v8/src/stub-cache.h

1134 lines
45 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_STUB_CACHE_H_
#define V8_STUB_CACHE_H_
#include "allocation.h"
#include "arguments.h"
#include "code-stubs.h"
#include "ic-inl.h"
#include "macro-assembler.h"
#include "objects.h"
#include "zone-inl.h"
namespace v8 {
namespace internal {
// The stub cache is used for megamorphic calls and property accesses.
// It maps (map, name, type)->Code*
// The design of the table uses the inline cache stubs used for
// mono-morphic calls. The beauty of this, we do not have to
// invalidate the cache whenever a prototype map is changed. The stub
// validates the map chain as in the mono-morphic case.
class SmallMapList;
class StubCache;
class SCTableReference {
public:
Address address() const { return address_; }
private:
explicit SCTableReference(Address address) : address_(address) {}
Address address_;
friend class StubCache;
};
class StubCache {
public:
struct Entry {
Name* key;
Code* value;
Map* map;
};
void Initialize();
Handle<JSObject> StubHolder(Handle<JSObject> receiver,
Handle<JSObject> holder);
Handle<Code> FindIC(Handle<Name> name,
Handle<Map> stub_holder_map,
Code::Kind kind,
Code::StubType type,
Code::ExtraICState extra_state = Code::kNoExtraICState);
Handle<Code> FindIC(Handle<Name> name,
Handle<JSObject> stub_holder,
Code::Kind kind,
Code::StubType type,
Code::ExtraICState extra_state = Code::kNoExtraICState);
Handle<Code> FindHandler(
Handle<Name> name,
Handle<JSObject> receiver,
Handle<JSObject> stub_holder,
Code::Kind kind,
Code::StubType type);
Handle<Code> ComputeMonomorphicIC(Handle<JSObject> receiver,
Handle<Code> handler,
Handle<Name> name);
Handle<Code> ComputeKeyedMonomorphicIC(Handle<JSObject> receiver,
Handle<Code> handler,
Handle<Name> name);
// Computes the right stub matching. Inserts the result in the
// cache before returning. This might compile a stub if needed.
Handle<Code> ComputeLoadNonexistent(Handle<Name> name,
Handle<JSObject> object);
Handle<Code> ComputeLoadField(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
PropertyIndex field_index,
Representation representation);
Handle<Code> ComputeLoadCallback(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<ExecutableAccessorInfo> callback);
Handle<Code> ComputeLoadViaGetter(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<JSFunction> getter);
Handle<Code> ComputeLoadConstant(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<JSFunction> value);
Handle<Code> ComputeLoadInterceptor(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder);
Handle<Code> ComputeLoadNormal(Handle<Name> name,
Handle<JSObject> object);
Handle<Code> ComputeLoadGlobal(Handle<Name> name,
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
bool is_dont_delete);
// ---
Handle<Code> ComputeKeyedLoadField(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
PropertyIndex field_index,
Representation representation);
Handle<Code> ComputeKeyedLoadCallback(
Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<ExecutableAccessorInfo> callback);
Handle<Code> ComputeKeyedLoadConstant(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<JSFunction> value);
Handle<Code> ComputeKeyedLoadInterceptor(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder);
// ---
Handle<Code> ComputeStoreField(Handle<Name> name,
Handle<JSObject> object,
LookupResult* lookup,
StrictModeFlag strict_mode);
Handle<Code> ComputeStoreTransition(Handle<Name> name,
Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
StrictModeFlag strict_mode);
Handle<Code> ComputeStoreNormal(StrictModeFlag strict_mode);
Handle<Code> ComputeStoreGlobal(Handle<Name> name,
Handle<GlobalObject> object,
Handle<JSGlobalPropertyCell> cell,
StrictModeFlag strict_mode);
Handle<Code> ComputeStoreCallback(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<ExecutableAccessorInfo> callback,
StrictModeFlag strict_mode);
Handle<Code> ComputeStoreViaSetter(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<JSFunction> setter,
StrictModeFlag strict_mode);
Handle<Code> ComputeStoreInterceptor(Handle<Name> name,
Handle<JSObject> object,
StrictModeFlag strict_mode);
// ---
Handle<Code> ComputeKeyedStoreField(Handle<Name> name,
Handle<JSObject> object,
LookupResult* lookup,
StrictModeFlag strict_mode);
Handle<Code> ComputeKeyedStoreTransition(Handle<Name> name,
Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
StrictModeFlag strict_mode);
Handle<Code> ComputeKeyedLoadElement(Handle<Map> receiver_map);
Handle<Code> ComputeKeyedStoreElement(Handle<Map> receiver_map,
StrictModeFlag strict_mode,
KeyedAccessStoreMode store_mode);
// ---
Handle<Code> ComputeCallField(int argc,
Code::Kind,
Code::ExtraICState extra_state,
Handle<Name> name,
Handle<Object> object,
Handle<JSObject> holder,
PropertyIndex index);
Handle<Code> ComputeCallConstant(int argc,
Code::Kind,
Code::ExtraICState extra_state,
Handle<Name> name,
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSFunction> function);
Handle<Code> ComputeCallInterceptor(int argc,
Code::Kind,
Code::ExtraICState extra_state,
Handle<Name> name,
Handle<Object> object,
Handle<JSObject> holder);
Handle<Code> ComputeCallGlobal(int argc,
Code::Kind,
Code::ExtraICState extra_state,
Handle<Name> name,
Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function);
// ---
Handle<Code> ComputeCallInitialize(int argc, RelocInfo::Mode mode);
Handle<Code> ComputeKeyedCallInitialize(int argc);
Handle<Code> ComputeCallPreMonomorphic(int argc,
Code::Kind kind,
Code::ExtraICState extra_state);
Handle<Code> ComputeCallNormal(int argc,
Code::Kind kind,
Code::ExtraICState state);
Handle<Code> ComputeCallArguments(int argc);
Handle<Code> ComputeCallMegamorphic(int argc,
Code::Kind kind,
Code::ExtraICState state);
Handle<Code> ComputeCallMiss(int argc,
Code::Kind kind,
Code::ExtraICState state);
// ---
Handle<Code> ComputeCompareNil(Handle<Map> receiver_map,
NilValue nil,
CompareNilICStub::Types types);
// ---
Handle<Code> ComputeLoadElementPolymorphic(MapHandleList* receiver_maps);
Handle<Code> ComputeStoreElementPolymorphic(MapHandleList* receiver_maps,
KeyedAccessStoreMode store_mode,
StrictModeFlag strict_mode);
Handle<Code> ComputePolymorphicIC(MapHandleList* receiver_maps,
CodeHandleList* handlers,
int number_of_valid_maps,
Handle<Name> name);
// Finds the Code object stored in the Heap::non_monomorphic_cache().
Code* FindCallInitialize(int argc, RelocInfo::Mode mode, Code::Kind kind);
#ifdef ENABLE_DEBUGGER_SUPPORT
Handle<Code> ComputeCallDebugBreak(int argc, Code::Kind kind);
Handle<Code> ComputeCallDebugPrepareStepIn(int argc, Code::Kind kind);
#endif
// Update cache for entry hash(name, map).
Code* Set(Name* name, Map* map, Code* code);
// Clear the lookup table (@ mark compact collection).
void Clear();
// Collect all maps that match the name and flags.
void CollectMatchingMaps(SmallMapList* types,
Handle<Name> name,
Code::Flags flags,
Handle<Context> native_context,
Zone* zone);
// Generate code for probing the stub cache table.
// Arguments extra, extra2 and extra3 may be used to pass additional scratch
// registers. Set to no_reg if not needed.
void GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2 = no_reg,
Register extra3 = no_reg);
enum Table {
kPrimary,
kSecondary
};
SCTableReference key_reference(StubCache::Table table) {
return SCTableReference(
reinterpret_cast<Address>(&first_entry(table)->key));
}
SCTableReference map_reference(StubCache::Table table) {
return SCTableReference(
reinterpret_cast<Address>(&first_entry(table)->map));
}
SCTableReference value_reference(StubCache::Table table) {
return SCTableReference(
reinterpret_cast<Address>(&first_entry(table)->value));
}
StubCache::Entry* first_entry(StubCache::Table table) {
switch (table) {
case StubCache::kPrimary: return StubCache::primary_;
case StubCache::kSecondary: return StubCache::secondary_;
}
UNREACHABLE();
return NULL;
}
Isolate* isolate() { return isolate_; }
Heap* heap() { return isolate()->heap(); }
Factory* factory() { return isolate()->factory(); }
private:
StubCache(Isolate* isolate, Zone* zone);
Handle<Code> ComputeCallInitialize(int argc,
RelocInfo::Mode mode,
Code::Kind kind);
// The stub cache has a primary and secondary level. The two levels have
// different hashing algorithms in order to avoid simultaneous collisions
// in both caches. Unlike a probing strategy (quadratic or otherwise) the
// update strategy on updates is fairly clear and simple: Any existing entry
// in the primary cache is moved to the secondary cache, and secondary cache
// entries are overwritten.
// Hash algorithm for the primary table. This algorithm is replicated in
// assembler for every architecture. Returns an index into the table that
// is scaled by 1 << kHeapObjectTagSize.
static int PrimaryOffset(Name* name, Code::Flags flags, Map* map) {
// This works well because the heap object tag size and the hash
// shift are equal. Shifting down the length field to get the
// hash code would effectively throw away two bits of the hash
// code.
STATIC_ASSERT(kHeapObjectTagSize == Name::kHashShift);
// Compute the hash of the name (use entire hash field).
ASSERT(name->HasHashCode());
uint32_t field = name->hash_field();
// Using only the low bits in 64-bit mode is unlikely to increase the
// risk of collision even if the heap is spread over an area larger than
// 4Gb (and not at all if it isn't).
uint32_t map_low32bits =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map));
// We always set the in_loop bit to zero when generating the lookup code
// so do it here too so the hash codes match.
uint32_t iflags =
(static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup);
// Base the offset on a simple combination of name, flags, and map.
uint32_t key = (map_low32bits + field) ^ iflags;
return key & ((kPrimaryTableSize - 1) << kHeapObjectTagSize);
}
// Hash algorithm for the secondary table. This algorithm is replicated in
// assembler for every architecture. Returns an index into the table that
// is scaled by 1 << kHeapObjectTagSize.
static int SecondaryOffset(Name* name, Code::Flags flags, int seed) {
// Use the seed from the primary cache in the secondary cache.
uint32_t name_low32bits =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name));
// We always set the in_loop bit to zero when generating the lookup code
// so do it here too so the hash codes match.
uint32_t iflags =
(static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup);
uint32_t key = (seed - name_low32bits) + iflags;
return key & ((kSecondaryTableSize - 1) << kHeapObjectTagSize);
}
// Compute the entry for a given offset in exactly the same way as
// we do in generated code. We generate an hash code that already
// ends in Name::kHashShift 0s. Then we multiply it so it is a multiple
// of sizeof(Entry). This makes it easier to avoid making mistakes
// in the hashed offset computations.
static Entry* entry(Entry* table, int offset) {
const int multiplier = sizeof(*table) >> Name::kHashShift;
return reinterpret_cast<Entry*>(
reinterpret_cast<Address>(table) + offset * multiplier);
}
static const int kPrimaryTableBits = 11;
static const int kPrimaryTableSize = (1 << kPrimaryTableBits);
static const int kSecondaryTableBits = 9;
static const int kSecondaryTableSize = (1 << kSecondaryTableBits);
Entry primary_[kPrimaryTableSize];
Entry secondary_[kSecondaryTableSize];
Isolate* isolate_;
friend class Isolate;
friend class SCTableReference;
DISALLOW_COPY_AND_ASSIGN(StubCache);
};
// ------------------------------------------------------------------------
// Support functions for IC stubs for callbacks.
DECLARE_RUNTIME_FUNCTION(MaybeObject*, StoreCallbackProperty);
// Support functions for IC stubs for interceptors.
DECLARE_RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorOnly);
DECLARE_RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForLoad);
DECLARE_RUNTIME_FUNCTION(MaybeObject*, LoadPropertyWithInterceptorForCall);
DECLARE_RUNTIME_FUNCTION(MaybeObject*, StoreInterceptorProperty);
DECLARE_RUNTIME_FUNCTION(MaybeObject*, CallInterceptorProperty);
DECLARE_RUNTIME_FUNCTION(MaybeObject*, KeyedLoadPropertyWithInterceptor);
enum PrototypeCheckType { CHECK_ALL_MAPS, SKIP_RECEIVER };
enum IcCheckType { ELEMENT, PROPERTY };
// The stub compilers compile stubs for the stub cache.
class StubCompiler BASE_EMBEDDED {
public:
explicit StubCompiler(Isolate* isolate)
: isolate_(isolate), masm_(isolate, NULL, 256), failure_(NULL) { }
// Functions to compile either CallIC or KeyedCallIC. The specific kind
// is extracted from the code flags.
Handle<Code> CompileCallInitialize(Code::Flags flags);
Handle<Code> CompileCallPreMonomorphic(Code::Flags flags);
Handle<Code> CompileCallNormal(Code::Flags flags);
Handle<Code> CompileCallMegamorphic(Code::Flags flags);
Handle<Code> CompileCallArguments(Code::Flags flags);
Handle<Code> CompileCallMiss(Code::Flags flags);
#ifdef ENABLE_DEBUGGER_SUPPORT
Handle<Code> CompileCallDebugBreak(Code::Flags flags);
Handle<Code> CompileCallDebugPrepareStepIn(Code::Flags flags);
#endif
// Static functions for generating parts of stubs.
static void GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype);
// Generates prototype loading code that uses the objects from the
// context we were in when this function was called. If the context
// has changed, a jump to miss is performed. This ties the generated
// code to a particular context and so must not be used in cases
// where the generated code is not allowed to have references to
// objects from a context.
static void GenerateDirectLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype,
Label* miss);
static void GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst,
Register src,
bool inobject,
int index,
Representation representation);
static void GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label);
static void GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss_label,
bool support_wrappers);
static void GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss_label);
void GenerateStoreTransition(MacroAssembler* masm,
Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
Handle<Name> name,
Register receiver_reg,
Register name_reg,
Register value_reg,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss_label,
Label* miss_restore_name,
Label* slow);
void GenerateStoreField(MacroAssembler* masm,
Handle<JSObject> object,
LookupResult* lookup,
Register receiver_reg,
Register name_reg,
Register value_reg,
Register scratch1,
Register scratch2,
Label* miss_label);
static Builtins::Name MissBuiltin(Code::Kind kind) {
switch (kind) {
case Code::LOAD_IC: return Builtins::kLoadIC_Miss;
case Code::STORE_IC: return Builtins::kStoreIC_Miss;
case Code::KEYED_LOAD_IC: return Builtins::kKeyedLoadIC_Miss;
case Code::KEYED_STORE_IC: return Builtins::kKeyedStoreIC_Miss;
default: UNREACHABLE();
}
return Builtins::kLoadIC_Miss;
}
static Builtins::Name SlowBuiltin(Code::Kind kind) {
switch (kind) {
case Code::STORE_IC: return Builtins::kStoreIC_Slow;
case Code::KEYED_STORE_IC: return Builtins::kKeyedStoreIC_Slow;
default: UNREACHABLE();
}
return Builtins::kStoreIC_Slow;
}
static void TailCallBuiltin(MacroAssembler* masm, Builtins::Name name);
// Generates code that verifies that the property holder has not changed
// (checking maps of objects in the prototype chain for fast and global
// objects or doing negative lookup for slow objects, ensures that the
// property cells for global objects are still empty) and checks that the map
// of the holder has not changed. If necessary the function also generates
// code for security check in case of global object holders. Helps to make
// sure that the current IC is still valid.
//
// The scratch and holder registers are always clobbered, but the object
// register is only clobbered if it the same as the holder register. The
// function returns a register containing the holder - either object_reg or
// holder_reg.
// The function can optionally (when save_at_depth !=
// kInvalidProtoDepth) save the object at the given depth by moving
// it to [esp + kPointerSize].
Register CheckPrototypes(Handle<JSObject> object,
Register object_reg,
Handle<JSObject> holder,
Register holder_reg,
Register scratch1,
Register scratch2,
Handle<Name> name,
Label* miss,
PrototypeCheckType check = CHECK_ALL_MAPS) {
return CheckPrototypes(object, object_reg, holder, holder_reg, scratch1,
scratch2, name, kInvalidProtoDepth, miss, check);
}
Register CheckPrototypes(Handle<JSObject> object,
Register object_reg,
Handle<JSObject> holder,
Register holder_reg,
Register scratch1,
Register scratch2,
Handle<Name> name,
int save_at_depth,
Label* miss,
PrototypeCheckType check = CHECK_ALL_MAPS);
protected:
Handle<Code> GetCodeWithFlags(Code::Flags flags, const char* name);
Handle<Code> GetCodeWithFlags(Code::Flags flags, Handle<Name> name);
MacroAssembler* masm() { return &masm_; }
void set_failure(Failure* failure) { failure_ = failure; }
static void LookupPostInterceptor(Handle<JSObject> holder,
Handle<Name> name,
LookupResult* lookup);
Isolate* isolate() { return isolate_; }
Heap* heap() { return isolate()->heap(); }
Factory* factory() { return isolate()->factory(); }
static void GenerateTailCall(MacroAssembler* masm, Handle<Code> code);
private:
Isolate* isolate_;
MacroAssembler masm_;
Failure* failure_;
};
enum FrontendCheckType { PERFORM_INITIAL_CHECKS, SKIP_INITIAL_CHECKS };
class BaseLoadStubCompiler: public StubCompiler {
public:
BaseLoadStubCompiler(Isolate* isolate, Register* registers)
: StubCompiler(isolate), registers_(registers) { }
virtual ~BaseLoadStubCompiler() { }
Handle<Code> CompileLoadField(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
PropertyIndex index,
Representation representation);
Handle<Code> CompileLoadCallback(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Handle<ExecutableAccessorInfo> callback);
Handle<Code> CompileLoadConstant(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Handle<JSFunction> value);
Handle<Code> CompileLoadInterceptor(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name);
Handle<Code> CompileMonomorphicIC(Handle<Map> receiver_map,
Handle<Code> handler,
Handle<Name> name);
Handle<Code> CompilePolymorphicIC(MapHandleList* receiver_maps,
CodeHandleList* handlers,
Handle<Name> name,
Code::StubType type,
IcCheckType check);
protected:
Register HandlerFrontendHeader(Handle<JSObject> object,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* success);
void HandlerFrontendFooter(Label* success, Label* miss);
Register HandlerFrontend(Handle<JSObject> object,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* success);
Register CallbackHandlerFrontend(Handle<JSObject> object,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Label* success,
Handle<ExecutableAccessorInfo> callback);
void NonexistentHandlerFrontend(Handle<JSObject> object,
Handle<JSObject> last,
Handle<Name> name,
Label* success,
Handle<GlobalObject> global);
void GenerateLoadField(Register reg,
Handle<JSObject> holder,
PropertyIndex field,
Representation representation);
void GenerateLoadConstant(Handle<JSFunction> value);
void GenerateLoadCallback(Register reg,
Handle<ExecutableAccessorInfo> callback);
void GenerateLoadInterceptor(Register holder_reg,
Handle<JSObject> object,
Handle<JSObject> holder,
LookupResult* lookup,
Handle<Name> name);
void GenerateLoadPostInterceptor(Register reg,
Handle<JSObject> interceptor_holder,
Handle<Name> name,
LookupResult* lookup);
Handle<Code> GetICCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name,
InlineCacheState state = MONOMORPHIC);
Handle<Code> GetCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name);
Register receiver() { return registers_[0]; }
Register name() { return registers_[1]; }
Register scratch1() { return registers_[2]; }
Register scratch2() { return registers_[3]; }
Register scratch3() { return registers_[4]; }
Register scratch4() { return registers_[5]; }
private:
virtual Code::Kind kind() = 0;
virtual Logger::LogEventsAndTags log_kind(Handle<Code> code) = 0;
virtual void JitEvent(Handle<Name> name, Handle<Code> code) = 0;
virtual void GenerateNameCheck(Handle<Name> name,
Register name_reg,
Label* miss) { }
Register* registers_;
};
class LoadStubCompiler: public BaseLoadStubCompiler {
public:
explicit LoadStubCompiler(Isolate* isolate)
: BaseLoadStubCompiler(isolate, registers()) { }
Handle<Code> CompileLoadNonexistent(Handle<JSObject> object,
Handle<JSObject> last,
Handle<Name> name,
Handle<GlobalObject> global);
static void GenerateLoadViaGetter(MacroAssembler* masm,
Handle<JSFunction> getter);
Handle<Code> CompileLoadViaGetter(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Handle<JSFunction> getter);
Handle<Code> CompileLoadGlobal(Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<Name> name,
bool is_dont_delete);
static Register receiver() { return registers()[0]; }
private:
static Register* registers();
virtual Code::Kind kind() { return Code::LOAD_IC; }
virtual Logger::LogEventsAndTags log_kind(Handle<Code> code) {
if (!code->is_inline_cache_stub()) return Logger::STUB_TAG;
return code->ic_state() == MONOMORPHIC
? Logger::LOAD_IC_TAG : Logger::LOAD_POLYMORPHIC_IC_TAG;
}
virtual void JitEvent(Handle<Name> name, Handle<Code> code);
};
class KeyedLoadStubCompiler: public BaseLoadStubCompiler {
public:
explicit KeyedLoadStubCompiler(Isolate* isolate)
: BaseLoadStubCompiler(isolate, registers()) { }
Handle<Code> CompileLoadElement(Handle<Map> receiver_map);
void CompileElementHandlers(MapHandleList* receiver_maps,
CodeHandleList* handlers);
static void GenerateLoadDictionaryElement(MacroAssembler* masm);
static Register receiver() { return registers()[0]; }
private:
static Register* registers();
virtual Code::Kind kind() { return Code::KEYED_LOAD_IC; }
virtual Logger::LogEventsAndTags log_kind(Handle<Code> code) {
if (!code->is_inline_cache_stub()) return Logger::STUB_TAG;
return code->ic_state() == MONOMORPHIC
? Logger::KEYED_LOAD_IC_TAG : Logger::KEYED_LOAD_POLYMORPHIC_IC_TAG;
}
virtual void JitEvent(Handle<Name> name, Handle<Code> code);
virtual void GenerateNameCheck(Handle<Name> name,
Register name_reg,
Label* miss);
};
class BaseStoreStubCompiler: public StubCompiler {
public:
BaseStoreStubCompiler(Isolate* isolate,
StrictModeFlag strict_mode,
Register* registers)
: StubCompiler(isolate),
strict_mode_(strict_mode),
registers_(registers) { }
virtual ~BaseStoreStubCompiler() { }
Handle<Code> CompileStoreTransition(Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
Handle<Name> name);
Handle<Code> CompileStoreField(Handle<JSObject> object,
LookupResult* lookup,
Handle<Name> name);
protected:
Handle<Code> GetICCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name,
InlineCacheState state = MONOMORPHIC);
Handle<Code> GetCode(Code::Kind kind,
Code::StubType type,
Handle<Name> name);
void GenerateRestoreName(MacroAssembler* masm,
Label* label,
Handle<Name> name);
Register receiver() { return registers_[0]; }
Register name() { return registers_[1]; }
Register value() { return registers_[2]; }
Register scratch1() { return registers_[3]; }
Register scratch2() { return registers_[4]; }
Register scratch3() { return registers_[5]; }
StrictModeFlag strict_mode() { return strict_mode_; }
virtual Code::ExtraICState extra_state() { return strict_mode_; }
private:
virtual Code::Kind kind() = 0;
virtual Logger::LogEventsAndTags log_kind(Handle<Code> code) = 0;
virtual void JitEvent(Handle<Name> name, Handle<Code> code) = 0;
virtual void GenerateNameCheck(Handle<Name> name,
Register name_reg,
Label* miss) { }
StrictModeFlag strict_mode_;
Register* registers_;
};
class StoreStubCompiler: public BaseStoreStubCompiler {
public:
StoreStubCompiler(Isolate* isolate, StrictModeFlag strict_mode)
: BaseStoreStubCompiler(isolate, strict_mode, registers()) { }
Handle<Code> CompileStoreCallback(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<ExecutableAccessorInfo> callback);
static void GenerateStoreViaSetter(MacroAssembler* masm,
Handle<JSFunction> setter);
Handle<Code> CompileStoreViaSetter(Handle<Name> name,
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<JSFunction> setter);
Handle<Code> CompileStoreInterceptor(Handle<JSObject> object,
Handle<Name> name);
Handle<Code> CompileStoreGlobal(Handle<GlobalObject> object,
Handle<JSGlobalPropertyCell> holder,
Handle<Name> name);
private:
static Register* registers();
virtual Code::Kind kind() { return Code::STORE_IC; }
virtual Logger::LogEventsAndTags log_kind(Handle<Code> code) {
if (!code->is_inline_cache_stub()) return Logger::STUB_TAG;
return code->ic_state() == MONOMORPHIC
? Logger::STORE_IC_TAG : Logger::STORE_POLYMORPHIC_IC_TAG;
}
virtual void JitEvent(Handle<Name> name, Handle<Code> code);
};
class KeyedStoreStubCompiler: public BaseStoreStubCompiler {
public:
KeyedStoreStubCompiler(Isolate* isolate,
StrictModeFlag strict_mode,
KeyedAccessStoreMode store_mode)
: BaseStoreStubCompiler(isolate, strict_mode, registers()),
store_mode_(store_mode) { }
Handle<Code> CompileStoreElement(Handle<Map> receiver_map);
Handle<Code> CompileStorePolymorphic(MapHandleList* receiver_maps,
CodeHandleList* handler_stubs,
MapHandleList* transitioned_maps);
Handle<Code> CompileStoreElementPolymorphic(MapHandleList* receiver_maps);
static void GenerateStoreFastElement(MacroAssembler* masm,
bool is_js_array,
ElementsKind element_kind,
KeyedAccessStoreMode store_mode);
static void GenerateStoreFastDoubleElement(MacroAssembler* masm,
bool is_js_array,
KeyedAccessStoreMode store_mode);
static void GenerateStoreExternalArray(MacroAssembler* masm,
ElementsKind elements_kind);
static void GenerateStoreDictionaryElement(MacroAssembler* masm);
protected:
virtual Code::ExtraICState extra_state() {
return Code::ComputeExtraICState(store_mode_, strict_mode());
}
private:
Register transition_map() {
return registers()[3];
}
static Register* registers();
virtual Code::Kind kind() { return Code::KEYED_STORE_IC; }
virtual Logger::LogEventsAndTags log_kind(Handle<Code> code) {
if (!code->is_inline_cache_stub()) return Logger::STUB_TAG;
return code->ic_state() == MONOMORPHIC
? Logger::KEYED_STORE_IC_TAG : Logger::KEYED_STORE_POLYMORPHIC_IC_TAG;
}
virtual void JitEvent(Handle<Name> name, Handle<Code> code);
virtual void GenerateNameCheck(Handle<Name> name,
Register name_reg,
Label* miss);
KeyedAccessStoreMode store_mode_;
};
// Subset of FUNCTIONS_WITH_ID_LIST with custom constant/global call
// IC stubs.
#define CUSTOM_CALL_IC_GENERATORS(V) \
V(ArrayPush) \
V(ArrayPop) \
V(StringCharCodeAt) \
V(StringCharAt) \
V(StringFromCharCode) \
V(MathFloor) \
V(MathAbs)
class CallOptimization;
class CallStubCompiler: public StubCompiler {
public:
CallStubCompiler(Isolate* isolate,
int argc,
Code::Kind kind,
Code::ExtraICState extra_state,
InlineCacheHolderFlag cache_holder);
Handle<Code> CompileCallField(Handle<JSObject> object,
Handle<JSObject> holder,
PropertyIndex index,
Handle<Name> name);
void CompileHandlerFrontend(Handle<Object> object,
Handle<JSObject> holder,
Handle<Name> name,
CheckType check,
Label* success);
void CompileHandlerBackend(Handle<JSFunction> function);
Handle<Code> CompileCallConstant(Handle<Object> object,
Handle<JSObject> holder,
Handle<Name> name,
CheckType check,
Handle<JSFunction> function);
Handle<Code> CompileCallInterceptor(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name);
Handle<Code> CompileCallGlobal(Handle<JSObject> object,
Handle<GlobalObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<Name> name);
static bool HasCustomCallGenerator(Handle<JSFunction> function);
private:
// Compiles a custom call constant/global IC. For constant calls cell is
// NULL. Returns an empty handle if there is no custom call code for the
// given function.
Handle<Code> CompileCustomCall(Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name);
#define DECLARE_CALL_GENERATOR(name) \
Handle<Code> Compile##name##Call(Handle<Object> object, \
Handle<JSObject> holder, \
Handle<JSGlobalPropertyCell> cell, \
Handle<JSFunction> function, \
Handle<String> fname);
CUSTOM_CALL_IC_GENERATORS(DECLARE_CALL_GENERATOR)
#undef DECLARE_CALL_GENERATOR
Handle<Code> CompileFastApiCall(const CallOptimization& optimization,
Handle<Object> object,
Handle<JSObject> holder,
Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Handle<String> name);
Handle<Code> GetCode(Code::StubType type, Handle<Name> name);
Handle<Code> GetCode(Handle<JSFunction> function);
const ParameterCount& arguments() { return arguments_; }
void GenerateNameCheck(Handle<Name> name, Label* miss);
void GenerateGlobalReceiverCheck(Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Label* miss);
// Generates code to load the function from the cell checking that
// it still contains the same function.
void GenerateLoadFunctionFromCell(Handle<JSGlobalPropertyCell> cell,
Handle<JSFunction> function,
Label* miss);
// Generates a jump to CallIC miss stub.
void GenerateMissBranch();
const ParameterCount arguments_;
const Code::Kind kind_;
const Code::ExtraICState extra_state_;
const InlineCacheHolderFlag cache_holder_;
};
class ConstructStubCompiler: public StubCompiler {
public:
explicit ConstructStubCompiler(Isolate* isolate) : StubCompiler(isolate) { }
Handle<Code> CompileConstructStub(Handle<JSFunction> function);
private:
Handle<Code> GetCode();
};
// Holds information about possible function call optimizations.
class CallOptimization BASE_EMBEDDED {
public:
explicit CallOptimization(LookupResult* lookup);
explicit CallOptimization(Handle<JSFunction> function);
bool is_constant_call() const {
return !constant_function_.is_null();
}
Handle<JSFunction> constant_function() const {
ASSERT(is_constant_call());
return constant_function_;
}
bool is_simple_api_call() const {
return is_simple_api_call_;
}
Handle<FunctionTemplateInfo> expected_receiver_type() const {
ASSERT(is_simple_api_call());
return expected_receiver_type_;
}
Handle<CallHandlerInfo> api_call_info() const {
ASSERT(is_simple_api_call());
return api_call_info_;
}
// Returns the depth of the object having the expected type in the
// prototype chain between the two arguments.
int GetPrototypeDepthOfExpectedType(Handle<JSObject> object,
Handle<JSObject> holder) const;
private:
void Initialize(Handle<JSFunction> function);
// Determines whether the given function can be called using the
// fast api call builtin.
void AnalyzePossibleApiFunction(Handle<JSFunction> function);
Handle<JSFunction> constant_function_;
bool is_simple_api_call_;
Handle<FunctionTemplateInfo> expected_receiver_type_;
Handle<CallHandlerInfo> api_call_info_;
};
} } // namespace v8::internal
#endif // V8_STUB_CACHE_H_