v8/src/lithium.cc
mstarzinger@chromium.org 47608c900a Allow more virtual registers to be encoded in LUnallocated.
This is a preparation which allows us to bump the virtual register width
from 15 to 18 bit without sacrificing width for other fields inside an
unallocated lithium operand.

R=svenpanne@chromium.org

Review URL: https://codereview.chromium.org/14639008

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@14513 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-05-02 09:51:07 +00:00

499 lines
15 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "lithium.h"
#include "scopes.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/lithium-ia32.h"
#include "ia32/lithium-codegen-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/lithium-x64.h"
#include "x64/lithium-codegen-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/lithium-arm.h"
#include "arm/lithium-codegen-arm.h"
#elif V8_TARGET_ARCH_MIPS
#include "mips/lithium-mips.h"
#include "mips/lithium-codegen-mips.h"
#else
#error "Unknown architecture."
#endif
namespace v8 {
namespace internal {
void LOperand::PrintTo(StringStream* stream) {
LUnallocated* unalloc = NULL;
switch (kind()) {
case INVALID:
stream->Add("(0)");
break;
case UNALLOCATED:
unalloc = LUnallocated::cast(this);
stream->Add("v%d", unalloc->virtual_register());
if (unalloc->basic_policy() == LUnallocated::FIXED_SLOT) {
stream->Add("(=%dS)", unalloc->fixed_slot_index());
break;
}
switch (unalloc->extended_policy()) {
case LUnallocated::NONE:
break;
case LUnallocated::FIXED_REGISTER: {
int reg_index = unalloc->fixed_register_index();
const char* register_name =
Register::AllocationIndexToString(reg_index);
stream->Add("(=%s)", register_name);
break;
}
case LUnallocated::FIXED_DOUBLE_REGISTER: {
int reg_index = unalloc->fixed_register_index();
const char* double_register_name =
DoubleRegister::AllocationIndexToString(reg_index);
stream->Add("(=%s)", double_register_name);
break;
}
case LUnallocated::MUST_HAVE_REGISTER:
stream->Add("(R)");
break;
case LUnallocated::WRITABLE_REGISTER:
stream->Add("(WR)");
break;
case LUnallocated::SAME_AS_FIRST_INPUT:
stream->Add("(1)");
break;
case LUnallocated::ANY:
stream->Add("(-)");
break;
}
break;
case CONSTANT_OPERAND:
stream->Add("[constant:%d]", index());
break;
case STACK_SLOT:
stream->Add("[stack:%d]", index());
break;
case DOUBLE_STACK_SLOT:
stream->Add("[double_stack:%d]", index());
break;
case REGISTER:
stream->Add("[%s|R]", Register::AllocationIndexToString(index()));
break;
case DOUBLE_REGISTER:
stream->Add("[%s|R]", DoubleRegister::AllocationIndexToString(index()));
break;
case ARGUMENT:
stream->Add("[arg:%d]", index());
break;
}
}
#define DEFINE_OPERAND_CACHE(name, type) \
L##name* L##name::cache = NULL; \
\
void L##name::SetUpCache() { \
if (cache) return; \
cache = new L##name[kNumCachedOperands]; \
for (int i = 0; i < kNumCachedOperands; i++) { \
cache[i].ConvertTo(type, i); \
} \
} \
\
void L##name::TearDownCache() { \
delete[] cache; \
}
LITHIUM_OPERAND_LIST(DEFINE_OPERAND_CACHE)
#undef DEFINE_OPERAND_CACHE
void LOperand::SetUpCaches() {
#define LITHIUM_OPERAND_SETUP(name, type) L##name::SetUpCache();
LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_SETUP)
#undef LITHIUM_OPERAND_SETUP
}
void LOperand::TearDownCaches() {
#define LITHIUM_OPERAND_TEARDOWN(name, type) L##name::TearDownCache();
LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_TEARDOWN)
#undef LITHIUM_OPERAND_TEARDOWN
}
bool LParallelMove::IsRedundant() const {
for (int i = 0; i < move_operands_.length(); ++i) {
if (!move_operands_[i].IsRedundant()) return false;
}
return true;
}
void LParallelMove::PrintDataTo(StringStream* stream) const {
bool first = true;
for (int i = 0; i < move_operands_.length(); ++i) {
if (!move_operands_[i].IsEliminated()) {
LOperand* source = move_operands_[i].source();
LOperand* destination = move_operands_[i].destination();
if (!first) stream->Add(" ");
first = false;
if (source->Equals(destination)) {
destination->PrintTo(stream);
} else {
destination->PrintTo(stream);
stream->Add(" = ");
source->PrintTo(stream);
}
stream->Add(";");
}
}
}
void LEnvironment::PrintTo(StringStream* stream) {
stream->Add("[id=%d|", ast_id().ToInt());
if (deoptimization_index() != Safepoint::kNoDeoptimizationIndex) {
stream->Add("deopt_id=%d|", deoptimization_index());
}
stream->Add("parameters=%d|", parameter_count());
stream->Add("arguments_stack_height=%d|", arguments_stack_height());
for (int i = 0; i < values_.length(); ++i) {
if (i != 0) stream->Add(";");
if (values_[i] == NULL) {
stream->Add("[hole]");
} else {
values_[i]->PrintTo(stream);
}
}
stream->Add("]");
}
void LPointerMap::RecordPointer(LOperand* op, Zone* zone) {
// Do not record arguments as pointers.
if (op->IsStackSlot() && op->index() < 0) return;
ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot());
pointer_operands_.Add(op, zone);
}
void LPointerMap::RemovePointer(LOperand* op) {
// Do not record arguments as pointers.
if (op->IsStackSlot() && op->index() < 0) return;
ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot());
for (int i = 0; i < pointer_operands_.length(); ++i) {
if (pointer_operands_[i]->Equals(op)) {
pointer_operands_.Remove(i);
--i;
}
}
}
void LPointerMap::RecordUntagged(LOperand* op, Zone* zone) {
// Do not record arguments as pointers.
if (op->IsStackSlot() && op->index() < 0) return;
ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot());
untagged_operands_.Add(op, zone);
}
void LPointerMap::PrintTo(StringStream* stream) {
stream->Add("{");
for (int i = 0; i < pointer_operands_.length(); ++i) {
if (i != 0) stream->Add(";");
pointer_operands_[i]->PrintTo(stream);
}
stream->Add("} @%d", position());
}
int ElementsKindToShiftSize(ElementsKind elements_kind) {
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
return 0;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
return 1;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
case EXTERNAL_FLOAT_ELEMENTS:
return 2;
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
return 3;
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
return kPointerSizeLog2;
}
UNREACHABLE();
return 0;
}
int StackSlotOffset(int index) {
if (index >= 0) {
// Local or spill slot. Skip the frame pointer, function, and
// context in the fixed part of the frame.
return -(index + 3) * kPointerSize;
} else {
// Incoming parameter. Skip the return address.
return -(index - 1) * kPointerSize;
}
}
LChunk::LChunk(CompilationInfo* info, HGraph* graph)
: spill_slot_count_(0),
info_(info),
graph_(graph),
instructions_(32, graph->zone()),
pointer_maps_(8, graph->zone()),
inlined_closures_(1, graph->zone()) {
}
LLabel* LChunk::GetLabel(int block_id) const {
HBasicBlock* block = graph_->blocks()->at(block_id);
int first_instruction = block->first_instruction_index();
return LLabel::cast(instructions_[first_instruction]);
}
int LChunk::LookupDestination(int block_id) const {
LLabel* cur = GetLabel(block_id);
while (cur->replacement() != NULL) {
cur = cur->replacement();
}
return cur->block_id();
}
Label* LChunk::GetAssemblyLabel(int block_id) const {
LLabel* label = GetLabel(block_id);
ASSERT(!label->HasReplacement());
return label->label();
}
void LChunk::MarkEmptyBlocks() {
HPhase phase("L_Mark empty blocks", this);
for (int i = 0; i < graph()->blocks()->length(); ++i) {
HBasicBlock* block = graph()->blocks()->at(i);
int first = block->first_instruction_index();
int last = block->last_instruction_index();
LInstruction* first_instr = instructions()->at(first);
LInstruction* last_instr = instructions()->at(last);
LLabel* label = LLabel::cast(first_instr);
if (last_instr->IsGoto()) {
LGoto* goto_instr = LGoto::cast(last_instr);
if (label->IsRedundant() &&
!label->is_loop_header()) {
bool can_eliminate = true;
for (int i = first + 1; i < last && can_eliminate; ++i) {
LInstruction* cur = instructions()->at(i);
if (cur->IsGap()) {
LGap* gap = LGap::cast(cur);
if (!gap->IsRedundant()) {
can_eliminate = false;
}
} else {
can_eliminate = false;
}
}
if (can_eliminate) {
label->set_replacement(GetLabel(goto_instr->block_id()));
}
}
}
}
}
void LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) {
LInstructionGap* gap = new(graph_->zone()) LInstructionGap(block);
gap->set_hydrogen_value(instr->hydrogen_value());
int index = -1;
if (instr->IsControl()) {
instructions_.Add(gap, zone());
index = instructions_.length();
instructions_.Add(instr, zone());
} else {
index = instructions_.length();
instructions_.Add(instr, zone());
instructions_.Add(gap, zone());
}
if (instr->HasPointerMap()) {
pointer_maps_.Add(instr->pointer_map(), zone());
instr->pointer_map()->set_lithium_position(index);
}
}
LConstantOperand* LChunk::DefineConstantOperand(HConstant* constant) {
return LConstantOperand::Create(constant->id(), zone());
}
int LChunk::GetParameterStackSlot(int index) const {
// The receiver is at index 0, the first parameter at index 1, so we
// shift all parameter indexes down by the number of parameters, and
// make sure they end up negative so they are distinguishable from
// spill slots.
int result = index - info()->scope()->num_parameters() - 1;
ASSERT(result < 0);
return result;
}
// A parameter relative to ebp in the arguments stub.
int LChunk::ParameterAt(int index) {
ASSERT(-1 <= index); // -1 is the receiver.
return (1 + info()->scope()->num_parameters() - index) *
kPointerSize;
}
LGap* LChunk::GetGapAt(int index) const {
return LGap::cast(instructions_[index]);
}
bool LChunk::IsGapAt(int index) const {
return instructions_[index]->IsGap();
}
int LChunk::NearestGapPos(int index) const {
while (!IsGapAt(index)) index--;
return index;
}
void LChunk::AddGapMove(int index, LOperand* from, LOperand* to) {
GetGapAt(index)->GetOrCreateParallelMove(
LGap::START, zone())->AddMove(from, to, zone());
}
HConstant* LChunk::LookupConstant(LConstantOperand* operand) const {
return HConstant::cast(graph_->LookupValue(operand->index()));
}
Representation LChunk::LookupLiteralRepresentation(
LConstantOperand* operand) const {
return graph_->LookupValue(operand->index())->representation();
}
LChunk* LChunk::NewChunk(HGraph* graph) {
NoHandleAllocation no_handles(graph->isolate());
AssertNoAllocation no_gc;
int values = graph->GetMaximumValueID();
CompilationInfo* info = graph->info();
if (values > LUnallocated::kMaxVirtualRegisters) {
info->set_bailout_reason("not enough virtual registers for values");
return NULL;
}
LAllocator allocator(values, graph);
LChunkBuilder builder(info, graph, &allocator);
LChunk* chunk = builder.Build();
if (chunk == NULL) return NULL;
if (!allocator.Allocate(chunk)) {
info->set_bailout_reason("not enough virtual registers (regalloc)");
return NULL;
}
chunk->set_allocated_double_registers(
allocator.assigned_double_registers());
return chunk;
}
Handle<Code> LChunk::Codegen() {
MacroAssembler assembler(info()->isolate(), NULL, 0);
LOG_CODE_EVENT(info()->isolate(),
CodeStartLinePosInfoRecordEvent(
assembler.positions_recorder()));
LCodeGen generator(this, &assembler, info());
MarkEmptyBlocks();
if (generator.GenerateCode()) {
if (FLAG_trace_codegen) {
PrintF("Crankshaft Compiler - ");
}
CodeGenerator::MakeCodePrologue(info());
Code::Flags flags = info()->flags();
Handle<Code> code =
CodeGenerator::MakeCodeEpilogue(&assembler, flags, info());
generator.FinishCode(code);
code->set_is_crankshafted(true);
if (!code.is_null()) {
void* jit_handler_data =
assembler.positions_recorder()->DetachJITHandlerData();
LOG_CODE_EVENT(info()->isolate(),
CodeEndLinePosInfoRecordEvent(*code, jit_handler_data));
}
CodeGenerator::PrintCode(code, info());
return code;
}
return Handle<Code>::null();
}
void LChunk::set_allocated_double_registers(BitVector* allocated_registers) {
allocated_double_registers_ = allocated_registers;
BitVector* doubles = allocated_double_registers();
BitVector::Iterator iterator(doubles);
while (!iterator.Done()) {
if (info()->saves_caller_doubles()) {
if (kDoubleSize == kPointerSize * 2) {
spill_slot_count_ += 2;
} else {
spill_slot_count_++;
}
}
iterator.Advance();
}
}
} } // namespace v8::internal