->address();
|
|
MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
|
|
AllocationSpace allocation_space = memory_chunk->owner()->identity();
|
|
|
|
STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
|
|
uint32_t value =
|
|
static_cast<uint32_t>(object_address - memory_chunk->address()) |
|
|
(static_cast<uint32_t>(allocation_space) << kPageSizeBits);
|
|
|
|
UpdateAllocationsHash(value);
|
|
}
|
|
|
|
|
|
void Heap::UpdateAllocationsHash(uint32_t value) {
|
|
uint16_t c1 = static_cast<uint16_t>(value);
|
|
uint16_t c2 = static_cast<uint16_t>(value >> 16);
|
|
raw_allocations_hash_ =
|
|
StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
|
|
raw_allocations_hash_ =
|
|
StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
|
|
}
|
|
|
|
|
|
void Heap::PrintAlloctionsHash() {
|
|
uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_);
|
|
PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count_, hash);
|
|
}
|
|
|
|
|
|
void Heap::FinalizeExternalString(String* string) {
|
|
ASSERT(string->IsExternalString());
|
|
v8::String::ExternalStringResourceBase** resource_addr =
|
|
reinterpret_cast<v8::String::ExternalStringResourceBase**>(
|
|
reinterpret_cast<byte*>(string) +
|
|
ExternalString::kResourceOffset -
|
|
kHeapObjectTag);
|
|
|
|
// Dispose of the C++ object if it has not already been disposed.
|
|
if (*resource_addr != NULL) {
|
|
(*resource_addr)->Dispose();
|
|
*resource_addr = NULL;
|
|
}
|
|
}
|
|
|
|
|
|
bool Heap::InNewSpace(Object* object) {
|
|
bool result = new_space_.Contains(object);
|
|
ASSERT(!result || // Either not in new space
|
|
gc_state_ != NOT_IN_GC || // ... or in the middle of GC
|
|
InToSpace(object)); // ... or in to-space (where we allocate).
|
|
return result;
|
|
}
|
|
|
|
|
|
bool Heap::InNewSpace(Address address) {
|
|
return new_space_.Contains(address);
|
|
}
|
|
|
|
|
|
bool Heap::InFromSpace(Object* object) {
|
|
return new_space_.FromSpaceContains(object);
|
|
}
|
|
|
|
|
|
bool Heap::InToSpace(Object* object) {
|
|
return new_space_.ToSpaceContains(object);
|
|
}
|
|
|
|
|
|
bool Heap::InOldPointerSpace(Address address) {
|
|
return old_pointer_space_->Contains(address);
|
|
}
|
|
|
|
|
|
bool Heap::InOldPointerSpace(Object* object) {
|
|
return InOldPointerSpace(reinterpret_cast<Address>(object));
|
|
}
|
|
|
|
|
|
bool Heap::InOldDataSpace(Address address) {
|
|
return old_data_space_->Contains(address);
|
|
}
|
|
|
|
|
|
bool Heap::InOldDataSpace(Object* object) {
|
|
return InOldDataSpace(reinterpret_cast<Address>(object));
|
|
}
|
|
|
|
|
|
bool Heap::OldGenerationAllocationLimitReached() {
|
|
if (!incremental_marking()->IsStopped()) return false;
|
|
return OldGenerationSpaceAvailable() < 0;
|
|
}
|
|
|
|
|
|
bool Heap::ShouldBePromoted(Address old_address, int object_size) {
|
|
NewSpacePage* page = NewSpacePage::FromAddress(old_address);
|
|
Address age_mark = new_space_.age_mark();
|
|
return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
|
|
(!page->ContainsLimit(age_mark) || old_address < age_mark);
|
|
}
|
|
|
|
|
|
void Heap::RecordWrite(Address address, int offset) {
|
|
if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
|
|
}
|
|
|
|
|
|
void Heap::RecordWrites(Address address, int start, int len) {
|
|
if (!InNewSpace(address)) {
|
|
for (int i = 0; i < len; i++) {
|
|
store_buffer_.Mark(address + start + i * kPointerSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
OldSpace* Heap::TargetSpace(HeapObject* object) {
|
|
InstanceType type = object->map()->instance_type();
|
|
AllocationSpace space = TargetSpaceId(type);
|
|
return (space == OLD_POINTER_SPACE)
|
|
? old_pointer_space_
|
|
: old_data_space_;
|
|
}
|
|
|
|
|
|
AllocationSpace Heap::TargetSpaceId(InstanceType type) {
|
|
// Heap numbers and sequential strings are promoted to old data space, all
|
|
// other object types are promoted to old pointer space. We do not use
|
|
// object->IsHeapNumber() and object->IsSeqString() because we already
|
|
// know that object has the heap object tag.
|
|
|
|
// These objects are never allocated in new space.
|
|
ASSERT(type != MAP_TYPE);
|
|
ASSERT(type != CODE_TYPE);
|
|
ASSERT(type != ODDBALL_TYPE);
|
|
ASSERT(type != CELL_TYPE);
|
|
ASSERT(type != PROPERTY_CELL_TYPE);
|
|
|
|
if (type <= LAST_NAME_TYPE) {
|
|
if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
|
|
ASSERT(type < FIRST_NONSTRING_TYPE);
|
|
// There are four string representations: sequential strings, external
|
|
// strings, cons strings, and sliced strings.
|
|
// Only the latter two contain non-map-word pointers to heap objects.
|
|
return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
|
|
? OLD_POINTER_SPACE
|
|
: OLD_DATA_SPACE;
|
|
} else {
|
|
return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
|
|
}
|
|
}
|
|
|
|
|
|
bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
|
|
// Object migration is governed by the following rules:
|
|
//
|
|
// 1) Objects in new-space can be migrated to one of the old spaces
|
|
// that matches their target space or they stay in new-space.
|
|
// 2) Objects in old-space stay in the same space when migrating.
|
|
// 3) Fillers (two or more words) can migrate due to left-trimming of
|
|
// fixed arrays in new-space, old-data-space and old-pointer-space.
|
|
// 4) Fillers (one word) can never migrate, they are skipped by
|
|
// incremental marking explicitly to prevent invalid pattern.
|
|
// 5) Short external strings can end up in old pointer space when a cons
|
|
// string in old pointer space is made external (String::MakeExternal).
|
|
//
|
|
// Since this function is used for debugging only, we do not place
|
|
// asserts here, but check everything explicitly.
|
|
if (obj->map() == one_pointer_filler_map()) return false;
|
|
InstanceType type = obj->map()->instance_type();
|
|
MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
|
|
AllocationSpace src = chunk->owner()->identity();
|
|
switch (src) {
|
|
case NEW_SPACE:
|
|
return dst == src || dst == TargetSpaceId(type);
|
|
case OLD_POINTER_SPACE:
|
|
return dst == src && (dst == TargetSpaceId(type) || obj->IsFiller() ||
|
|
(obj->IsExternalString() &&
|
|
ExternalString::cast(obj)->is_short()));
|
|
case OLD_DATA_SPACE:
|
|
return dst == src && dst == TargetSpaceId(type);
|
|
case CODE_SPACE:
|
|
return dst == src && type == CODE_TYPE;
|
|
case MAP_SPACE:
|
|
case CELL_SPACE:
|
|
case PROPERTY_CELL_SPACE:
|
|
case LO_SPACE:
|
|
return false;
|
|
case INVALID_SPACE:
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
|
|
|
|
void Heap::CopyBlock(Address dst, Address src, int byte_size) {
|
|
CopyWords(reinterpret_cast<Object**>(dst),
|
|
reinterpret_cast<Object**>(src),
|
|
static_cast<size_t>(byte_size / kPointerSize));
|
|
}
|
|
|
|
|
|
void Heap::MoveBlock(Address dst, Address src, int byte_size) {
|
|
ASSERT(IsAligned(byte_size, kPointerSize));
|
|
|
|
int size_in_words = byte_size / kPointerSize;
|
|
|
|
if ((dst < src) || (dst >= (src + byte_size))) {
|
|
Object** src_slot = reinterpret_cast<Object**>(src);
|
|
Object** dst_slot = reinterpret_cast<Object**>(dst);
|
|
Object** end_slot = src_slot + size_in_words;
|
|
|
|
while (src_slot != end_slot) {
|
|
*dst_slot++ = *src_slot++;
|
|
}
|
|
} else {
|
|
MemMove(dst, src, static_cast<size_t>(byte_size));
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::ScavengePointer(HeapObject** p) {
|
|
ScavengeObject(p, *p);
|
|
}
|
|
|
|
|
|
AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
|
|
// Check if there is potentially a memento behind the object. If
|
|
// the last word of the momento is on another page we return
|
|
// immediately.
|
|
Address object_address = object->address();
|
|
Address memento_address = object_address + object->Size();
|
|
Address last_memento_word_address = memento_address + kPointerSize;
|
|
if (!NewSpacePage::OnSamePage(object_address,
|
|
last_memento_word_address)) {
|
|
return NULL;
|
|
}
|
|
|
|
HeapObject* candidate = HeapObject::FromAddress(memento_address);
|
|
if (candidate->map() != allocation_memento_map()) return NULL;
|
|
|
|
// Either the object is the last object in the new space, or there is another
|
|
// object of at least word size (the header map word) following it, so
|
|
// suffices to compare ptr and top here. Note that technically we do not have
|
|
// to compare with the current top pointer of the from space page during GC,
|
|
// since we always install filler objects above the top pointer of a from
|
|
// space page when performing a garbage collection. However, always performing
|
|
// the test makes it possible to have a single, unified version of
|
|
// FindAllocationMemento that is used both by the GC and the mutator.
|
|
Address top = NewSpaceTop();
|
|
ASSERT(memento_address == top ||
|
|
memento_address + HeapObject::kHeaderSize <= top ||
|
|
!NewSpacePage::OnSamePage(memento_address, top));
|
|
if (memento_address == top) return NULL;
|
|
|
|
AllocationMemento* memento = AllocationMemento::cast(candidate);
|
|
if (!memento->IsValid()) return NULL;
|
|
return memento;
|
|
}
|
|
|
|
|
|
void Heap::UpdateAllocationSiteFeedback(HeapObject* object,
|
|
ScratchpadSlotMode mode) {
|
|
Heap* heap = object->GetHeap();
|
|
ASSERT(heap->InFromSpace(object));
|
|
|
|
if (!FLAG_allocation_site_pretenuring ||
|
|
!AllocationSite::CanTrack(object->map()->instance_type())) return;
|
|
|
|
AllocationMemento* memento = heap->FindAllocationMemento(object);
|
|
if (memento == NULL) return;
|
|
|
|
if (memento->GetAllocationSite()->IncrementMementoFoundCount()) {
|
|
heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode);
|
|
}
|
|
}
|
|
|
|
|
|
void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
|
|
ASSERT(object->GetIsolate()->heap()->InFromSpace(object));
|
|
|
|
// We use the first word (where the map pointer usually is) of a heap
|
|
// object to record the forwarding pointer. A forwarding pointer can
|
|
// point to an old space, the code space, or the to space of the new
|
|
// generation.
|
|
MapWord first_word = object->map_word();
|
|
|
|
// If the first word is a forwarding address, the object has already been
|
|
// copied.
|
|
if (first_word.IsForwardingAddress()) {
|
|
HeapObject* dest = first_word.ToForwardingAddress();
|
|
ASSERT(object->GetIsolate()->heap()->InFromSpace(*p));
|
|
*p = dest;
|
|
return;
|
|
}
|
|
|
|
UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT);
|
|
|
|
// AllocationMementos are unrooted and shouldn't survive a scavenge
|
|
ASSERT(object->map() != object->GetHeap()->allocation_memento_map());
|
|
// Call the slow part of scavenge object.
|
|
return ScavengeObjectSlow(p, object);
|
|
}
|
|
|
|
|
|
bool Heap::CollectGarbage(AllocationSpace space,
|
|
const char* gc_reason,
|
|
const v8::GCCallbackFlags callbackFlags) {
|
|
const char* collector_reason = NULL;
|
|
GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
|
|
return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
|
|
}
|
|
|
|
|
|
Isolate* Heap::isolate() {
|
|
return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) -
|
|
reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
|
|
}
|
|
|
|
|
|
// Calls the FUNCTION_CALL function and retries it up to three times
|
|
// to guarantee that any allocations performed during the call will
|
|
// succeed if there's enough memory.
|
|
|
|
// Warning: Do not use the identifiers __object__, __maybe_object__ or
|
|
// __scope__ in a call to this macro.
|
|
|
|
#define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
|
|
if (__allocation__.To(&__object__)) { \
|
|
ASSERT(__object__ != (ISOLATE)->heap()->exception()); \
|
|
RETURN_VALUE; \
|
|
}
|
|
|
|
#define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
|
|
do { \
|
|
AllocationResult __allocation__ = FUNCTION_CALL; \
|
|
Object* __object__ = NULL; \
|
|
RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
|
|
(ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(), \
|
|
"allocation failure"); \
|
|
__allocation__ = FUNCTION_CALL; \
|
|
RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
|
|
(ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \
|
|
(ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc"); \
|
|
{ \
|
|
AlwaysAllocateScope __scope__(ISOLATE); \
|
|
__allocation__ = FUNCTION_CALL; \
|
|
} \
|
|
RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
|
|
/* TODO(1181417): Fix this. */ \
|
|
v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
|
|
RETURN_EMPTY; \
|
|
} while (false)
|
|
|
|
#define CALL_AND_RETRY_OR_DIE( \
|
|
ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
|
|
CALL_AND_RETRY( \
|
|
ISOLATE, \
|
|
FUNCTION_CALL, \
|
|
RETURN_VALUE, \
|
|
RETURN_EMPTY)
|
|
|
|
#define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
|
|
CALL_AND_RETRY_OR_DIE(ISOLATE, \
|
|
FUNCTION_CALL, \
|
|
return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
|
|
return Handle<TYPE>()) \
|
|
|
|
|
|
#define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
|
|
CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
|
|
|
|
|
|
void ExternalStringTable::AddString(String* string) {
|
|
ASSERT(string->IsExternalString());
|
|
if (heap_->InNewSpace(string)) {
|
|
new_space_strings_.Add(string);
|
|
} else {
|
|
old_space_strings_.Add(string);
|
|
}
|
|
}
|
|
|
|
|
|
void ExternalStringTable::Iterate(ObjectVisitor* v) {
|
|
if (!new_space_strings_.is_empty()) {
|
|
Object** start = &new_space_strings_[0];
|
|
v->VisitPointers(start, start + new_space_strings_.length());
|
|
}
|
|
if (!old_space_strings_.is_empty()) {
|
|
Object** start = &old_space_strings_[0];
|
|
v->VisitPointers(start, start + old_space_strings_.length());
|
|
}
|
|
}
|
|
|
|
|
|
// Verify() is inline to avoid ifdef-s around its calls in release
|
|
// mode.
|
|
void ExternalStringTable::Verify() {
|
|
#ifdef DEBUG
|
|
for (int i = 0; i < new_space_strings_.length(); ++i) {
|
|
Object* obj = Object::cast(new_space_strings_[i]);
|
|
ASSERT(heap_->InNewSpace(obj));
|
|
ASSERT(obj != heap_->the_hole_value());
|
|
}
|
|
for (int i = 0; i < old_space_strings_.length(); ++i) {
|
|
Object* obj = Object::cast(old_space_strings_[i]);
|
|
ASSERT(!heap_->InNewSpace(obj));
|
|
ASSERT(obj != heap_->the_hole_value());
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void ExternalStringTable::AddOldString(String* string) {
|
|
ASSERT(string->IsExternalString());
|
|
ASSERT(!heap_->InNewSpace(string));
|
|
old_space_strings_.Add(string);
|
|
}
|
|
|
|
|
|
void ExternalStringTable::ShrinkNewStrings(int position) {
|
|
new_space_strings_.Rewind(position);
|
|
#ifdef VERIFY_HEAP
|
|
if (FLAG_verify_heap) {
|
|
Verify();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void Heap::ClearInstanceofCache() {
|
|
set_instanceof_cache_function(the_hole_value());
|
|
}
|
|
|
|
|
|
Object* Heap::ToBoolean(bool condition) {
|
|
return condition ? true_value() : false_value();
|
|
}
|
|
|
|
|
|
void Heap::CompletelyClearInstanceofCache() {
|
|
set_instanceof_cache_map(the_hole_value());
|
|
set_instanceof_cache_function(the_hole_value());
|
|
}
|
|
|
|
|
|
AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
|
|
: heap_(isolate->heap()), daf_(isolate) {
|
|
// We shouldn't hit any nested scopes, because that requires
|
|
// non-handle code to call handle code. The code still works but
|
|
// performance will degrade, so we want to catch this situation
|
|
// in debug mode.
|
|
ASSERT(heap_->always_allocate_scope_depth_ == 0);
|
|
heap_->always_allocate_scope_depth_++;
|
|
}
|
|
|
|
|
|
AlwaysAllocateScope::~AlwaysAllocateScope() {
|
|
heap_->always_allocate_scope_depth_--;
|
|
ASSERT(heap_->always_allocate_scope_depth_ == 0);
|
|
}
|
|
|
|
|
|
#ifdef VERIFY_HEAP
|
|
NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() {
|
|
Isolate* isolate = Isolate::Current();
|
|
isolate->heap()->no_weak_object_verification_scope_depth_++;
|
|
}
|
|
|
|
|
|
NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() {
|
|
Isolate* isolate = Isolate::Current();
|
|
isolate->heap()->no_weak_object_verification_scope_depth_--;
|
|
}
|
|
#endif
|
|
|
|
|
|
GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) {
|
|
heap_->gc_callbacks_depth_++;
|
|
}
|
|
|
|
|
|
GCCallbacksScope::~GCCallbacksScope() {
|
|
heap_->gc_callbacks_depth_--;
|
|
}
|
|
|
|
|
|
bool GCCallbacksScope::CheckReenter() {
|
|
return heap_->gc_callbacks_depth_ == 1;
|
|
}
|
|
|
|
|
|
void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
|
|
for (Object** current = start; current < end; current++) {
|
|
if ((*current)->IsHeapObject()) {
|
|
HeapObject* object = HeapObject::cast(*current);
|
|
CHECK(object->GetIsolate()->heap()->Contains(object));
|
|
CHECK(object->map()->IsMap());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
|
|
for (Object** current = start; current < end; current++) {
|
|
CHECK((*current)->IsSmi());
|
|
}
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_HEAP_INL_H_
|