v8/include/cppgc/explicit-management.h
Michael Lippautz 801d5a056d cppgc: Adjust explicit management calls
- Take HeapHandle& parameter to allow a use case of free() on an already
  dead object during sweeping.
- Change free() from T* to T& which forces an object and allows the
  caller to place the nullptr check before retrieving a heap handle.

Bug: chromium:1056170
Change-Id: I80689d27d3abe410d177cd8c86b31ff2fe579a77
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2874461
Commit-Queue: Michael Lippautz <mlippautz@chromium.org>
Reviewed-by: Omer Katz <omerkatz@chromium.org>
Cr-Commit-Position: refs/heads/master@{#74387}
2021-05-05 14:18:37 +00:00

83 lines
2.7 KiB
C++

// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDE_CPPGC_EXPLICIT_MANAGEMENT_H_
#define INCLUDE_CPPGC_EXPLICIT_MANAGEMENT_H_
#include <cstddef>
#include "cppgc/allocation.h"
#include "cppgc/internal/logging.h"
#include "cppgc/type-traits.h"
namespace cppgc {
class HeapHandle;
namespace internal {
V8_EXPORT void FreeUnreferencedObject(HeapHandle&, void*);
V8_EXPORT bool Resize(void*, size_t);
} // namespace internal
namespace subtle {
/**
* Informs the garbage collector that `object` can be immediately reclaimed. The
* destructor may not be invoked immediately but only on next garbage
* collection.
*
* It is up to the embedder to guarantee that no other object holds a reference
* to `object` after calling `FreeUnreferencedObject()`. In case such a
* reference exists, it's use results in a use-after-free.
*
* To aid in using the API, `FreeUnreferencedObject()` may be called from
* destructors on objects that would be reclaimed in the same garbage collection
* cycle.
*
* \param heap_handle The corresponding heap.
* \param object Reference to an object that is of type `GarbageCollected` and
* should be immediately reclaimed.
*/
template <typename T>
void FreeUnreferencedObject(HeapHandle& heap_handle, T& object) {
static_assert(IsGarbageCollectedTypeV<T>,
"Object must be of type GarbageCollected.");
internal::FreeUnreferencedObject(heap_handle, &object);
}
/**
* Tries to resize `object` of type `T` with additional bytes on top of
* sizeof(T). Resizing is only useful with trailing inlined storage, see e.g.
* `MakeGarbageCollected(AllocationHandle&, AdditionalBytes)`.
*
* `Resize()` performs growing or shrinking as needed and may skip the operation
* for internal reasons, see return value.
*
* It is up to the embedder to guarantee that in case of shrinking a larger
* object down, the reclaimed area is not used anymore. Any subsequent use
* results in a use-after-free.
*
* The `object` must be live when calling `Resize()`.
*
* \param object Reference to an object that is of type `GarbageCollected` and
* should be resized.
* \param additional_bytes Bytes in addition to sizeof(T) that the object should
* provide.
* \returns true when the operation was successful and the result can be relied
* on, and false otherwise.
*/
template <typename T>
bool Resize(T& object, AdditionalBytes additional_bytes) {
static_assert(IsGarbageCollectedTypeV<T>,
"Object must be of type GarbageCollected.");
return internal::Resize(&object, sizeof(T) + additional_bytes.value);
}
} // namespace subtle
} // namespace cppgc
#endif // INCLUDE_CPPGC_EXPLICIT_MANAGEMENT_H_