v8/src/feedback-vector.cc
ishell@chromium.org 878a3df75e Rename FeedbackVectorSlot[Kind] -> FeedbackSlot[Kind].
BUG=

Change-Id: I31b8da09f4728d55c2da91966edcad49528b554b
Reviewed-on: https://chromium-review.googlesource.com/439146
Reviewed-by: Michael Stanton <mvstanton@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Reviewed-by: Jaroslav Sevcik <jarin@chromium.org>
Commit-Queue: Igor Sheludko <ishell@chromium.org>
Cr-Commit-Position: refs/heads/master@{#43003}
2017-02-07 16:38:47 +00:00

1007 lines
34 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/feedback-vector.h"
#include "src/code-stubs.h"
#include "src/feedback-vector-inl.h"
#include "src/ic/ic-inl.h"
#include "src/ic/ic-state.h"
#include "src/objects.h"
namespace v8 {
namespace internal {
static bool IsPropertyNameFeedback(Object* feedback) {
if (feedback->IsString()) return true;
if (!feedback->IsSymbol()) return false;
Symbol* symbol = Symbol::cast(feedback);
Heap* heap = symbol->GetHeap();
return symbol != heap->uninitialized_symbol() &&
symbol != heap->premonomorphic_symbol() &&
symbol != heap->megamorphic_symbol();
}
std::ostream& operator<<(std::ostream& os, FeedbackSlotKind kind) {
return os << FeedbackMetadata::Kind2String(kind);
}
FeedbackSlotKind FeedbackMetadata::GetKind(FeedbackSlot slot) const {
int index = VectorICComputer::index(kReservedIndexCount, slot.ToInt());
int data = Smi::cast(get(index))->value();
return VectorICComputer::decode(data, slot.ToInt());
}
void FeedbackMetadata::SetKind(FeedbackSlot slot, FeedbackSlotKind kind) {
int index = VectorICComputer::index(kReservedIndexCount, slot.ToInt());
int data = Smi::cast(get(index))->value();
int new_data = VectorICComputer::encode(data, slot.ToInt(), kind);
set(index, Smi::FromInt(new_data));
}
template Handle<FeedbackMetadata> FeedbackMetadata::New(
Isolate* isolate, const StaticFeedbackVectorSpec* spec);
template Handle<FeedbackMetadata> FeedbackMetadata::New(
Isolate* isolate, const FeedbackVectorSpec* spec);
// static
template <typename Spec>
Handle<FeedbackMetadata> FeedbackMetadata::New(Isolate* isolate,
const Spec* spec) {
Factory* factory = isolate->factory();
const int slot_count = spec->slots();
const int slot_kinds_length = VectorICComputer::word_count(slot_count);
const int length = slot_kinds_length + kReservedIndexCount;
if (length == kReservedIndexCount) {
return Handle<FeedbackMetadata>::cast(factory->empty_fixed_array());
}
#ifdef DEBUG
for (int i = 0; i < slot_count;) {
FeedbackSlotKind kind = spec->GetKind(FeedbackSlot(i));
int entry_size = FeedbackMetadata::GetSlotSize(kind);
for (int j = 1; j < entry_size; j++) {
FeedbackSlotKind kind = spec->GetKind(FeedbackSlot(i + j));
DCHECK_EQ(FeedbackSlotKind::INVALID, kind);
}
i += entry_size;
}
#endif
Handle<FixedArray> array = factory->NewFixedArray(length, TENURED);
array->set(kSlotsCountIndex, Smi::FromInt(slot_count));
// Fill the bit-vector part with zeros.
for (int i = 0; i < slot_kinds_length; i++) {
array->set(kReservedIndexCount + i, Smi::kZero);
}
Handle<FeedbackMetadata> metadata = Handle<FeedbackMetadata>::cast(array);
for (int i = 0; i < slot_count; i++) {
FeedbackSlot slot(i);
FeedbackSlotKind kind = spec->GetKind(slot);
metadata->SetKind(slot, kind);
}
// It's important that the FeedbackMetadata have a COW map, since it's
// pointed to by both a SharedFunctionInfo and indirectly by closures through
// the FeedbackVector. The serializer uses the COW map type to decide
// this object belongs in the startup snapshot and not the partial
// snapshot(s).
metadata->set_map(isolate->heap()->fixed_cow_array_map());
return metadata;
}
bool FeedbackMetadata::SpecDiffersFrom(
const FeedbackVectorSpec* other_spec) const {
if (other_spec->slots() != slot_count()) {
return true;
}
int slots = slot_count();
for (int i = 0; i < slots;) {
FeedbackSlot slot(i);
FeedbackSlotKind kind = GetKind(slot);
int entry_size = FeedbackMetadata::GetSlotSize(kind);
if (kind != other_spec->GetKind(slot)) {
return true;
}
i += entry_size;
}
return false;
}
const char* FeedbackMetadata::Kind2String(FeedbackSlotKind kind) {
switch (kind) {
case FeedbackSlotKind::INVALID:
return "INVALID";
case FeedbackSlotKind::CALL_IC:
return "CALL_IC";
case FeedbackSlotKind::LOAD_IC:
return "LOAD_IC";
case FeedbackSlotKind::LOAD_GLOBAL_INSIDE_TYPEOF_IC:
return "LOAD_GLOBAL_INSIDE_TYPEOF_IC";
case FeedbackSlotKind::LOAD_GLOBAL_NOT_INSIDE_TYPEOF_IC:
return "LOAD_GLOBAL_NOT_INSIDE_TYPEOF_IC";
case FeedbackSlotKind::KEYED_LOAD_IC:
return "KEYED_LOAD_IC";
case FeedbackSlotKind::STORE_SLOPPY_IC:
return "STORE_SLOPPY_IC";
case FeedbackSlotKind::STORE_STRICT_IC:
return "STORE_STRICT_IC";
case FeedbackSlotKind::KEYED_STORE_SLOPPY_IC:
return "KEYED_STORE_SLOPPY_IC";
case FeedbackSlotKind::KEYED_STORE_STRICT_IC:
return "KEYED_STORE_STRICT_IC";
case FeedbackSlotKind::INTERPRETER_BINARYOP_IC:
return "INTERPRETER_BINARYOP_IC";
case FeedbackSlotKind::INTERPRETER_COMPARE_IC:
return "INTERPRETER_COMPARE_IC";
case FeedbackSlotKind::STORE_DATA_PROPERTY_IN_LITERAL_IC:
return "STORE_DATA_PROPERTY_IN_LITERAL_IC";
case FeedbackSlotKind::CREATE_CLOSURE:
return "CREATE_CLOSURE";
case FeedbackSlotKind::LITERAL:
return "LITERAL";
case FeedbackSlotKind::GENERAL:
return "STUB";
case FeedbackSlotKind::KINDS_NUMBER:
break;
}
UNREACHABLE();
return "?";
}
FeedbackSlotKind FeedbackVector::GetKind(FeedbackSlot slot) const {
DCHECK(!is_empty());
return metadata()->GetKind(slot);
}
// static
Handle<FeedbackVector> FeedbackVector::New(Isolate* isolate,
Handle<FeedbackMetadata> metadata) {
Factory* factory = isolate->factory();
const int slot_count = metadata->slot_count();
const int length = slot_count + kReservedIndexCount;
if (length == kReservedIndexCount) {
return Handle<FeedbackVector>::cast(factory->empty_feedback_vector());
}
Handle<FixedArray> array = factory->NewFixedArray(length, TENURED);
array->set_map_no_write_barrier(isolate->heap()->feedback_vector_map());
array->set(kMetadataIndex, *metadata);
array->set(kInvocationCountIndex, Smi::kZero);
// Ensure we can skip the write barrier
Handle<Object> uninitialized_sentinel = UninitializedSentinel(isolate);
DCHECK_EQ(isolate->heap()->uninitialized_symbol(), *uninitialized_sentinel);
Handle<Oddball> undefined_value = factory->undefined_value();
for (int i = 0; i < slot_count;) {
FeedbackSlot slot(i);
FeedbackSlotKind kind = metadata->GetKind(slot);
int index = FeedbackVector::GetIndex(slot);
int entry_size = FeedbackMetadata::GetSlotSize(kind);
Object* extra_value = *uninitialized_sentinel;
switch (kind) {
case FeedbackSlotKind::LOAD_GLOBAL_INSIDE_TYPEOF_IC:
case FeedbackSlotKind::LOAD_GLOBAL_NOT_INSIDE_TYPEOF_IC:
array->set(index, isolate->heap()->empty_weak_cell(),
SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::INTERPRETER_COMPARE_IC:
case FeedbackSlotKind::INTERPRETER_BINARYOP_IC:
array->set(index, Smi::kZero, SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::CREATE_CLOSURE: {
Handle<Cell> cell = factory->NewCell(undefined_value);
array->set(index, *cell);
break;
}
case FeedbackSlotKind::LITERAL:
array->set(index, *undefined_value, SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::CALL_IC:
array->set(index, *uninitialized_sentinel, SKIP_WRITE_BARRIER);
extra_value = Smi::kZero;
break;
case FeedbackSlotKind::LOAD_IC:
case FeedbackSlotKind::KEYED_LOAD_IC:
case FeedbackSlotKind::STORE_SLOPPY_IC:
case FeedbackSlotKind::STORE_STRICT_IC:
case FeedbackSlotKind::KEYED_STORE_SLOPPY_IC:
case FeedbackSlotKind::KEYED_STORE_STRICT_IC:
case FeedbackSlotKind::STORE_DATA_PROPERTY_IN_LITERAL_IC:
case FeedbackSlotKind::GENERAL:
array->set(index, *uninitialized_sentinel, SKIP_WRITE_BARRIER);
break;
case FeedbackSlotKind::INVALID:
case FeedbackSlotKind::KINDS_NUMBER:
UNREACHABLE();
array->set(index, Smi::kZero, SKIP_WRITE_BARRIER);
break;
}
for (int j = 1; j < entry_size; j++) {
array->set(index + j, extra_value, SKIP_WRITE_BARRIER);
}
i += entry_size;
}
return Handle<FeedbackVector>::cast(array);
}
// static
Handle<FeedbackVector> FeedbackVector::Copy(Isolate* isolate,
Handle<FeedbackVector> vector) {
Handle<FeedbackVector> result;
result = Handle<FeedbackVector>::cast(
isolate->factory()->CopyFixedArray(Handle<FixedArray>::cast(vector)));
return result;
}
// This logic is copied from
// StaticMarkingVisitor<StaticVisitor>::VisitCodeTarget.
static bool ClearLogic(Isolate* isolate) {
return FLAG_cleanup_code_caches_at_gc && isolate->serializer_enabled();
}
void FeedbackVector::ClearSlotsImpl(SharedFunctionInfo* shared,
bool force_clear) {
Isolate* isolate = GetIsolate();
if (!force_clear && !ClearLogic(isolate)) return;
if (this == isolate->heap()->empty_feedback_vector()) return;
Object* uninitialized_sentinel =
FeedbackVector::RawUninitializedSentinel(isolate);
Oddball* undefined_value = isolate->heap()->undefined_value();
FeedbackMetadataIterator iter(metadata());
while (iter.HasNext()) {
FeedbackSlot slot = iter.Next();
FeedbackSlotKind kind = iter.kind();
Object* obj = Get(slot);
if (obj != uninitialized_sentinel) {
switch (kind) {
case FeedbackSlotKind::CALL_IC: {
CallICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackSlotKind::LOAD_IC: {
LoadICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackSlotKind::LOAD_GLOBAL_INSIDE_TYPEOF_IC:
case FeedbackSlotKind::LOAD_GLOBAL_NOT_INSIDE_TYPEOF_IC: {
LoadGlobalICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackSlotKind::KEYED_LOAD_IC: {
KeyedLoadICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackSlotKind::STORE_SLOPPY_IC:
case FeedbackSlotKind::STORE_STRICT_IC: {
StoreICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackSlotKind::KEYED_STORE_SLOPPY_IC:
case FeedbackSlotKind::KEYED_STORE_STRICT_IC: {
KeyedStoreICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackSlotKind::INTERPRETER_BINARYOP_IC:
case FeedbackSlotKind::INTERPRETER_COMPARE_IC: {
DCHECK(Get(slot)->IsSmi());
// don't clear these smi slots.
// Set(slot, Smi::kZero);
break;
}
case FeedbackSlotKind::CREATE_CLOSURE: {
break;
}
case FeedbackSlotKind::GENERAL: {
if (obj->IsHeapObject()) {
InstanceType instance_type =
HeapObject::cast(obj)->map()->instance_type();
// AllocationSites are exempt from clearing. They don't store Maps
// or Code pointers which can cause memory leaks if not cleared
// regularly.
if (instance_type != ALLOCATION_SITE_TYPE) {
Set(slot, uninitialized_sentinel, SKIP_WRITE_BARRIER);
}
}
break;
}
case FeedbackSlotKind::LITERAL: {
Set(slot, undefined_value, SKIP_WRITE_BARRIER);
break;
}
case FeedbackSlotKind::STORE_DATA_PROPERTY_IN_LITERAL_IC: {
StoreDataPropertyInLiteralICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackSlotKind::INVALID:
case FeedbackSlotKind::KINDS_NUMBER:
UNREACHABLE();
break;
}
}
}
}
Handle<FixedArray> FeedbackNexus::EnsureArrayOfSize(int length) {
Isolate* isolate = GetIsolate();
Handle<Object> feedback = handle(GetFeedback(), isolate);
if (!feedback->IsFixedArray() ||
FixedArray::cast(*feedback)->length() != length) {
Handle<FixedArray> array = isolate->factory()->NewFixedArray(length);
SetFeedback(*array);
return array;
}
return Handle<FixedArray>::cast(feedback);
}
Handle<FixedArray> FeedbackNexus::EnsureExtraArrayOfSize(int length) {
Isolate* isolate = GetIsolate();
Handle<Object> feedback_extra = handle(GetFeedbackExtra(), isolate);
if (!feedback_extra->IsFixedArray() ||
FixedArray::cast(*feedback_extra)->length() != length) {
Handle<FixedArray> array = isolate->factory()->NewFixedArray(length);
SetFeedbackExtra(*array);
return array;
}
return Handle<FixedArray>::cast(feedback_extra);
}
void FeedbackNexus::InstallHandlers(Handle<FixedArray> array,
MapHandleList* maps,
List<Handle<Object>>* handlers) {
int receiver_count = maps->length();
for (int current = 0; current < receiver_count; ++current) {
Handle<Map> map = maps->at(current);
Handle<WeakCell> cell = Map::WeakCellForMap(map);
array->set(current * 2, *cell);
array->set(current * 2 + 1, *handlers->at(current));
}
}
void FeedbackNexus::ConfigureUninitialized() {
SetFeedback(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
}
void FeedbackNexus::ConfigurePremonomorphic() {
SetFeedback(*FeedbackVector::PremonomorphicSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
}
void FeedbackNexus::ConfigureMegamorphic() {
// Keyed ICs must use ConfigureMegamorphicKeyed.
DCHECK(!vector()->IsKeyedLoadIC(slot()));
DCHECK(!vector()->IsKeyedStoreIC(slot()));
Isolate* isolate = GetIsolate();
SetFeedback(*FeedbackVector::MegamorphicSentinel(isolate),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void KeyedLoadICNexus::ConfigureMegamorphicKeyed(IcCheckType property_type) {
Isolate* isolate = GetIsolate();
SetFeedback(*FeedbackVector::MegamorphicSentinel(isolate),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(Smi::FromInt(static_cast<int>(property_type)),
SKIP_WRITE_BARRIER);
}
void KeyedStoreICNexus::ConfigureMegamorphicKeyed(IcCheckType property_type) {
Isolate* isolate = GetIsolate();
SetFeedback(*FeedbackVector::MegamorphicSentinel(isolate),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(Smi::FromInt(static_cast<int>(property_type)),
SKIP_WRITE_BARRIER);
}
InlineCacheState LoadICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState LoadGlobalICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
Object* extra = GetFeedbackExtra();
if (!WeakCell::cast(feedback)->cleared() ||
extra != *FeedbackVector::UninitializedSentinel(isolate)) {
return MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState KeyedLoadICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
} else if (feedback->IsName()) {
Object* extra = GetFeedbackExtra();
FixedArray* extra_array = FixedArray::cast(extra);
return extra_array->length() > 2 ? POLYMORPHIC : MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState StoreICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState KeyedStoreICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *FeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
} else if (feedback->IsName()) {
Object* extra = GetFeedbackExtra();
FixedArray* extra_array = FixedArray::cast(extra);
return extra_array->length() > 2 ? POLYMORPHIC : MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState CallICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
DCHECK(GetFeedbackExtra() ==
*FeedbackVector::UninitializedSentinel(isolate) ||
GetFeedbackExtra()->IsSmi());
if (feedback == *FeedbackVector::MegamorphicSentinel(isolate)) {
return GENERIC;
} else if (feedback->IsAllocationSite() || feedback->IsWeakCell()) {
return MONOMORPHIC;
}
CHECK(feedback == *FeedbackVector::UninitializedSentinel(isolate));
return UNINITIALIZED;
}
int CallICNexus::ExtractCallCount() {
Object* call_count = GetFeedbackExtra();
CHECK(call_count->IsSmi());
int value = Smi::cast(call_count)->value();
return value;
}
float CallICNexus::ComputeCallFrequency() {
double const invocation_count = vector()->invocation_count();
double const call_count = ExtractCallCount();
return static_cast<float>(call_count / invocation_count);
}
void CallICNexus::Clear(Code* host) { CallIC::Clear(GetIsolate(), host, this); }
void CallICNexus::ConfigureUninitialized() {
Isolate* isolate = GetIsolate();
SetFeedback(*FeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(Smi::kZero, SKIP_WRITE_BARRIER);
}
void CallICNexus::ConfigureMonomorphicArray() {
Object* feedback = GetFeedback();
if (!feedback->IsAllocationSite()) {
Handle<AllocationSite> new_site =
GetIsolate()->factory()->NewAllocationSite();
SetFeedback(*new_site);
}
SetFeedbackExtra(Smi::FromInt(1), SKIP_WRITE_BARRIER);
}
void CallICNexus::ConfigureMonomorphic(Handle<JSFunction> function) {
Handle<WeakCell> new_cell = GetIsolate()->factory()->NewWeakCell(function);
SetFeedback(*new_cell);
SetFeedbackExtra(Smi::FromInt(1), SKIP_WRITE_BARRIER);
}
void CallICNexus::ConfigureMegamorphic() {
SetFeedback(*FeedbackVector::MegamorphicSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
Smi* count = Smi::cast(GetFeedbackExtra());
int new_count = count->value() + 1;
SetFeedbackExtra(Smi::FromInt(new_count), SKIP_WRITE_BARRIER);
}
void CallICNexus::ConfigureMegamorphic(int call_count) {
SetFeedback(*FeedbackVector::MegamorphicSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(Smi::FromInt(call_count), SKIP_WRITE_BARRIER);
}
void LoadICNexus::ConfigureMonomorphic(Handle<Map> receiver_map,
Handle<Object> handler) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
SetFeedback(*cell);
SetFeedbackExtra(*handler);
}
void LoadGlobalICNexus::ConfigureUninitialized() {
Isolate* isolate = GetIsolate();
SetFeedback(isolate->heap()->empty_weak_cell(), SKIP_WRITE_BARRIER);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void LoadGlobalICNexus::ConfigurePropertyCellMode(Handle<PropertyCell> cell) {
Isolate* isolate = GetIsolate();
SetFeedback(*isolate->factory()->NewWeakCell(cell));
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void LoadGlobalICNexus::ConfigureHandlerMode(Handle<Object> handler) {
SetFeedback(GetIsolate()->heap()->empty_weak_cell());
SetFeedbackExtra(*handler);
}
void KeyedLoadICNexus::ConfigureMonomorphic(Handle<Name> name,
Handle<Map> receiver_map,
Handle<Object> handler) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
if (name.is_null()) {
SetFeedback(*cell);
SetFeedbackExtra(*handler);
} else {
Handle<FixedArray> array = EnsureExtraArrayOfSize(2);
SetFeedback(*name);
array->set(0, *cell);
array->set(1, *handler);
}
}
void StoreICNexus::ConfigureMonomorphic(Handle<Map> receiver_map,
Handle<Object> handler) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
SetFeedback(*cell);
SetFeedbackExtra(*handler);
}
void KeyedStoreICNexus::ConfigureMonomorphic(Handle<Name> name,
Handle<Map> receiver_map,
Handle<Object> handler) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
if (name.is_null()) {
SetFeedback(*cell);
SetFeedbackExtra(*handler);
} else {
Handle<FixedArray> array = EnsureExtraArrayOfSize(2);
SetFeedback(*name);
array->set(0, *cell);
array->set(1, *handler);
}
}
void LoadICNexus::ConfigurePolymorphic(MapHandleList* maps,
List<Handle<Object>>* handlers) {
Isolate* isolate = GetIsolate();
int receiver_count = maps->length();
Handle<FixedArray> array = EnsureArrayOfSize(receiver_count * 2);
InstallHandlers(array, maps, handlers);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void KeyedLoadICNexus::ConfigurePolymorphic(Handle<Name> name,
MapHandleList* maps,
List<Handle<Object>>* handlers) {
int receiver_count = maps->length();
DCHECK(receiver_count > 1);
Handle<FixedArray> array;
if (name.is_null()) {
array = EnsureArrayOfSize(receiver_count * 2);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
} else {
array = EnsureExtraArrayOfSize(receiver_count * 2);
SetFeedback(*name);
}
InstallHandlers(array, maps, handlers);
}
void StoreICNexus::ConfigurePolymorphic(MapHandleList* maps,
List<Handle<Object>>* handlers) {
Isolate* isolate = GetIsolate();
int receiver_count = maps->length();
Handle<FixedArray> array = EnsureArrayOfSize(receiver_count * 2);
InstallHandlers(array, maps, handlers);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void KeyedStoreICNexus::ConfigurePolymorphic(Handle<Name> name,
MapHandleList* maps,
List<Handle<Object>>* handlers) {
int receiver_count = maps->length();
DCHECK(receiver_count > 1);
Handle<FixedArray> array;
if (name.is_null()) {
array = EnsureArrayOfSize(receiver_count * 2);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
} else {
array = EnsureExtraArrayOfSize(receiver_count * 2);
SetFeedback(*name);
}
InstallHandlers(array, maps, handlers);
}
void KeyedStoreICNexus::ConfigurePolymorphic(MapHandleList* maps,
MapHandleList* transitioned_maps,
List<Handle<Object>>* handlers) {
int receiver_count = maps->length();
DCHECK(receiver_count > 1);
Handle<FixedArray> array = EnsureArrayOfSize(receiver_count * 3);
SetFeedbackExtra(*FeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
Handle<Oddball> undefined_value = GetIsolate()->factory()->undefined_value();
for (int i = 0; i < receiver_count; ++i) {
Handle<Map> map = maps->at(i);
Handle<WeakCell> cell = Map::WeakCellForMap(map);
array->set(i * 3, *cell);
if (!transitioned_maps->at(i).is_null()) {
Handle<Map> transitioned_map = transitioned_maps->at(i);
cell = Map::WeakCellForMap(transitioned_map);
array->set((i * 3) + 1, *cell);
} else {
array->set((i * 3) + 1, *undefined_value);
}
array->set((i * 3) + 2, *handlers->at(i));
}
}
namespace {
int GetStepSize(FixedArray* array, Isolate* isolate) {
// The array should be of the form
// [map, handler, map, handler, ...]
// or
// [map, map, handler, map, map, handler, ...]
// where "map" is either a WeakCell or |undefined|,
// and "handler" is either a Code object or a Smi.
DCHECK(array->length() >= 2);
Object* second = array->get(1);
if (second->IsWeakCell() || second->IsUndefined(isolate)) return 3;
DCHECK(IC::IsHandler(second));
return 2;
}
} // namespace
int FeedbackNexus::ExtractMaps(MapHandleList* maps) const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
bool is_named_feedback = IsPropertyNameFeedback(feedback);
if (feedback->IsFixedArray() || is_named_feedback) {
int found = 0;
if (is_named_feedback) {
feedback = GetFeedbackExtra();
}
FixedArray* array = FixedArray::cast(feedback);
int increment = GetStepSize(array, isolate);
for (int i = 0; i < array->length(); i += increment) {
DCHECK(array->get(i)->IsWeakCell());
WeakCell* cell = WeakCell::cast(array->get(i));
if (!cell->cleared()) {
Map* map = Map::cast(cell->value());
maps->Add(handle(map, isolate));
found++;
}
}
return found;
} else if (feedback->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(feedback);
if (!cell->cleared()) {
Map* map = Map::cast(cell->value());
maps->Add(handle(map, isolate));
return 1;
}
}
return 0;
}
MaybeHandle<Object> FeedbackNexus::FindHandlerForMap(Handle<Map> map) const {
Object* feedback = GetFeedback();
Isolate* isolate = GetIsolate();
bool is_named_feedback = IsPropertyNameFeedback(feedback);
if (feedback->IsFixedArray() || is_named_feedback) {
if (is_named_feedback) {
feedback = GetFeedbackExtra();
}
FixedArray* array = FixedArray::cast(feedback);
int increment = GetStepSize(array, isolate);
for (int i = 0; i < array->length(); i += increment) {
DCHECK(array->get(i)->IsWeakCell());
WeakCell* cell = WeakCell::cast(array->get(i));
if (!cell->cleared()) {
Map* array_map = Map::cast(cell->value());
if (array_map == *map) {
Object* code = array->get(i + increment - 1);
DCHECK(IC::IsHandler(code));
return handle(code, isolate);
}
}
}
} else if (feedback->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(feedback);
if (!cell->cleared()) {
Map* cell_map = Map::cast(cell->value());
if (cell_map == *map) {
Object* code = GetFeedbackExtra();
DCHECK(IC::IsHandler(code));
return handle(code, isolate);
}
}
}
return MaybeHandle<Code>();
}
bool FeedbackNexus::FindHandlers(List<Handle<Object>>* code_list,
int length) const {
Object* feedback = GetFeedback();
Isolate* isolate = GetIsolate();
int count = 0;
bool is_named_feedback = IsPropertyNameFeedback(feedback);
if (feedback->IsFixedArray() || is_named_feedback) {
if (is_named_feedback) {
feedback = GetFeedbackExtra();
}
FixedArray* array = FixedArray::cast(feedback);
int increment = GetStepSize(array, isolate);
for (int i = 0; i < array->length(); i += increment) {
DCHECK(array->get(i)->IsWeakCell());
WeakCell* cell = WeakCell::cast(array->get(i));
// Be sure to skip handlers whose maps have been cleared.
if (!cell->cleared()) {
Object* code = array->get(i + increment - 1);
DCHECK(IC::IsHandler(code));
code_list->Add(handle(code, isolate));
count++;
}
}
} else if (feedback->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(feedback);
if (!cell->cleared()) {
Object* code = GetFeedbackExtra();
DCHECK(IC::IsHandler(code));
code_list->Add(handle(code, isolate));
count++;
}
}
return count == length;
}
void LoadICNexus::Clear(Code* host) { LoadIC::Clear(GetIsolate(), host, this); }
void LoadGlobalICNexus::Clear(Code* host) {
LoadGlobalIC::Clear(GetIsolate(), host, this);
}
void KeyedLoadICNexus::Clear(Code* host) {
KeyedLoadIC::Clear(GetIsolate(), host, this);
}
Name* KeyedLoadICNexus::FindFirstName() const {
Object* feedback = GetFeedback();
if (IsPropertyNameFeedback(feedback)) {
return Name::cast(feedback);
}
return NULL;
}
Name* KeyedStoreICNexus::FindFirstName() const {
Object* feedback = GetFeedback();
if (IsPropertyNameFeedback(feedback)) {
return Name::cast(feedback);
}
return NULL;
}
void StoreICNexus::Clear(Code* host) {
StoreIC::Clear(GetIsolate(), host, this);
}
void KeyedStoreICNexus::Clear(Code* host) {
KeyedStoreIC::Clear(GetIsolate(), host, this);
}
KeyedAccessStoreMode KeyedStoreICNexus::GetKeyedAccessStoreMode() const {
KeyedAccessStoreMode mode = STANDARD_STORE;
MapHandleList maps;
List<Handle<Object>> handlers;
if (GetKeyType() == PROPERTY) return mode;
ExtractMaps(&maps);
FindHandlers(&handlers, maps.length());
for (int i = 0; i < handlers.length(); i++) {
// The first handler that isn't the slow handler will have the bits we need.
Handle<Object> maybe_code_handler = handlers.at(i);
Handle<Code> handler;
if (maybe_code_handler->IsTuple2()) {
Handle<Tuple2> data_handler = Handle<Tuple2>::cast(maybe_code_handler);
handler = handle(Code::cast(data_handler->value2()));
} else {
handler = Handle<Code>::cast(maybe_code_handler);
}
CodeStub::Major major_key = CodeStub::MajorKeyFromKey(handler->stub_key());
uint32_t minor_key = CodeStub::MinorKeyFromKey(handler->stub_key());
CHECK(major_key == CodeStub::KeyedStoreSloppyArguments ||
major_key == CodeStub::StoreFastElement ||
major_key == CodeStub::StoreSlowElement ||
major_key == CodeStub::ElementsTransitionAndStore ||
major_key == CodeStub::NoCache);
if (major_key != CodeStub::NoCache) {
mode = CommonStoreModeBits::decode(minor_key);
break;
}
}
return mode;
}
IcCheckType KeyedLoadICNexus::GetKeyType() const {
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::MegamorphicSentinel(GetIsolate())) {
return static_cast<IcCheckType>(Smi::cast(GetFeedbackExtra())->value());
}
return IsPropertyNameFeedback(feedback) ? PROPERTY : ELEMENT;
}
IcCheckType KeyedStoreICNexus::GetKeyType() const {
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::MegamorphicSentinel(GetIsolate())) {
return static_cast<IcCheckType>(Smi::cast(GetFeedbackExtra())->value());
}
return IsPropertyNameFeedback(feedback) ? PROPERTY : ELEMENT;
}
InlineCacheState BinaryOpICNexus::StateFromFeedback() const {
BinaryOperationHint hint = GetBinaryOperationFeedback();
if (hint == BinaryOperationHint::kNone) {
return UNINITIALIZED;
} else if (hint == BinaryOperationHint::kAny) {
return GENERIC;
}
return MONOMORPHIC;
}
InlineCacheState CompareICNexus::StateFromFeedback() const {
CompareOperationHint hint = GetCompareOperationFeedback();
if (hint == CompareOperationHint::kNone) {
return UNINITIALIZED;
} else if (hint == CompareOperationHint::kAny) {
return GENERIC;
}
return MONOMORPHIC;
}
BinaryOperationHint BinaryOpICNexus::GetBinaryOperationFeedback() const {
int feedback = Smi::cast(GetFeedback())->value();
return BinaryOperationHintFromFeedback(feedback);
}
CompareOperationHint CompareICNexus::GetCompareOperationFeedback() const {
int feedback = Smi::cast(GetFeedback())->value();
return CompareOperationHintFromFeedback(feedback);
}
InlineCacheState StoreDataPropertyInLiteralICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *FeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
}
return MEGAMORPHIC;
}
void StoreDataPropertyInLiteralICNexus::ConfigureMonomorphic(
Handle<Name> name, Handle<Map> receiver_map) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
SetFeedback(*cell);
SetFeedbackExtra(*name);
}
} // namespace internal
} // namespace v8