1c2867c0da
Verifies consistency of node inputs and uses: - node inputs should agree with the input count computed from the node's operator. - effect inputs should have effect outputs (or be a sentinel). - control inputs should have control outputs (or be a sentinel). - frame state inputs should be frame states (or be a sentinel). - if the node has control uses, it should produce control. - if the node has effect uses, it should produce effect. - if the node has frame state uses, it must be a frame state. I also removed some tests, either because they did not seem to be useful (scheduler) or they tested dead functionality (diamond effect phi). Review URL: https://codereview.chromium.org/1368913002 Cr-Commit-Position: refs/heads/master@{#30927}
566 lines
19 KiB
C++
566 lines
19 KiB
C++
// Copyright 2015 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "src/codegen.h"
|
|
#include "src/compiler/all-nodes.h"
|
|
#include "src/compiler/common-operator.h"
|
|
#include "src/compiler/diamond.h"
|
|
#include "src/compiler/graph.h"
|
|
#include "src/compiler/js-graph.h"
|
|
#include "src/compiler/js-operator.h"
|
|
#include "src/compiler/operator.h"
|
|
#include "src/compiler/osr.h"
|
|
#include "test/cctest/cctest.h"
|
|
|
|
using namespace v8::internal;
|
|
using namespace v8::internal::compiler;
|
|
|
|
// TODO(titzer): move this method to a common testing place.
|
|
|
|
static int CheckInputs(Node* node, Node* i0 = NULL, Node* i1 = NULL,
|
|
Node* i2 = NULL, Node* i3 = NULL) {
|
|
int count = 4;
|
|
if (i3 == NULL) count = 3;
|
|
if (i2 == NULL) count = 2;
|
|
if (i1 == NULL) count = 1;
|
|
if (i0 == NULL) count = 0;
|
|
CHECK_EQ(count, node->InputCount());
|
|
if (i0 != NULL) CHECK_EQ(i0, node->InputAt(0));
|
|
if (i1 != NULL) CHECK_EQ(i1, node->InputAt(1));
|
|
if (i2 != NULL) CHECK_EQ(i2, node->InputAt(2));
|
|
if (i3 != NULL) CHECK_EQ(i3, node->InputAt(3));
|
|
return count;
|
|
}
|
|
|
|
|
|
static Operator kIntLt(IrOpcode::kInt32LessThan, Operator::kPure,
|
|
"Int32LessThan", 2, 0, 0, 1, 0, 0);
|
|
static Operator kIntAdd(IrOpcode::kInt32Add, Operator::kPure, "Int32Add", 2, 0,
|
|
0, 1, 0, 0);
|
|
|
|
|
|
static const int kMaxOsrValues = 10;
|
|
|
|
class OsrDeconstructorTester : public HandleAndZoneScope {
|
|
public:
|
|
explicit OsrDeconstructorTester(int num_values)
|
|
: isolate(main_isolate()),
|
|
common(main_zone()),
|
|
graph(main_zone()),
|
|
jsgraph(main_isolate(), &graph, &common, NULL, NULL),
|
|
start(graph.NewNode(common.Start(1))),
|
|
p0(graph.NewNode(common.Parameter(0), start)),
|
|
end(graph.NewNode(common.End(1), start)),
|
|
osr_normal_entry(graph.NewNode(common.OsrNormalEntry(), start, start)),
|
|
osr_loop_entry(graph.NewNode(common.OsrLoopEntry(), start, start)),
|
|
self(graph.NewNode(common.Int32Constant(0xaabbccdd))) {
|
|
CHECK(num_values <= kMaxOsrValues);
|
|
graph.SetStart(start);
|
|
for (int i = 0; i < num_values; i++) {
|
|
osr_values[i] = graph.NewNode(common.OsrValue(i), osr_loop_entry);
|
|
}
|
|
}
|
|
|
|
Isolate* isolate;
|
|
CommonOperatorBuilder common;
|
|
Graph graph;
|
|
JSGraph jsgraph;
|
|
Node* start;
|
|
Node* p0;
|
|
Node* end;
|
|
Node* osr_normal_entry;
|
|
Node* osr_loop_entry;
|
|
Node* self;
|
|
Node* osr_values[kMaxOsrValues];
|
|
|
|
Node* NewOsrPhi(Node* loop, Node* incoming, int osr_value, Node* back1 = NULL,
|
|
Node* back2 = NULL, Node* back3 = NULL) {
|
|
int count = 5;
|
|
if (back3 == NULL) count = 4;
|
|
if (back2 == NULL) count = 3;
|
|
if (back1 == NULL) count = 2;
|
|
CHECK_EQ(loop->InputCount(), count);
|
|
CHECK_EQ(osr_loop_entry, loop->InputAt(1));
|
|
|
|
Node* inputs[6];
|
|
inputs[0] = incoming;
|
|
inputs[1] = osr_values[osr_value];
|
|
if (count > 2) inputs[2] = back1;
|
|
if (count > 3) inputs[3] = back2;
|
|
if (count > 4) inputs[4] = back3;
|
|
inputs[count] = loop;
|
|
return graph.NewNode(common.Phi(kMachAnyTagged, count), count + 1, inputs);
|
|
}
|
|
|
|
Node* NewLoop(bool is_osr, int num_backedges, Node* entry = nullptr) {
|
|
if (entry == nullptr) entry = osr_normal_entry;
|
|
Node* loop = graph.NewNode(common.Loop(1), entry);
|
|
if (is_osr) {
|
|
loop->AppendInput(graph.zone(), osr_loop_entry);
|
|
}
|
|
for (int i = 0; i < num_backedges; i++) {
|
|
loop->AppendInput(graph.zone(), loop);
|
|
}
|
|
NodeProperties::ChangeOp(loop, common.Loop(loop->InputCount()));
|
|
return loop;
|
|
}
|
|
|
|
Node* NewOsrLoop(int num_backedges, Node* entry = NULL) {
|
|
return NewLoop(true, num_backedges, entry);
|
|
}
|
|
|
|
void DeconstructOsr() {
|
|
OsrHelper helper(0, 0);
|
|
helper.Deconstruct(&jsgraph, &common, main_zone());
|
|
AllNodes nodes(main_zone(), &graph);
|
|
// Should be edited out.
|
|
CHECK(!nodes.IsLive(osr_normal_entry));
|
|
CHECK(!nodes.IsLive(osr_loop_entry));
|
|
// No dangling nodes should be left over.
|
|
for (Node* const node : nodes.live) {
|
|
for (Node* const use : node->uses()) {
|
|
CHECK(std::find(nodes.live.begin(), nodes.live.end(), use) !=
|
|
nodes.live.end());
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
TEST(Deconstruct_osr0) {
|
|
OsrDeconstructorTester T(0);
|
|
|
|
Node* loop = T.NewOsrLoop(1);
|
|
|
|
T.graph.SetEnd(loop);
|
|
|
|
T.DeconstructOsr();
|
|
|
|
CheckInputs(loop, T.start, loop);
|
|
}
|
|
|
|
|
|
TEST(Deconstruct_osr1) {
|
|
OsrDeconstructorTester T(1);
|
|
|
|
Node* loop = T.NewOsrLoop(1);
|
|
Node* osr_phi =
|
|
T.NewOsrPhi(loop, T.jsgraph.OneConstant(), 0, T.jsgraph.ZeroConstant());
|
|
|
|
Node* ret = T.graph.NewNode(T.common.Return(), osr_phi, T.start, loop);
|
|
T.graph.SetEnd(ret);
|
|
|
|
T.DeconstructOsr();
|
|
|
|
CheckInputs(loop, T.start, loop);
|
|
CheckInputs(osr_phi, T.osr_values[0], T.jsgraph.ZeroConstant(), loop);
|
|
CheckInputs(ret, osr_phi, T.start, loop);
|
|
}
|
|
|
|
|
|
TEST(Deconstruct_osr_remove_prologue) {
|
|
OsrDeconstructorTester T(1);
|
|
Diamond d(&T.graph, &T.common, T.p0);
|
|
d.Chain(T.osr_normal_entry);
|
|
|
|
Node* loop = T.NewOsrLoop(1, d.merge);
|
|
Node* osr_phi =
|
|
T.NewOsrPhi(loop, T.jsgraph.OneConstant(), 0, T.jsgraph.ZeroConstant());
|
|
|
|
Node* ret = T.graph.NewNode(T.common.Return(), osr_phi, T.start, loop);
|
|
T.graph.SetEnd(ret);
|
|
|
|
T.DeconstructOsr();
|
|
|
|
CheckInputs(loop, T.start, loop);
|
|
CheckInputs(osr_phi, T.osr_values[0], T.jsgraph.ZeroConstant(), loop);
|
|
CheckInputs(ret, osr_phi, T.start, loop);
|
|
|
|
// The control before the loop should have been removed.
|
|
AllNodes nodes(T.main_zone(), &T.graph);
|
|
CHECK(!nodes.IsLive(d.branch));
|
|
CHECK(!nodes.IsLive(d.if_true));
|
|
CHECK(!nodes.IsLive(d.if_false));
|
|
CHECK(!nodes.IsLive(d.merge));
|
|
}
|
|
|
|
|
|
TEST(Deconstruct_osr_with_body1) {
|
|
OsrDeconstructorTester T(1);
|
|
|
|
Node* loop = T.NewOsrLoop(1);
|
|
|
|
Node* branch = T.graph.NewNode(T.common.Branch(), T.p0, loop);
|
|
Node* if_true = T.graph.NewNode(T.common.IfTrue(), branch);
|
|
Node* if_false = T.graph.NewNode(T.common.IfFalse(), branch);
|
|
loop->ReplaceInput(2, if_true);
|
|
|
|
Node* osr_phi =
|
|
T.NewOsrPhi(loop, T.jsgraph.OneConstant(), 0, T.jsgraph.ZeroConstant());
|
|
|
|
Node* ret = T.graph.NewNode(T.common.Return(), osr_phi, T.start, if_false);
|
|
T.graph.SetEnd(ret);
|
|
|
|
T.DeconstructOsr();
|
|
|
|
CheckInputs(loop, T.start, if_true);
|
|
CheckInputs(branch, T.p0, loop);
|
|
CheckInputs(if_true, branch);
|
|
CheckInputs(if_false, branch);
|
|
CheckInputs(osr_phi, T.osr_values[0], T.jsgraph.ZeroConstant(), loop);
|
|
CheckInputs(ret, osr_phi, T.start, if_false);
|
|
}
|
|
|
|
|
|
TEST(Deconstruct_osr_with_body2) {
|
|
OsrDeconstructorTester T(1);
|
|
|
|
Node* loop = T.NewOsrLoop(1);
|
|
|
|
// Two chained branches in the the body of the loop.
|
|
Node* branch1 = T.graph.NewNode(T.common.Branch(), T.p0, loop);
|
|
Node* if_true1 = T.graph.NewNode(T.common.IfTrue(), branch1);
|
|
Node* if_false1 = T.graph.NewNode(T.common.IfFalse(), branch1);
|
|
|
|
Node* branch2 = T.graph.NewNode(T.common.Branch(), T.p0, if_true1);
|
|
Node* if_true2 = T.graph.NewNode(T.common.IfTrue(), branch2);
|
|
Node* if_false2 = T.graph.NewNode(T.common.IfFalse(), branch2);
|
|
loop->ReplaceInput(2, if_true2);
|
|
|
|
Node* osr_phi =
|
|
T.NewOsrPhi(loop, T.jsgraph.OneConstant(), 0, T.jsgraph.ZeroConstant());
|
|
|
|
Node* merge = T.graph.NewNode(T.common.Merge(2), if_false1, if_false2);
|
|
Node* ret = T.graph.NewNode(T.common.Return(), osr_phi, T.start, merge);
|
|
T.graph.SetEnd(ret);
|
|
|
|
T.DeconstructOsr();
|
|
|
|
CheckInputs(loop, T.start, if_true2);
|
|
CheckInputs(branch1, T.p0, loop);
|
|
CheckInputs(branch2, T.p0, if_true1);
|
|
CheckInputs(if_true1, branch1);
|
|
CheckInputs(if_false1, branch1);
|
|
CheckInputs(if_true2, branch2);
|
|
CheckInputs(if_false2, branch2);
|
|
|
|
CheckInputs(osr_phi, T.osr_values[0], T.jsgraph.ZeroConstant(), loop);
|
|
CheckInputs(ret, osr_phi, T.start, merge);
|
|
CheckInputs(merge, if_false1, if_false2);
|
|
}
|
|
|
|
|
|
TEST(Deconstruct_osr_with_body3) {
|
|
OsrDeconstructorTester T(1);
|
|
|
|
Node* loop = T.NewOsrLoop(2);
|
|
|
|
// Two branches that create two different backedges.
|
|
Node* branch1 = T.graph.NewNode(T.common.Branch(), T.p0, loop);
|
|
Node* if_true1 = T.graph.NewNode(T.common.IfTrue(), branch1);
|
|
Node* if_false1 = T.graph.NewNode(T.common.IfFalse(), branch1);
|
|
|
|
Node* branch2 = T.graph.NewNode(T.common.Branch(), T.p0, if_true1);
|
|
Node* if_true2 = T.graph.NewNode(T.common.IfTrue(), branch2);
|
|
Node* if_false2 = T.graph.NewNode(T.common.IfFalse(), branch2);
|
|
loop->ReplaceInput(2, if_false1);
|
|
loop->ReplaceInput(3, if_true2);
|
|
|
|
Node* osr_phi =
|
|
T.NewOsrPhi(loop, T.jsgraph.OneConstant(), 0, T.jsgraph.ZeroConstant(),
|
|
T.jsgraph.ZeroConstant());
|
|
|
|
Node* ret = T.graph.NewNode(T.common.Return(), osr_phi, T.start, if_false2);
|
|
T.graph.SetEnd(ret);
|
|
|
|
T.DeconstructOsr();
|
|
|
|
CheckInputs(loop, T.start, if_false1, if_true2);
|
|
CheckInputs(branch1, T.p0, loop);
|
|
CheckInputs(branch2, T.p0, if_true1);
|
|
CheckInputs(if_true1, branch1);
|
|
CheckInputs(if_false1, branch1);
|
|
CheckInputs(if_true2, branch2);
|
|
CheckInputs(if_false2, branch2);
|
|
|
|
CheckInputs(osr_phi, T.osr_values[0], T.jsgraph.ZeroConstant(),
|
|
T.jsgraph.ZeroConstant(), loop);
|
|
CheckInputs(ret, osr_phi, T.start, if_false2);
|
|
}
|
|
|
|
|
|
struct While {
|
|
OsrDeconstructorTester& t;
|
|
Node* branch;
|
|
Node* if_true;
|
|
Node* exit;
|
|
Node* loop;
|
|
|
|
While(OsrDeconstructorTester& R, Node* cond, bool is_osr, int backedges = 1)
|
|
: t(R) {
|
|
loop = t.NewLoop(is_osr, backedges);
|
|
branch = t.graph.NewNode(t.common.Branch(), cond, loop);
|
|
if_true = t.graph.NewNode(t.common.IfTrue(), branch);
|
|
exit = t.graph.NewNode(t.common.IfFalse(), branch);
|
|
loop->ReplaceInput(loop->InputCount() - 1, if_true);
|
|
}
|
|
|
|
void Nest(While& that) {
|
|
that.loop->ReplaceInput(that.loop->InputCount() - 1, exit);
|
|
this->loop->ReplaceInput(0, that.if_true);
|
|
}
|
|
|
|
Node* Phi(Node* i1, Node* i2, Node* i3) {
|
|
if (loop->InputCount() == 2) {
|
|
return t.graph.NewNode(t.common.Phi(kMachAnyTagged, 2), i1, i2, loop);
|
|
} else {
|
|
return t.graph.NewNode(t.common.Phi(kMachAnyTagged, 3), i1, i2, i3, loop);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
static Node* FindSuccessor(Node* node, IrOpcode::Value opcode) {
|
|
for (Node* use : node->uses()) {
|
|
if (use->opcode() == opcode) return use;
|
|
}
|
|
UNREACHABLE(); // should have been found.
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
TEST(Deconstruct_osr_nested1) {
|
|
OsrDeconstructorTester T(1);
|
|
|
|
While outer(T, T.p0, false);
|
|
While inner(T, T.p0, true);
|
|
inner.Nest(outer);
|
|
|
|
Node* outer_phi = outer.Phi(T.p0, T.p0, nullptr);
|
|
outer.branch->ReplaceInput(0, outer_phi);
|
|
|
|
Node* osr_phi = inner.Phi(T.jsgraph.TrueConstant(), T.osr_values[0],
|
|
T.jsgraph.FalseConstant());
|
|
inner.branch->ReplaceInput(0, osr_phi);
|
|
outer_phi->ReplaceInput(1, osr_phi);
|
|
|
|
Node* ret =
|
|
T.graph.NewNode(T.common.Return(), outer_phi, T.start, outer.exit);
|
|
Node* end = T.graph.NewNode(T.common.End(1), ret);
|
|
T.graph.SetEnd(end);
|
|
|
|
T.DeconstructOsr();
|
|
|
|
// Check structure of deconstructed graph.
|
|
// Check inner OSR loop is directly connected to start.
|
|
CheckInputs(inner.loop, T.start, inner.if_true);
|
|
CheckInputs(osr_phi, T.osr_values[0], T.jsgraph.FalseConstant(), inner.loop);
|
|
|
|
// Check control transfer to copy of outer loop.
|
|
Node* new_outer_loop = FindSuccessor(inner.exit, IrOpcode::kLoop);
|
|
Node* new_outer_phi = FindSuccessor(new_outer_loop, IrOpcode::kPhi);
|
|
CHECK_NE(new_outer_loop, outer.loop);
|
|
CHECK_NE(new_outer_phi, outer_phi);
|
|
|
|
CheckInputs(new_outer_loop, inner.exit, new_outer_loop->InputAt(1));
|
|
|
|
// Check structure of outer loop.
|
|
Node* new_outer_branch = FindSuccessor(new_outer_loop, IrOpcode::kBranch);
|
|
CHECK_NE(new_outer_branch, outer.branch);
|
|
CheckInputs(new_outer_branch, new_outer_phi, new_outer_loop);
|
|
Node* new_outer_exit = FindSuccessor(new_outer_branch, IrOpcode::kIfFalse);
|
|
Node* new_outer_if_true = FindSuccessor(new_outer_branch, IrOpcode::kIfTrue);
|
|
|
|
// Check structure of return.
|
|
end = T.graph.end();
|
|
Node* new_ret = end->InputAt(0);
|
|
CHECK_EQ(IrOpcode::kReturn, new_ret->opcode());
|
|
CheckInputs(new_ret, new_outer_phi, T.start, new_outer_exit);
|
|
|
|
// Check structure of inner loop.
|
|
Node* new_inner_loop = FindSuccessor(new_outer_if_true, IrOpcode::kLoop);
|
|
Node* new_inner_phi = FindSuccessor(new_inner_loop, IrOpcode::kPhi);
|
|
|
|
CheckInputs(new_inner_phi, T.jsgraph.TrueConstant(),
|
|
T.jsgraph.FalseConstant(), new_inner_loop);
|
|
CheckInputs(new_outer_phi, osr_phi, new_inner_phi, new_outer_loop);
|
|
}
|
|
|
|
|
|
TEST(Deconstruct_osr_nested2) {
|
|
OsrDeconstructorTester T(1);
|
|
|
|
// Test multiple backedge outer loop.
|
|
While outer(T, T.p0, false, 2);
|
|
While inner(T, T.p0, true);
|
|
inner.Nest(outer);
|
|
|
|
Node* outer_phi = outer.Phi(T.p0, T.p0, T.p0);
|
|
outer.branch->ReplaceInput(0, outer_phi);
|
|
|
|
Node* osr_phi = inner.Phi(T.jsgraph.TrueConstant(), T.osr_values[0],
|
|
T.jsgraph.FalseConstant());
|
|
inner.branch->ReplaceInput(0, osr_phi);
|
|
outer_phi->ReplaceInput(1, osr_phi);
|
|
outer_phi->ReplaceInput(2, T.jsgraph.FalseConstant());
|
|
|
|
Node* x_branch = T.graph.NewNode(T.common.Branch(), osr_phi, inner.exit);
|
|
Node* x_true = T.graph.NewNode(T.common.IfTrue(), x_branch);
|
|
Node* x_false = T.graph.NewNode(T.common.IfFalse(), x_branch);
|
|
|
|
outer.loop->ReplaceInput(1, x_true);
|
|
outer.loop->ReplaceInput(2, x_false);
|
|
|
|
Node* ret =
|
|
T.graph.NewNode(T.common.Return(), outer_phi, T.start, outer.exit);
|
|
Node* end = T.graph.NewNode(T.common.End(1), ret);
|
|
T.graph.SetEnd(end);
|
|
|
|
T.DeconstructOsr();
|
|
|
|
// Check structure of deconstructed graph.
|
|
// Check inner OSR loop is directly connected to start.
|
|
CheckInputs(inner.loop, T.start, inner.if_true);
|
|
CheckInputs(osr_phi, T.osr_values[0], T.jsgraph.FalseConstant(), inner.loop);
|
|
|
|
// Check control transfer to copy of outer loop.
|
|
Node* new_merge = FindSuccessor(x_true, IrOpcode::kMerge);
|
|
CHECK_EQ(new_merge, FindSuccessor(x_false, IrOpcode::kMerge));
|
|
CheckInputs(new_merge, x_true, x_false);
|
|
|
|
Node* new_outer_loop = FindSuccessor(new_merge, IrOpcode::kLoop);
|
|
Node* new_outer_phi = FindSuccessor(new_outer_loop, IrOpcode::kPhi);
|
|
CHECK_NE(new_outer_loop, outer.loop);
|
|
CHECK_NE(new_outer_phi, outer_phi);
|
|
|
|
Node* new_entry_phi = FindSuccessor(new_merge, IrOpcode::kPhi);
|
|
CheckInputs(new_entry_phi, osr_phi, T.jsgraph.FalseConstant(), new_merge);
|
|
|
|
CHECK_EQ(new_merge, new_outer_loop->InputAt(0));
|
|
|
|
// Check structure of outer loop.
|
|
Node* new_outer_branch = FindSuccessor(new_outer_loop, IrOpcode::kBranch);
|
|
CHECK_NE(new_outer_branch, outer.branch);
|
|
CheckInputs(new_outer_branch, new_outer_phi, new_outer_loop);
|
|
Node* new_outer_exit = FindSuccessor(new_outer_branch, IrOpcode::kIfFalse);
|
|
Node* new_outer_if_true = FindSuccessor(new_outer_branch, IrOpcode::kIfTrue);
|
|
|
|
// Check structure of return.
|
|
end = T.graph.end();
|
|
Node* new_ret = end->InputAt(0);
|
|
CHECK_EQ(IrOpcode::kReturn, new_ret->opcode());
|
|
CheckInputs(new_ret, new_outer_phi, T.start, new_outer_exit);
|
|
|
|
// Check structure of inner loop.
|
|
Node* new_inner_loop = FindSuccessor(new_outer_if_true, IrOpcode::kLoop);
|
|
Node* new_inner_phi = FindSuccessor(new_inner_loop, IrOpcode::kPhi);
|
|
|
|
CheckInputs(new_inner_phi, T.jsgraph.TrueConstant(),
|
|
T.jsgraph.FalseConstant(), new_inner_loop);
|
|
CheckInputs(new_outer_phi, new_entry_phi, new_inner_phi,
|
|
T.jsgraph.FalseConstant(), new_outer_loop);
|
|
}
|
|
|
|
|
|
Node* MakeCounter(JSGraph* jsgraph, Node* start, Node* loop) {
|
|
int count = loop->InputCount();
|
|
NodeVector tmp_inputs(jsgraph->graph()->zone());
|
|
for (int i = 0; i < count; i++) {
|
|
tmp_inputs.push_back(start);
|
|
}
|
|
tmp_inputs.push_back(loop);
|
|
|
|
Node* phi = jsgraph->graph()->NewNode(
|
|
jsgraph->common()->Phi(kMachInt32, count), count + 1, &tmp_inputs[0]);
|
|
Node* inc = jsgraph->graph()->NewNode(&kIntAdd, phi, jsgraph->OneConstant());
|
|
|
|
for (int i = 1; i < count; i++) {
|
|
phi->ReplaceInput(i, inc);
|
|
}
|
|
return phi;
|
|
}
|
|
|
|
|
|
TEST(Deconstruct_osr_nested3) {
|
|
OsrDeconstructorTester T(1);
|
|
|
|
// outermost loop.
|
|
While loop0(T, T.p0, false, 1);
|
|
Node* loop0_cntr = MakeCounter(&T.jsgraph, T.p0, loop0.loop);
|
|
loop0.branch->ReplaceInput(0, loop0_cntr);
|
|
|
|
// middle loop.
|
|
Node* loop1 = T.graph.NewNode(T.common.Loop(1), loop0.if_true);
|
|
Node* loop1_phi = T.graph.NewNode(T.common.Phi(kMachAnyTagged, 2), loop0_cntr,
|
|
loop0_cntr, loop1);
|
|
|
|
// innermost (OSR) loop.
|
|
While loop2(T, T.p0, true, 1);
|
|
loop2.loop->ReplaceInput(0, loop1);
|
|
|
|
Node* loop2_cntr = MakeCounter(&T.jsgraph, loop1_phi, loop2.loop);
|
|
loop2_cntr->ReplaceInput(1, T.osr_values[0]);
|
|
Node* osr_phi = loop2_cntr;
|
|
Node* loop2_inc = loop2_cntr->InputAt(2);
|
|
loop2.branch->ReplaceInput(0, loop2_cntr);
|
|
|
|
loop1_phi->ReplaceInput(1, loop2_cntr);
|
|
loop0_cntr->ReplaceInput(1, loop2_cntr);
|
|
|
|
// Branch to either the outer or middle loop.
|
|
Node* branch = T.graph.NewNode(T.common.Branch(), loop2_cntr, loop2.exit);
|
|
Node* if_true = T.graph.NewNode(T.common.IfTrue(), branch);
|
|
Node* if_false = T.graph.NewNode(T.common.IfFalse(), branch);
|
|
|
|
loop0.loop->ReplaceInput(1, if_true);
|
|
loop1->AppendInput(T.graph.zone(), if_false);
|
|
NodeProperties::ChangeOp(loop1, T.common.Loop(2));
|
|
|
|
Node* ret =
|
|
T.graph.NewNode(T.common.Return(), loop0_cntr, T.start, loop0.exit);
|
|
Node* end = T.graph.NewNode(T.common.End(1), ret);
|
|
T.graph.SetEnd(end);
|
|
|
|
T.DeconstructOsr();
|
|
|
|
// Check structure of deconstructed graph.
|
|
// Check loop2 (OSR loop) is directly connected to start.
|
|
CheckInputs(loop2.loop, T.start, loop2.if_true);
|
|
CheckInputs(osr_phi, T.osr_values[0], loop2_inc, loop2.loop);
|
|
CheckInputs(loop2.branch, osr_phi, loop2.loop);
|
|
CheckInputs(loop2.if_true, loop2.branch);
|
|
CheckInputs(loop2.exit, loop2.branch);
|
|
CheckInputs(branch, osr_phi, loop2.exit);
|
|
CheckInputs(if_true, branch);
|
|
CheckInputs(if_false, branch);
|
|
|
|
// Check structure of new_loop1.
|
|
Node* new_loop1_loop = FindSuccessor(if_false, IrOpcode::kLoop);
|
|
// TODO(titzer): check the internal copy of loop2.
|
|
USE(new_loop1_loop);
|
|
|
|
// Check structure of new_loop0.
|
|
Node* new_loop0_loop_entry = FindSuccessor(if_true, IrOpcode::kMerge);
|
|
Node* new_loop0_loop = FindSuccessor(new_loop0_loop_entry, IrOpcode::kLoop);
|
|
// TODO(titzer): check the internal copies of loop1 and loop2.
|
|
|
|
Node* new_loop0_branch = FindSuccessor(new_loop0_loop, IrOpcode::kBranch);
|
|
Node* new_loop0_if_true = FindSuccessor(new_loop0_branch, IrOpcode::kIfTrue);
|
|
Node* new_loop0_exit = FindSuccessor(new_loop0_branch, IrOpcode::kIfFalse);
|
|
|
|
USE(new_loop0_if_true);
|
|
|
|
Node* new_ret = T.graph.end()->InputAt(0);
|
|
CHECK_EQ(IrOpcode::kReturn, new_ret->opcode());
|
|
|
|
Node* new_loop0_phi = new_ret->InputAt(0);
|
|
CHECK_EQ(IrOpcode::kPhi, new_loop0_phi->opcode());
|
|
CHECK_EQ(new_loop0_loop, NodeProperties::GetControlInput(new_loop0_phi));
|
|
CHECK_EQ(new_loop0_phi, FindSuccessor(new_loop0_loop, IrOpcode::kPhi));
|
|
|
|
// Check that the return returns the phi from the OSR loop and control
|
|
// depends on the copy of the outer loop0.
|
|
CheckInputs(new_ret, new_loop0_phi, T.graph.start(), new_loop0_exit);
|
|
}
|