v8/test/cctest/test-mark-compact.cc
ager@chromium.org 9ee631338e Allow resource constraints to specify the max committed new space size
when using snapshots.

The alignment of new space has to match the alignment in the snapshot,
but the max committed amount of memory does not.

For now, we assume that the default semispace size is always used in a
snapshot.
Review URL: http://codereview.chromium.org/300036

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3106 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2009-10-21 15:03:34 +00:00

312 lines
9.8 KiB
C++

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include "v8.h"
#include "global-handles.h"
#include "snapshot.h"
#include "top.h"
#include "cctest.h"
using namespace v8::internal;
static v8::Persistent<v8::Context> env;
static void InitializeVM() {
if (env.IsEmpty()) env = v8::Context::New();
v8::HandleScope scope;
env->Enter();
}
TEST(MarkingStack) {
int mem_size = 20 * kPointerSize;
byte* mem = NewArray<byte>(20*kPointerSize);
Address low = reinterpret_cast<Address>(mem);
Address high = low + mem_size;
MarkingStack s;
s.Initialize(low, high);
Address address = NULL;
while (!s.is_full()) {
s.Push(HeapObject::FromAddress(address));
address += kPointerSize;
}
while (!s.is_empty()) {
Address value = s.Pop()->address();
address -= kPointerSize;
CHECK_EQ(address, value);
}
CHECK_EQ(NULL, address);
DeleteArray(mem);
}
TEST(Promotion) {
// Ensure that we get a compacting collection so that objects are promoted
// from new space.
FLAG_gc_global = true;
FLAG_always_compact = true;
Heap::ConfigureHeap(2*256*KB, 4*MB);
InitializeVM();
v8::HandleScope sc;
// Allocate a fixed array in the new space.
int array_size =
(Heap::MaxObjectSizeInPagedSpace() - FixedArray::kHeaderSize) /
(kPointerSize * 4);
Object* obj = Heap::AllocateFixedArray(array_size);
CHECK(!obj->IsFailure());
Handle<FixedArray> array(FixedArray::cast(obj));
// Array should be in the new space.
CHECK(Heap::InSpace(*array, NEW_SPACE));
// Call the m-c collector, so array becomes an old object.
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// Array now sits in the old space
CHECK(Heap::InSpace(*array, OLD_POINTER_SPACE));
}
TEST(NoPromotion) {
Heap::ConfigureHeap(2*256*KB, 4*MB);
// Test the situation that some objects in new space are promoted to
// the old space
InitializeVM();
v8::HandleScope sc;
// Do a mark compact GC to shrink the heap.
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// Allocate a big Fixed array in the new space.
int size = (Heap::MaxObjectSizeInPagedSpace() - FixedArray::kHeaderSize) /
kPointerSize;
Object* obj = Heap::AllocateFixedArray(size);
Handle<FixedArray> array(FixedArray::cast(obj));
// Array still stays in the new space.
CHECK(Heap::InSpace(*array, NEW_SPACE));
// Allocate objects in the old space until out of memory.
FixedArray* host = *array;
while (true) {
Object* obj = Heap::AllocateFixedArray(100, TENURED);
if (obj->IsFailure()) break;
host->set(0, obj);
host = FixedArray::cast(obj);
}
// Call mark compact GC, and it should pass.
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// array should not be promoted because the old space is full.
CHECK(Heap::InSpace(*array, NEW_SPACE));
}
TEST(MarkCompactCollector) {
InitializeVM();
v8::HandleScope sc;
// call mark-compact when heap is empty
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// keep allocating garbage in new space until it fails
const int ARRAY_SIZE = 100;
Object* array;
do {
array = Heap::AllocateFixedArray(ARRAY_SIZE);
} while (!array->IsFailure());
CHECK(Heap::CollectGarbage(0, NEW_SPACE));
array = Heap::AllocateFixedArray(ARRAY_SIZE);
CHECK(!array->IsFailure());
// keep allocating maps until it fails
Object* mapp;
do {
mapp = Heap::AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
} while (!mapp->IsFailure());
CHECK(Heap::CollectGarbage(0, MAP_SPACE));
mapp = Heap::AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
CHECK(!mapp->IsFailure());
// allocate a garbage
String* func_name = String::cast(Heap::LookupAsciiSymbol("theFunction"));
SharedFunctionInfo* function_share =
SharedFunctionInfo::cast(Heap::AllocateSharedFunctionInfo(func_name));
JSFunction* function =
JSFunction::cast(Heap::AllocateFunction(*Top::function_map(),
function_share,
Heap::undefined_value()));
Map* initial_map =
Map::cast(Heap::AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize));
function->set_initial_map(initial_map);
Top::context()->global()->SetProperty(func_name, function, NONE);
JSObject* obj = JSObject::cast(Heap::AllocateJSObject(function));
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
func_name = String::cast(Heap::LookupAsciiSymbol("theFunction"));
CHECK(Top::context()->global()->HasLocalProperty(func_name));
Object* func_value = Top::context()->global()->GetProperty(func_name);
CHECK(func_value->IsJSFunction());
function = JSFunction::cast(func_value);
obj = JSObject::cast(Heap::AllocateJSObject(function));
String* obj_name = String::cast(Heap::LookupAsciiSymbol("theObject"));
Top::context()->global()->SetProperty(obj_name, obj, NONE);
String* prop_name = String::cast(Heap::LookupAsciiSymbol("theSlot"));
obj->SetProperty(prop_name, Smi::FromInt(23), NONE);
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
obj_name = String::cast(Heap::LookupAsciiSymbol("theObject"));
CHECK(Top::context()->global()->HasLocalProperty(obj_name));
CHECK(Top::context()->global()->GetProperty(obj_name)->IsJSObject());
obj = JSObject::cast(Top::context()->global()->GetProperty(obj_name));
prop_name = String::cast(Heap::LookupAsciiSymbol("theSlot"));
CHECK(obj->GetProperty(prop_name) == Smi::FromInt(23));
}
static int gc_starts = 0;
static int gc_ends = 0;
static void GCPrologueCallbackFunc() {
CHECK(gc_starts == gc_ends);
gc_starts++;
}
static void GCEpilogueCallbackFunc() {
CHECK(gc_starts == gc_ends + 1);
gc_ends++;
}
TEST(GCCallback) {
InitializeVM();
Heap::SetGlobalGCPrologueCallback(&GCPrologueCallbackFunc);
Heap::SetGlobalGCEpilogueCallback(&GCEpilogueCallbackFunc);
// Scavenge does not call GC callback functions.
Heap::PerformScavenge();
CHECK_EQ(0, gc_starts);
CHECK_EQ(gc_ends, gc_starts);
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
CHECK_EQ(1, gc_starts);
CHECK_EQ(gc_ends, gc_starts);
}
static int NumberOfWeakCalls = 0;
static void WeakPointerCallback(v8::Persistent<v8::Value> handle, void* id) {
NumberOfWeakCalls++;
}
TEST(ObjectGroups) {
InitializeVM();
NumberOfWeakCalls = 0;
v8::HandleScope handle_scope;
Handle<Object> g1s1 =
GlobalHandles::Create(Heap::AllocateFixedArray(1));
Handle<Object> g1s2 =
GlobalHandles::Create(Heap::AllocateFixedArray(1));
GlobalHandles::MakeWeak(g1s1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
GlobalHandles::MakeWeak(g1s2.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Handle<Object> g2s1 =
GlobalHandles::Create(Heap::AllocateFixedArray(1));
Handle<Object> g2s2 =
GlobalHandles::Create(Heap::AllocateFixedArray(1));
GlobalHandles::MakeWeak(g2s1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
GlobalHandles::MakeWeak(g2s2.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Handle<Object> root = GlobalHandles::Create(*g1s1); // make a root.
// Connect group 1 and 2, make a cycle.
Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
GlobalHandles::AddGroup(g1_objects, 2);
GlobalHandles::AddGroup(g2_objects, 2);
}
// Do a full GC
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// All object should be alive.
CHECK_EQ(0, NumberOfWeakCalls);
// Weaken the root.
GlobalHandles::MakeWeak(root.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
// Groups are deleted, rebuild groups.
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
GlobalHandles::AddGroup(g1_objects, 2);
GlobalHandles::AddGroup(g2_objects, 2);
}
CHECK(Heap::CollectGarbage(0, OLD_POINTER_SPACE));
// All objects should be gone. 5 global handles in total.
CHECK_EQ(5, NumberOfWeakCalls);
}