v8/src/ic.h
danno@chromium.org 4e525b85fc Optimistically assume that elements IC only transition once.
Thanks to Zheng Liu for identifying this issue.

R=jkummerow@chromium.org
BUG=v8:2141
TEST=test/mjsunit/elements-kind.js

Review URL: https://chromiumcodereview.appspot.com/10532063

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@11739 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-06-08 13:06:24 +00:00

847 lines
28 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_IC_H_
#define V8_IC_H_
#include "macro-assembler.h"
#include "type-info.h"
namespace v8 {
namespace internal {
// IC_UTIL_LIST defines all utility functions called from generated
// inline caching code. The argument for the macro, ICU, is the function name.
#define IC_UTIL_LIST(ICU) \
ICU(LoadIC_Miss) \
ICU(KeyedLoadIC_Miss) \
ICU(KeyedLoadIC_MissForceGeneric) \
ICU(CallIC_Miss) \
ICU(KeyedCallIC_Miss) \
ICU(StoreIC_Miss) \
ICU(StoreIC_ArrayLength) \
ICU(SharedStoreIC_ExtendStorage) \
ICU(KeyedStoreIC_Miss) \
ICU(KeyedStoreIC_MissForceGeneric) \
ICU(KeyedStoreIC_Slow) \
/* Utilities for IC stubs. */ \
ICU(LoadCallbackProperty) \
ICU(StoreCallbackProperty) \
ICU(LoadPropertyWithInterceptorOnly) \
ICU(LoadPropertyWithInterceptorForLoad) \
ICU(LoadPropertyWithInterceptorForCall) \
ICU(KeyedLoadPropertyWithInterceptor) \
ICU(StoreInterceptorProperty) \
ICU(UnaryOp_Patch) \
ICU(BinaryOp_Patch) \
ICU(CompareIC_Miss) \
ICU(ToBoolean_Patch)
//
// IC is the base class for LoadIC, StoreIC, CallIC, KeyedLoadIC,
// and KeyedStoreIC.
//
class IC {
public:
// The ids for utility called from the generated code.
enum UtilityId {
#define CONST_NAME(name) k##name,
IC_UTIL_LIST(CONST_NAME)
#undef CONST_NAME
kUtilityCount
};
// Looks up the address of the named utility.
static Address AddressFromUtilityId(UtilityId id);
// Alias the inline cache state type to make the IC code more readable.
typedef InlineCacheState State;
// The IC code is either invoked with no extra frames on the stack
// or with a single extra frame for supporting calls.
enum FrameDepth {
NO_EXTRA_FRAME = 0,
EXTRA_CALL_FRAME = 1
};
// Construct the IC structure with the given number of extra
// JavaScript frames on the stack.
IC(FrameDepth depth, Isolate* isolate);
virtual ~IC() {}
// Get the call-site target; used for determining the state.
Code* target() const { return GetTargetAtAddress(address()); }
inline Address address() const;
virtual bool IsGeneric() const { return false; }
// Compute the current IC state based on the target stub, receiver and name.
static State StateFrom(Code* target, Object* receiver, Object* name);
// Clear the inline cache to initial state.
static void Clear(Address address);
// Computes the reloc info for this IC. This is a fairly expensive
// operation as it has to search through the heap to find the code
// object that contains this IC site.
RelocInfo::Mode ComputeMode();
// Returns if this IC is for contextual (no explicit receiver)
// access to properties.
bool IsContextual(Handle<Object> receiver) {
if (receiver->IsGlobalObject()) {
return SlowIsContextual();
} else {
ASSERT(!SlowIsContextual());
return false;
}
}
bool SlowIsContextual() {
return ComputeMode() == RelocInfo::CODE_TARGET_CONTEXT;
}
// Determines which map must be used for keeping the code stub.
// These methods should not be called with undefined or null.
static inline InlineCacheHolderFlag GetCodeCacheForObject(Object* object,
JSObject* holder);
static inline InlineCacheHolderFlag GetCodeCacheForObject(JSObject* object,
JSObject* holder);
static inline JSObject* GetCodeCacheHolder(Object* object,
InlineCacheHolderFlag holder);
protected:
Address fp() const { return fp_; }
Address pc() const { return *pc_address_; }
Isolate* isolate() const { return isolate_; }
#ifdef ENABLE_DEBUGGER_SUPPORT
// Computes the address in the original code when the code running is
// containing break points (calls to DebugBreakXXX builtins).
Address OriginalCodeAddress() const;
#endif
// Set the call-site target.
void set_target(Code* code) { SetTargetAtAddress(address(), code); }
#ifdef DEBUG
char TransitionMarkFromState(IC::State state);
void TraceIC(const char* type,
Handle<Object> name,
State old_state,
Code* new_target);
#endif
Failure* TypeError(const char* type,
Handle<Object> object,
Handle<Object> key);
Failure* ReferenceError(const char* type, Handle<String> name);
// Access the target code for the given IC address.
static inline Code* GetTargetAtAddress(Address address);
static inline void SetTargetAtAddress(Address address, Code* target);
static void PostPatching(Address address, Code* target, Code* old_target);
private:
// Frame pointer for the frame that uses (calls) the IC.
Address fp_;
// All access to the program counter of an IC structure is indirect
// to make the code GC safe. This feature is crucial since
// GetProperty and SetProperty are called and they in turn might
// invoke the garbage collector.
Address* pc_address_;
Isolate* isolate_;
DISALLOW_IMPLICIT_CONSTRUCTORS(IC);
};
// An IC_Utility encapsulates IC::UtilityId. It exists mainly because you
// cannot make forward declarations to an enum.
class IC_Utility {
public:
explicit IC_Utility(IC::UtilityId id)
: address_(IC::AddressFromUtilityId(id)), id_(id) {}
Address address() const { return address_; }
IC::UtilityId id() const { return id_; }
private:
Address address_;
IC::UtilityId id_;
};
class CallICBase: public IC {
public:
class Contextual: public BitField<bool, 0, 1> {};
class StringStubState: public BitField<StringStubFeedback, 1, 1> {};
// Returns a JSFunction or a Failure.
MUST_USE_RESULT MaybeObject* LoadFunction(State state,
Code::ExtraICState extra_ic_state,
Handle<Object> object,
Handle<String> name);
protected:
CallICBase(Code::Kind kind, Isolate* isolate)
: IC(EXTRA_CALL_FRAME, isolate), kind_(kind) {}
bool TryUpdateExtraICState(LookupResult* lookup,
Handle<Object> object,
Code::ExtraICState* extra_ic_state);
// Compute a monomorphic stub if possible, otherwise return a null handle.
Handle<Code> ComputeMonomorphicStub(LookupResult* lookup,
State state,
Code::ExtraICState extra_state,
Handle<Object> object,
Handle<String> name);
// Update the inline cache and the global stub cache based on the lookup
// result.
void UpdateCaches(LookupResult* lookup,
State state,
Code::ExtraICState extra_ic_state,
Handle<Object> object,
Handle<String> name);
// Returns a JSFunction if the object can be called as a function, and
// patches the stack to be ready for the call. Otherwise, it returns the
// undefined value.
Handle<Object> TryCallAsFunction(Handle<Object> object);
void ReceiverToObjectIfRequired(Handle<Object> callee, Handle<Object> object);
static void Clear(Address address, Code* target);
// Platform-specific code generation functions used by both call and
// keyed call.
static void GenerateMiss(MacroAssembler* masm,
int argc,
IC::UtilityId id,
Code::ExtraICState extra_state);
static void GenerateNormal(MacroAssembler* masm, int argc);
static void GenerateMonomorphicCacheProbe(MacroAssembler* masm,
int argc,
Code::Kind kind,
Code::ExtraICState extra_state);
Code::Kind kind_;
friend class IC;
};
class CallIC: public CallICBase {
public:
explicit CallIC(Isolate* isolate) : CallICBase(Code::CALL_IC, isolate) {
ASSERT(target()->is_call_stub());
}
// Code generator routines.
static void GenerateInitialize(MacroAssembler* masm,
int argc,
Code::ExtraICState extra_state) {
GenerateMiss(masm, argc, extra_state);
}
static void GenerateMiss(MacroAssembler* masm,
int argc,
Code::ExtraICState extra_state) {
CallICBase::GenerateMiss(masm, argc, IC::kCallIC_Miss, extra_state);
}
static void GenerateMegamorphic(MacroAssembler* masm,
int argc,
Code::ExtraICState extra_ic_state);
static void GenerateNormal(MacroAssembler* masm, int argc) {
CallICBase::GenerateNormal(masm, argc);
GenerateMiss(masm, argc, Code::kNoExtraICState);
}
};
class KeyedCallIC: public CallICBase {
public:
explicit KeyedCallIC(Isolate* isolate)
: CallICBase(Code::KEYED_CALL_IC, isolate) {
ASSERT(target()->is_keyed_call_stub());
}
MUST_USE_RESULT MaybeObject* LoadFunction(State state,
Handle<Object> object,
Handle<Object> key);
// Code generator routines.
static void GenerateInitialize(MacroAssembler* masm, int argc) {
GenerateMiss(masm, argc);
}
static void GenerateMiss(MacroAssembler* masm, int argc) {
CallICBase::GenerateMiss(masm, argc, IC::kKeyedCallIC_Miss,
Code::kNoExtraICState);
}
static void GenerateMegamorphic(MacroAssembler* masm, int argc);
static void GenerateNormal(MacroAssembler* masm, int argc);
static void GenerateNonStrictArguments(MacroAssembler* masm, int argc);
};
class LoadIC: public IC {
public:
explicit LoadIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) {
ASSERT(target()->is_load_stub());
}
MUST_USE_RESULT MaybeObject* Load(State state,
Handle<Object> object,
Handle<String> name);
// Code generator routines.
static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); }
static void GeneratePreMonomorphic(MacroAssembler* masm) {
GenerateMiss(masm);
}
static void GenerateMiss(MacroAssembler* masm);
static void GenerateMegamorphic(MacroAssembler* masm);
static void GenerateNormal(MacroAssembler* masm);
// Specialized code generator routines.
static void GenerateArrayLength(MacroAssembler* masm);
static void GenerateStringLength(MacroAssembler* masm,
bool support_wrappers);
static void GenerateFunctionPrototype(MacroAssembler* masm);
private:
// Update the inline cache and the global stub cache based on the
// lookup result.
void UpdateCaches(LookupResult* lookup,
State state,
Handle<Object> object,
Handle<String> name);
// Stub accessors.
Handle<Code> megamorphic_stub() {
return isolate()->builtins()->LoadIC_Megamorphic();
}
static Code* initialize_stub() {
return Isolate::Current()->builtins()->builtin(
Builtins::kLoadIC_Initialize);
}
Handle<Code> pre_monomorphic_stub() {
return isolate()->builtins()->LoadIC_PreMonomorphic();
}
static void Clear(Address address, Code* target);
friend class IC;
};
class KeyedIC: public IC {
public:
enum StubKind {
LOAD,
STORE_NO_TRANSITION,
STORE_TRANSITION_SMI_TO_OBJECT,
STORE_TRANSITION_SMI_TO_DOUBLE,
STORE_TRANSITION_DOUBLE_TO_OBJECT,
STORE_TRANSITION_HOLEY_SMI_TO_OBJECT,
STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE,
STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
STORE_AND_GROW_NO_TRANSITION,
STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT,
STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE,
STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT,
STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT,
STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE,
STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT
};
static const int kGrowICDelta = STORE_AND_GROW_NO_TRANSITION -
STORE_NO_TRANSITION;
STATIC_ASSERT(kGrowICDelta ==
STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT -
STORE_TRANSITION_SMI_TO_OBJECT);
STATIC_ASSERT(kGrowICDelta ==
STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE -
STORE_TRANSITION_SMI_TO_DOUBLE);
STATIC_ASSERT(kGrowICDelta ==
STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT -
STORE_TRANSITION_DOUBLE_TO_OBJECT);
explicit KeyedIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) {}
virtual ~KeyedIC() {}
static inline KeyedAccessGrowMode GetGrowModeFromStubKind(
StubKind stub_kind) {
return (stub_kind >= STORE_AND_GROW_NO_TRANSITION)
? ALLOW_JSARRAY_GROWTH
: DO_NOT_ALLOW_JSARRAY_GROWTH;
}
static inline StubKind GetGrowStubKind(StubKind stub_kind) {
ASSERT(stub_kind != LOAD);
if (stub_kind < STORE_AND_GROW_NO_TRANSITION) {
stub_kind = static_cast<StubKind>(static_cast<int>(stub_kind) +
kGrowICDelta);
}
return stub_kind;
}
virtual Handle<Code> GetElementStubWithoutMapCheck(
bool is_js_array,
ElementsKind elements_kind,
KeyedAccessGrowMode grow_mode) = 0;
protected:
virtual Handle<Code> string_stub() {
return Handle<Code>::null();
}
virtual Code::Kind kind() const = 0;
Handle<Code> ComputeStub(Handle<JSObject> receiver,
StubKind stub_kind,
StrictModeFlag strict_mode,
Handle<Code> default_stub);
virtual Handle<Code> ComputePolymorphicStub(
MapHandleList* receiver_maps,
StrictModeFlag strict_mode,
KeyedAccessGrowMode grow_mode) = 0;
Handle<Code> ComputeMonomorphicStubWithoutMapCheck(
Handle<Map> receiver_map,
StrictModeFlag strict_mode,
KeyedAccessGrowMode grow_mode);
private:
void GetReceiverMapsForStub(Handle<Code> stub, MapHandleList* result);
Handle<Code> ComputeMonomorphicStub(Handle<Map> receiver_map,
StubKind stub_kind,
StrictModeFlag strict_mode,
Handle<Code> default_stub);
Handle<Map> ComputeTransitionedMap(Handle<JSObject> receiver,
StubKind stub_kind);
static bool IsTransitionStubKind(StubKind stub_kind) {
return stub_kind > STORE_NO_TRANSITION &&
stub_kind != STORE_AND_GROW_NO_TRANSITION;
}
static bool IsGrowStubKind(StubKind stub_kind) {
return stub_kind >= STORE_AND_GROW_NO_TRANSITION;
}
static StubKind GetNoTransitionStubKind(StubKind stub_kind) {
if (!IsTransitionStubKind(stub_kind)) return stub_kind;
if (IsGrowStubKind(stub_kind)) return STORE_AND_GROW_NO_TRANSITION;
return STORE_NO_TRANSITION;
}
};
class KeyedLoadIC: public KeyedIC {
public:
explicit KeyedLoadIC(Isolate* isolate) : KeyedIC(isolate) {
ASSERT(target()->is_keyed_load_stub());
}
MUST_USE_RESULT MaybeObject* Load(State state,
Handle<Object> object,
Handle<Object> key,
bool force_generic_stub);
// Code generator routines.
static void GenerateMiss(MacroAssembler* masm, bool force_generic);
static void GenerateRuntimeGetProperty(MacroAssembler* masm);
static void GenerateInitialize(MacroAssembler* masm) {
GenerateMiss(masm, false);
}
static void GeneratePreMonomorphic(MacroAssembler* masm) {
GenerateMiss(masm, false);
}
static void GenerateGeneric(MacroAssembler* masm);
static void GenerateString(MacroAssembler* masm);
static void GenerateIndexedInterceptor(MacroAssembler* masm);
static void GenerateNonStrictArguments(MacroAssembler* masm);
// Bit mask to be tested against bit field for the cases when
// generic stub should go into slow case.
// Access check is necessary explicitly since generic stub does not perform
// map checks.
static const int kSlowCaseBitFieldMask =
(1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor);
virtual Handle<Code> GetElementStubWithoutMapCheck(
bool is_js_array,
ElementsKind elements_kind,
KeyedAccessGrowMode grow_mode);
virtual bool IsGeneric() const {
return target() == *generic_stub();
}
protected:
virtual Code::Kind kind() const { return Code::KEYED_LOAD_IC; }
virtual Handle<Code> ComputePolymorphicStub(MapHandleList* receiver_maps,
StrictModeFlag strict_mode,
KeyedAccessGrowMode grow_mode);
virtual Handle<Code> string_stub() {
return isolate()->builtins()->KeyedLoadIC_String();
}
private:
// Update the inline cache.
void UpdateCaches(LookupResult* lookup,
State state,
Handle<Object> object,
Handle<String> name);
// Stub accessors.
static Code* initialize_stub() {
return Isolate::Current()->builtins()->builtin(
Builtins::kKeyedLoadIC_Initialize);
}
Handle<Code> megamorphic_stub() {
return isolate()->builtins()->KeyedLoadIC_Generic();
}
Handle<Code> generic_stub() const {
return isolate()->builtins()->KeyedLoadIC_Generic();
}
Handle<Code> pre_monomorphic_stub() {
return isolate()->builtins()->KeyedLoadIC_PreMonomorphic();
}
Handle<Code> indexed_interceptor_stub() {
return isolate()->builtins()->KeyedLoadIC_IndexedInterceptor();
}
Handle<Code> non_strict_arguments_stub() {
return isolate()->builtins()->KeyedLoadIC_NonStrictArguments();
}
static void Clear(Address address, Code* target);
friend class IC;
};
class StoreIC: public IC {
public:
explicit StoreIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) {
ASSERT(target()->is_store_stub());
}
MUST_USE_RESULT MaybeObject* Store(State state,
StrictModeFlag strict_mode,
Handle<Object> object,
Handle<String> name,
Handle<Object> value);
// Code generators for stub routines. Only called once at startup.
static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); }
static void GenerateMiss(MacroAssembler* masm);
static void GenerateMegamorphic(MacroAssembler* masm,
StrictModeFlag strict_mode);
static void GenerateArrayLength(MacroAssembler* masm);
static void GenerateNormal(MacroAssembler* masm);
static void GenerateGlobalProxy(MacroAssembler* masm,
StrictModeFlag strict_mode);
private:
// Update the inline cache and the global stub cache based on the
// lookup result.
void UpdateCaches(LookupResult* lookup,
State state,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value);
void set_target(Code* code) {
// Strict mode must be preserved across IC patching.
ASSERT(Code::GetStrictMode(code->extra_ic_state()) ==
Code::GetStrictMode(target()->extra_ic_state()));
IC::set_target(code);
}
// Stub accessors.
Code* megamorphic_stub() {
return isolate()->builtins()->builtin(
Builtins::kStoreIC_Megamorphic);
}
Code* megamorphic_stub_strict() {
return isolate()->builtins()->builtin(
Builtins::kStoreIC_Megamorphic_Strict);
}
static Code* initialize_stub() {
return Isolate::Current()->builtins()->builtin(
Builtins::kStoreIC_Initialize);
}
static Code* initialize_stub_strict() {
return Isolate::Current()->builtins()->builtin(
Builtins::kStoreIC_Initialize_Strict);
}
Handle<Code> global_proxy_stub() {
return isolate()->builtins()->StoreIC_GlobalProxy();
}
Handle<Code> global_proxy_stub_strict() {
return isolate()->builtins()->StoreIC_GlobalProxy_Strict();
}
static void Clear(Address address, Code* target);
friend class IC;
};
class KeyedStoreIC: public KeyedIC {
public:
explicit KeyedStoreIC(Isolate* isolate) : KeyedIC(isolate) {
ASSERT(target()->is_keyed_store_stub());
}
MUST_USE_RESULT MaybeObject* Store(State state,
StrictModeFlag strict_mode,
Handle<Object> object,
Handle<Object> name,
Handle<Object> value,
bool force_generic);
// Code generators for stub routines. Only called once at startup.
static void GenerateInitialize(MacroAssembler* masm) {
GenerateMiss(masm, false);
}
static void GenerateMiss(MacroAssembler* masm, bool force_generic);
static void GenerateSlow(MacroAssembler* masm);
static void GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictModeFlag strict_mode);
static void GenerateGeneric(MacroAssembler* masm, StrictModeFlag strict_mode);
static void GenerateNonStrictArguments(MacroAssembler* masm);
static void GenerateTransitionElementsSmiToDouble(MacroAssembler* masm);
static void GenerateTransitionElementsDoubleToObject(MacroAssembler* masm);
virtual Handle<Code> GetElementStubWithoutMapCheck(
bool is_js_array,
ElementsKind elements_kind,
KeyedAccessGrowMode grow_mode);
virtual bool IsGeneric() const {
return target() == *generic_stub() ||
target() == *generic_stub_strict();
}
protected:
virtual Code::Kind kind() const { return Code::KEYED_STORE_IC; }
virtual Handle<Code> ComputePolymorphicStub(MapHandleList* receiver_maps,
StrictModeFlag strict_mode,
KeyedAccessGrowMode grow_mode);
private:
// Update the inline cache.
void UpdateCaches(LookupResult* lookup,
State state,
StrictModeFlag strict_mode,
Handle<JSObject> receiver,
Handle<String> name,
Handle<Object> value);
void set_target(Code* code) {
// Strict mode must be preserved across IC patching.
ASSERT(Code::GetStrictMode(code->extra_ic_state()) ==
Code::GetStrictMode(target()->extra_ic_state()));
IC::set_target(code);
}
// Stub accessors.
static Code* initialize_stub() {
return Isolate::Current()->builtins()->builtin(
Builtins::kKeyedStoreIC_Initialize);
}
static Code* initialize_stub_strict() {
return Isolate::Current()->builtins()->builtin(
Builtins::kKeyedStoreIC_Initialize_Strict);
}
Handle<Code> megamorphic_stub() {
return isolate()->builtins()->KeyedStoreIC_Generic();
}
Handle<Code> megamorphic_stub_strict() {
return isolate()->builtins()->KeyedStoreIC_Generic_Strict();
}
Handle<Code> generic_stub() const {
return isolate()->builtins()->KeyedStoreIC_Generic();
}
Handle<Code> generic_stub_strict() const {
return isolate()->builtins()->KeyedStoreIC_Generic_Strict();
}
Handle<Code> non_strict_arguments_stub() {
return isolate()->builtins()->KeyedStoreIC_NonStrictArguments();
}
static void Clear(Address address, Code* target);
StubKind GetStubKind(Handle<JSObject> receiver,
Handle<Object> key,
Handle<Object> value);
friend class IC;
};
class UnaryOpIC: public IC {
public:
// sorted: increasingly more unspecific (ignoring UNINITIALIZED)
// TODO(svenpanne) Using enums+switch is an antipattern, use a class instead.
enum TypeInfo {
UNINITIALIZED,
SMI,
HEAP_NUMBER,
GENERIC
};
explicit UnaryOpIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) { }
void patch(Code* code);
static const char* GetName(TypeInfo type_info);
static State ToState(TypeInfo type_info);
static TypeInfo GetTypeInfo(Handle<Object> operand);
static TypeInfo ComputeNewType(TypeInfo type, TypeInfo previous);
};
// Type Recording BinaryOpIC, that records the types of the inputs and outputs.
class BinaryOpIC: public IC {
public:
enum TypeInfo {
UNINITIALIZED,
SMI,
INT32,
HEAP_NUMBER,
ODDBALL,
BOTH_STRING, // Only used for addition operation.
STRING, // Only used for addition operation. At least one string operand.
GENERIC
};
explicit BinaryOpIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) { }
void patch(Code* code);
static const char* GetName(TypeInfo type_info);
static State ToState(TypeInfo type_info);
static TypeInfo GetTypeInfo(Handle<Object> left, Handle<Object> right);
static TypeInfo JoinTypes(TypeInfo x, TypeInfo y);
};
class CompareIC: public IC {
public:
enum State {
UNINITIALIZED,
SMIS,
HEAP_NUMBERS,
SYMBOLS,
STRINGS,
OBJECTS,
KNOWN_OBJECTS,
GENERIC
};
CompareIC(Isolate* isolate, Token::Value op)
: IC(EXTRA_CALL_FRAME, isolate), op_(op) { }
// Update the inline cache for the given operands.
void UpdateCaches(Handle<Object> x, Handle<Object> y);
// Factory method for getting an uninitialized compare stub.
static Handle<Code> GetUninitialized(Token::Value op);
// Helper function for computing the condition for a compare operation.
static Condition ComputeCondition(Token::Value op);
// Helper function for determining the state of a compare IC.
static State ComputeState(Code* target);
// Helper function for determining the operation a compare IC is for.
static Token::Value ComputeOperation(Code* target);
static const char* GetStateName(State state);
private:
State TargetState(State state, bool has_inlined_smi_code,
Handle<Object> x, Handle<Object> y);
bool strict() const { return op_ == Token::EQ_STRICT; }
Condition GetCondition() const { return ComputeCondition(op_); }
State GetState() { return ComputeState(target()); }
static Code* GetRawUninitialized(Token::Value op);
static void Clear(Address address, Code* target);
Token::Value op_;
friend class IC;
};
class ToBooleanIC: public IC {
public:
explicit ToBooleanIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) { }
void patch(Code* code);
};
// Helper for BinaryOpIC and CompareIC.
enum InlinedSmiCheck { ENABLE_INLINED_SMI_CHECK, DISABLE_INLINED_SMI_CHECK };
void PatchInlinedSmiCode(Address address, InlinedSmiCheck check);
} } // namespace v8::internal
#endif // V8_IC_H_