v8/test/unittests/wasm/module-decoder-unittest.cc
Matthias Liedtke 3cc931543f [wasm-gc] Add Table<any|eq|data|array>
This change adds support for new table element types besides the
existing support for func and extern.
The newly supported types are the generic types of the 'any' subtype
hierarchy: any, eq, data and array.
All these table types are also usable and accessible via JavaScript,
causing implicit internalization and externalization of the elements
on Table::get() and Table::set().

Bug: v8:7748
Change-Id: Ie85d8f5e1d70471360dd2fb8a39cd38efaac2c22
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3838729
Reviewed-by: Benedikt Meurer <bmeurer@chromium.org>
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Commit-Queue: Matthias Liedtke <mliedtke@chromium.org>
Cr-Commit-Position: refs/heads/main@{#82643}
2022-08-23 07:38:49 +00:00

3505 lines
137 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/wasm/module-decoder.h"
#include "src/wasm/branch-hint-map.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-features.h"
#include "src/wasm/wasm-limits.h"
#include "src/wasm/wasm-opcodes.h"
#include "test/common/wasm/flag-utils.h"
#include "test/common/wasm/wasm-macro-gen.h"
#include "test/unittests/test-utils.h"
#include "testing/gmock-support.h"
using testing::HasSubstr;
namespace v8 {
namespace internal {
namespace wasm {
namespace module_decoder_unittest {
#define WASM_INIT_EXPR_I32V_1(val) WASM_I32V_1(val), kExprEnd
#define WASM_INIT_EXPR_I32V_2(val) WASM_I32V_2(val), kExprEnd
#define WASM_INIT_EXPR_I32V_3(val) WASM_I32V_3(val), kExprEnd
#define WASM_INIT_EXPR_I32V_4(val) WASM_I32V_4(val), kExprEnd
#define WASM_INIT_EXPR_I32V_5(val) WASM_I32V_5(val), kExprEnd
#define WASM_INIT_EXPR_F32(val) WASM_F32(val), kExprEnd
#define WASM_INIT_EXPR_I64(val) WASM_I64(val), kExprEnd
#define WASM_INIT_EXPR_F64(val) WASM_F64(val), kExprEnd
#define WASM_INIT_EXPR_EXTERN_REF_NULL WASM_REF_NULL(kExternRefCode), kExprEnd
#define WASM_INIT_EXPR_FUNC_REF_NULL WASM_REF_NULL(kFuncRefCode), kExprEnd
#define WASM_INIT_EXPR_REF_FUNC(val) WASM_REF_FUNC(val), kExprEnd
#define WASM_INIT_EXPR_GLOBAL(index) WASM_GLOBAL_GET(index), kExprEnd
#define WASM_INIT_EXPR_STRUCT_NEW(index, ...) \
WASM_STRUCT_NEW(index, __VA_ARGS__), kExprEnd
#define WASM_INIT_EXPR_ARRAY_NEW_FIXED_STATIC(index, length, ...) \
WASM_ARRAY_NEW_FIXED_STATIC(index, length, __VA_ARGS__), kExprEnd
#define REF_NULL_ELEMENT kExprRefNull, kFuncRefCode, kExprEnd
#define REF_FUNC_ELEMENT(v) kExprRefFunc, U32V_1(v), kExprEnd
#define EMPTY_BODY 0
#define NOP_BODY 2, 0, kExprNop
#define SIG_ENTRY_i_i SIG_ENTRY_x_x(kI32Code, kI32Code)
#define UNKNOWN_SECTION(size) 0, U32V_1(size + 5), ADD_COUNT('l', 'u', 'l', 'z')
#define TYPE_SECTION(count, ...) SECTION(Type, U32V_1(count), __VA_ARGS__)
#define FUNCTION_SECTION(count, ...) \
SECTION(Function, U32V_1(count), __VA_ARGS__)
#define FOO_STRING ADD_COUNT('f', 'o', 'o')
#define NO_LOCAL_NAMES 0
#define EMPTY_TYPE_SECTION SECTION(Type, ENTRY_COUNT(0))
#define EMPTY_FUNCTION_SECTION SECTION(Function, ENTRY_COUNT(0))
#define EMPTY_FUNCTION_BODIES_SECTION SECTION(Code, ENTRY_COUNT(0))
#define SECTION_NAMES(...) \
SECTION(Unknown, ADD_COUNT('n', 'a', 'm', 'e'), ##__VA_ARGS__)
#define EMPTY_NAMES_SECTION SECTION_NAMES()
#define SECTION_SRC_MAP(...) \
SECTION(Unknown, \
ADD_COUNT('s', 'o', 'u', 'r', 'c', 'e', 'M', 'a', 'p', 'p', 'i', \
'n', 'g', 'U', 'R', 'L'), \
ADD_COUNT(__VA_ARGS__))
#define SECTION_COMPILATION_HINTS(...) \
SECTION(Unknown, \
ADD_COUNT('c', 'o', 'm', 'p', 'i', 'l', 'a', 't', 'i', 'o', 'n', \
'H', 'i', 'n', 't', 's'), \
ADD_COUNT(__VA_ARGS__))
#define SECTION_BRANCH_HINTS(...) \
SECTION(Unknown, \
ADD_COUNT('m', 'e', 't', 'a', 'd', 'a', 't', 'a', '.', 'c', 'o', \
'd', 'e', '.', 'b', 'r', 'a', 'n', 'c', 'h', '_', 'h', \
'i', 'n', 't'), \
__VA_ARGS__)
#define FAIL_IF_NO_EXPERIMENTAL_EH(data) \
do { \
ModuleResult result = DecodeModule((data), (data) + sizeof((data))); \
EXPECT_FALSE(result.ok()); \
} while (false)
#define X1(...) __VA_ARGS__
#define X2(...) __VA_ARGS__, __VA_ARGS__
#define X3(...) __VA_ARGS__, __VA_ARGS__, __VA_ARGS__
#define X4(...) __VA_ARGS__, __VA_ARGS__, __VA_ARGS__, __VA_ARGS__
#define ONE_EMPTY_FUNCTION(sig_index) \
SECTION(Function, ENTRY_COUNT(1), X1(sig_index))
#define TWO_EMPTY_FUNCTIONS(sig_index) \
SECTION(Function, ENTRY_COUNT(2), X2(sig_index))
#define THREE_EMPTY_FUNCTIONS(sig_index) \
SECTION(Function, ENTRY_COUNT(3), X3(sig_index))
#define FOUR_EMPTY_FUNCTIONS(sig_index) \
SECTION(Function, ENTRY_COUNT(4), X4(sig_index))
#define ONE_EMPTY_BODY SECTION(Code, ENTRY_COUNT(1), X1(EMPTY_BODY))
#define TWO_EMPTY_BODIES SECTION(Code, ENTRY_COUNT(2), X2(EMPTY_BODY))
#define THREE_EMPTY_BODIES SECTION(Code, ENTRY_COUNT(3), X3(EMPTY_BODY))
#define FOUR_EMPTY_BODIES SECTION(Code, ENTRY_COUNT(4), X4(EMPTY_BODY))
#define TYPE_SECTION_ONE_SIG_VOID_VOID \
SECTION(Type, ENTRY_COUNT(1), SIG_ENTRY_v_v)
#define LINEAR_MEMORY_INDEX_0 0
#define EXCEPTION_ENTRY(sig_index) U32V_1(kExceptionAttribute), sig_index
#define FIELD_COUNT(count) U32V_1(count)
#define STRUCT_FIELD(type, mutability) type, (mutability ? 1 : 0)
#define WASM_REF(index) kRefCode, index
#define WASM_OPT_REF(index) kRefNullCode, index
#define WASM_STRUCT_DEF(...) kWasmStructTypeCode, __VA_ARGS__
#define WASM_ARRAY_DEF(type, mutability) \
kWasmArrayTypeCode, type, (mutability ? 1 : 0)
#define WASM_FUNCTION_DEF(...) kWasmFunctionTypeCode, __VA_ARGS__
#define EXPECT_VERIFIES(data) \
do { \
ModuleResult _result = DecodeModule(data, data + sizeof(data)); \
EXPECT_OK(_result); \
} while (false)
#define EXPECT_FAILURE_LEN(data, length) \
do { \
ModuleResult _result = DecodeModule(data, data + length); \
EXPECT_FALSE(_result.ok()); \
} while (false)
#define EXPECT_FAILURE(data) EXPECT_FAILURE_LEN(data, sizeof(data))
#define EXPECT_FAILURE_WITH_MSG(data, msg) \
do { \
ModuleResult _result = DecodeModule(data, data + sizeof(data)); \
EXPECT_FALSE(_result.ok()); \
if (!_result.ok()) { \
EXPECT_THAT(_result.error().message(), HasSubstr(msg)); \
} \
} while (false)
#define EXPECT_OFF_END_FAILURE(data, min) \
do { \
static_assert(min < arraysize(data)); \
for (size_t _length = min; _length < arraysize(data); _length++) { \
EXPECT_FAILURE_LEN(data, _length); \
} \
} while (false)
#define EXPECT_OK(result) \
do { \
if (!result.ok()) { \
GTEST_NONFATAL_FAILURE_(result.error().message().c_str()); \
return; \
} \
} while (false)
#define EXPECT_NOT_OK(result, msg) \
do { \
EXPECT_FALSE(result.ok()); \
if (!result.ok()) { \
EXPECT_THAT(result.error().message(), HasSubstr(msg)); \
} \
} while (false)
static size_t SizeOfVarInt(size_t value) {
size_t size = 0;
do {
size++;
value = value >> 7;
} while (value > 0);
return size;
}
struct ValueTypePair {
uint8_t code;
ValueType type;
} kValueTypes[] = {
{kI32Code, kWasmI32}, // --
{kI64Code, kWasmI64}, // --
{kF32Code, kWasmF32}, // --
{kF64Code, kWasmF64}, // --
{kFuncRefCode, kWasmFuncRef}, // --
{kNoFuncCode, kWasmNullFuncRef}, // --
{kExternRefCode, kWasmExternRef}, // --
{kNoExternCode, kWasmNullExternRef}, // --
{kAnyRefCode, kWasmAnyRef}, // --
{kEqRefCode, kWasmEqRef}, // --
{kI31RefCode, kWasmI31Ref}, // --
{kDataRefCode, kWasmDataRef}, // --
{kArrayRefCode, kWasmArrayRef}, // --
{kNoneCode, kWasmNullRef}, // --
{kStringRefCode, kWasmStringRef}, // --
{kStringViewWtf8Code, kWasmStringViewWtf8}, // --
{kStringViewWtf16Code, kWasmStringViewWtf16}, // --
{kStringViewIterCode, kWasmStringViewIter}, // --
};
class WasmModuleVerifyTest : public TestWithIsolateAndZone {
public:
WasmFeatures enabled_features_ = WasmFeatures::None();
ModuleResult DecodeModule(const byte* module_start, const byte* module_end) {
// Add the wasm magic and version number automatically.
size_t size = static_cast<size_t>(module_end - module_start);
byte header[] = {WASM_MODULE_HEADER};
size_t total = sizeof(header) + size;
auto temp = new byte[total];
memcpy(temp, header, sizeof(header));
if (size > 0) {
memcpy(temp + sizeof(header), module_start, size);
}
ModuleResult result = DecodeWasmModule(
enabled_features_, temp, temp + total, false, kWasmOrigin,
isolate()->counters(), isolate()->metrics_recorder(),
v8::metrics::Recorder::ContextId::Empty(), DecodingMethod::kSync,
GetWasmEngine()->allocator());
delete[] temp;
return result;
}
ModuleResult DecodeModuleNoHeader(const byte* module_start,
const byte* module_end) {
return DecodeWasmModule(
enabled_features_, module_start, module_end, false, kWasmOrigin,
isolate()->counters(), isolate()->metrics_recorder(),
v8::metrics::Recorder::ContextId::Empty(), DecodingMethod::kSync,
GetWasmEngine()->allocator());
}
};
TEST_F(WasmModuleVerifyTest, WrongMagic) {
for (uint32_t x = 1; x; x <<= 1) {
const byte data[] = {U32_LE(kWasmMagic ^ x), U32_LE(kWasmVersion)};
ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
}
}
TEST_F(WasmModuleVerifyTest, WrongVersion) {
for (uint32_t x = 1; x; x <<= 1) {
const byte data[] = {U32_LE(kWasmMagic), U32_LE(kWasmVersion ^ x)};
ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
}
}
TEST_F(WasmModuleVerifyTest, WrongSection) {
constexpr byte kInvalidSection = 0x1c;
const byte data[] = {kInvalidSection, 0};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_FALSE(result.ok());
}
TEST_F(WasmModuleVerifyTest, DecodeEmpty) {
ModuleResult result = DecodeModule(nullptr, nullptr);
EXPECT_TRUE(result.ok());
}
TEST_F(WasmModuleVerifyTest, OneGlobal) {
static const byte data[] = {
SECTION(Global, // --
ENTRY_COUNT(1), // --
kI32Code, // local type
0, // immutable
WASM_INIT_EXPR_I32V_1(13)) // init
};
{
// Should decode to exactly one global.
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.value()->globals.size());
EXPECT_EQ(0u, result.value()->functions.size());
EXPECT_EQ(0u, result.value()->data_segments.size());
const WasmGlobal* global = &result.value()->globals.back();
EXPECT_EQ(kWasmI32, global->type);
EXPECT_EQ(0u, global->offset);
EXPECT_FALSE(global->mutability);
}
EXPECT_OFF_END_FAILURE(data, 1);
}
TEST_F(WasmModuleVerifyTest, S128Global) {
WASM_FEATURE_SCOPE(simd);
std::array<uint8_t, kSimd128Size> v = {1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15};
static const byte data[] = {SECTION(Global, // --
ENTRY_COUNT(1), // --
kS128Code, // memory type
0, // immutable
WASM_SIMD_CONSTANT(v.data()), kExprEnd)};
ModuleResult result = DecodeModule(data, data + sizeof(data));
if (!CheckHardwareSupportsSimd()) {
EXPECT_NOT_OK(result, "Wasm SIMD unsupported");
} else {
EXPECT_OK(result);
const WasmGlobal* global = &result.value()->globals.back();
EXPECT_EQ(kWasmS128, global->type);
EXPECT_EQ(0u, global->offset);
EXPECT_FALSE(global->mutability);
}
}
TEST_F(WasmModuleVerifyTest, ExternRefGlobal) {
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs ---------------------------------------------------------------
TWO_EMPTY_FUNCTIONS(SIG_INDEX(0)),
SECTION(Global, // --
ENTRY_COUNT(2), // --
kExternRefCode, // local type
0, // immutable
WASM_INIT_EXPR_EXTERN_REF_NULL, // init
kFuncRefCode, // local type
0, // immutable
WASM_INIT_EXPR_REF_FUNC(1)), // init
SECTION(Element, // section name
ENTRY_COUNT(2), // entry count
DECLARATIVE, // flags 0
kExternalFunction, // type
ENTRY_COUNT(1), // func entry count
FUNC_INDEX(0), // func index
DECLARATIVE_WITH_ELEMENTS, // flags 1
kFuncRefCode, // local type
ENTRY_COUNT(1), // func ref count
REF_FUNC_ELEMENT(1)), // func ref
TWO_EMPTY_BODIES};
{
// Should decode to two globals.
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.value()->globals.size());
EXPECT_EQ(2u, result.value()->functions.size());
EXPECT_EQ(0u, result.value()->data_segments.size());
const WasmGlobal* global = &result.value()->globals[0];
EXPECT_EQ(kWasmExternRef, global->type);
EXPECT_FALSE(global->mutability);
global = &result.value()->globals[1];
EXPECT_EQ(kWasmFuncRef, global->type);
EXPECT_FALSE(global->mutability);
}
}
TEST_F(WasmModuleVerifyTest, FuncRefGlobal) {
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs ---------------------------------------------------------------
TWO_EMPTY_FUNCTIONS(SIG_INDEX(0)),
SECTION(Global, // --
ENTRY_COUNT(2), // --
kFuncRefCode, // local type
0, // immutable
WASM_INIT_EXPR_FUNC_REF_NULL, // init
kFuncRefCode, // local type
0, // immutable
WASM_INIT_EXPR_REF_FUNC(1)), // init
SECTION(Element, // section name
ENTRY_COUNT(2), // entry count
DECLARATIVE, // flags 0
kExternalFunction, // type
ENTRY_COUNT(1), // func entry count
FUNC_INDEX(0), // func index
DECLARATIVE_WITH_ELEMENTS, // flags 1
kFuncRefCode, // local type
ENTRY_COUNT(1), // func ref count
REF_FUNC_ELEMENT(1)), // func ref
TWO_EMPTY_BODIES};
{
// Should decode to two globals.
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.value()->globals.size());
EXPECT_EQ(2u, result.value()->functions.size());
EXPECT_EQ(0u, result.value()->data_segments.size());
const WasmGlobal* global = &result.value()->globals[0];
EXPECT_EQ(kWasmFuncRef, global->type);
EXPECT_FALSE(global->mutability);
global = &result.value()->globals[1];
EXPECT_EQ(kWasmFuncRef, global->type);
EXPECT_FALSE(global->mutability);
}
}
TEST_F(WasmModuleVerifyTest, InvalidFuncRefGlobal) {
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs ---------------------------------------------------------------
TWO_EMPTY_FUNCTIONS(SIG_INDEX(0)),
SECTION(Global, // --
ENTRY_COUNT(1), // --
kFuncRefCode, // local type
0, // immutable
WASM_INIT_EXPR_REF_FUNC(7)), // invalid function index
TWO_EMPTY_BODIES};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ExternRefGlobalWithGlobalInit) {
static const byte data[] = {
SECTION(Import, // --
ENTRY_COUNT(1), // number of imports
ADD_COUNT('m'), // module name
ADD_COUNT('f'), // global name
kExternalGlobal, // import kind
kExternRefCode, // type
0), // mutability
SECTION(Global, // --
ENTRY_COUNT(1),
kExternRefCode, // local type
0, // immutable
WASM_INIT_EXPR_GLOBAL(0)),
};
{
// Should decode to exactly one global.
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.value()->globals.size());
EXPECT_EQ(0u, result.value()->functions.size());
EXPECT_EQ(0u, result.value()->data_segments.size());
const WasmGlobal* global = &result.value()->globals.back();
EXPECT_EQ(kWasmExternRef, global->type);
EXPECT_FALSE(global->mutability);
}
}
TEST_F(WasmModuleVerifyTest, NullGlobalWithGlobalInit) {
static const byte data[] = {
SECTION(Import, // --
ENTRY_COUNT(1), // number of imports
ADD_COUNT('m'), // module name
ADD_COUNT('n'), // global name
kExternalGlobal, // import kind
kExternRefCode, // type
0), // mutability
SECTION(Global, // --
ENTRY_COUNT(1),
kExternRefCode, // local type
0, // immutable
WASM_INIT_EXPR_GLOBAL(0)),
};
{
// Should decode to exactly one global.
ModuleResult result = DecodeModule(data, data + sizeof(data));
std::cout << result.error().message() << std::endl;
EXPECT_OK(result);
EXPECT_EQ(2u, result.value()->globals.size());
EXPECT_EQ(0u, result.value()->functions.size());
EXPECT_EQ(0u, result.value()->data_segments.size());
const WasmGlobal* global = &result.value()->globals.back();
EXPECT_EQ(kWasmExternRef, global->type);
EXPECT_FALSE(global->mutability);
}
}
TEST_F(WasmModuleVerifyTest, GlobalInvalidType) {
static const byte data[] = {
SECTION(Global, // --
ENTRY_COUNT(1), // --
64, // invalid value type
1, // mutable
WASM_INIT_EXPR_I32V_1(33)), // init
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, GlobalInvalidType2) {
static const byte data[] = {
SECTION(Global, // --
ENTRY_COUNT(1), // --
kVoidCode, // invalid value type
1, // mutable
WASM_INIT_EXPR_I32V_1(33)), // init
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, GlobalInitializer) {
static const byte no_initializer_no_end[] = {
SECTION(Global, //--
ENTRY_COUNT(1), //--
kI32Code, // type
1) // mutable
};
EXPECT_FAILURE_WITH_MSG(no_initializer_no_end, "Beyond end of code");
static const byte no_initializer[] = {
SECTION(Global, //--
ENTRY_COUNT(1), //--
kI32Code, // type
1, // mutable
kExprEnd) // --
};
EXPECT_FAILURE_WITH_MSG(
no_initializer,
"expected 1 elements on the stack for constant expression, found 0");
static const byte too_many_initializers_no_end[] = {
SECTION(Global, // --
ENTRY_COUNT(1), // --
kI32Code, // type
1, // mutable
WASM_I32V_1(42), // one value is good
WASM_I32V_1(43)) // another value is too much
};
EXPECT_FAILURE_WITH_MSG(too_many_initializers_no_end,
"constant expression is missing 'end'");
static const byte too_many_initializers[] = {
SECTION(Global, // --
ENTRY_COUNT(1), // --
kI32Code, // type
1, // mutable
WASM_I32V_1(42), // one value is good
WASM_I32V_1(43), // another value is too much
kExprEnd)};
EXPECT_FAILURE_WITH_MSG(
too_many_initializers,
"expected 1 elements on the stack for constant expression, found 2");
static const byte missing_end_opcode[] = {
SECTION(Global, // --
ENTRY_COUNT(1), // --
kI32Code, // type
1, // mutable
WASM_I32V_1(42)) // init value
};
EXPECT_FAILURE_WITH_MSG(missing_end_opcode,
"constant expression is missing 'end'");
static const byte referencing_out_of_bounds_global[] = {
SECTION(Global, ENTRY_COUNT(1), // --
kI32Code, // type
1, // mutable
WASM_GLOBAL_GET(42), kExprEnd) // init value
};
EXPECT_FAILURE_WITH_MSG(referencing_out_of_bounds_global,
"Invalid global index: 42");
static const byte referencing_undefined_global[] = {
SECTION(Global, ENTRY_COUNT(2), // --
kI32Code, // type
0, // mutable
WASM_GLOBAL_GET(1), kExprEnd, // init value
kI32Code, // type
0, // mutable
WASM_I32V(0), kExprEnd) // init value
};
EXPECT_FAILURE_WITH_MSG(referencing_undefined_global,
"Invalid global index: 1");
{
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
static const byte referencing_undefined_global_nested[] = {
SECTION(Type, ENTRY_COUNT(1), WASM_ARRAY_DEF(kI32Code, true)),
SECTION(Global, ENTRY_COUNT(2), // --
kRefCode, 0, // type
0, // mutable
WASM_ARRAY_NEW_DEFAULT(0, // init value
WASM_GLOBAL_GET(1)), // --
kExprEnd, // --
kI32Code, // type
0, // mutable
WASM_I32V(10), kExprEnd) // init value
};
EXPECT_FAILURE_WITH_MSG(referencing_undefined_global_nested,
"Invalid global index: 1");
}
static const byte referencing_mutable_global[] = {
SECTION(Global, ENTRY_COUNT(2), // --
kI32Code, // type
1, // mutable
WASM_I32V(1), kExprEnd, // init value
kI32Code, // type
0, // mutable
WASM_GLOBAL_GET(0), kExprEnd) // init value
};
EXPECT_FAILURE_WITH_MSG(
referencing_mutable_global,
"mutable globals cannot be used in constant expressions");
static const byte referencing_mutable_imported_global[] = {
SECTION(Import, ENTRY_COUNT(1), // --
ADD_COUNT('m'), ADD_COUNT('n'), // module, name
kExternalGlobal, // --
kI32Code, // type
1), // mutable
SECTION(Global, ENTRY_COUNT(1), // --
kI32Code, // type
0, // mutable
WASM_GLOBAL_GET(0), kExprEnd) // init value
};
EXPECT_FAILURE_WITH_MSG(
referencing_mutable_imported_global,
"mutable globals cannot be used in constant expressions");
static const byte referencing_immutable_imported_global[] = {
SECTION(Import, ENTRY_COUNT(1), // --
ADD_COUNT('m'), ADD_COUNT('n'), // module, name
kExternalGlobal, // --
kI32Code, // type
0), // mutable
SECTION(Global, ENTRY_COUNT(1), // --
kI32Code, // type
0, // mutable
WASM_GLOBAL_GET(0), kExprEnd) // init value
};
EXPECT_VERIFIES(referencing_immutable_imported_global);
static const byte referencing_local_global[] = {
SECTION(Global, ENTRY_COUNT(2), // --
kI32Code, // type
0, // mutable
WASM_I32V(1), kExprEnd, // init value
kI32Code, // type
0, // mutable
WASM_GLOBAL_GET(0), kExprEnd) // init value
};
EXPECT_FAILURE_WITH_MSG(
referencing_local_global,
"non-imported globals cannot be used in constant expressions");
{
// But: experimental-wasm-gc should enable referencing immutable local
// globals.
WASM_FEATURE_SCOPE(gc);
EXPECT_VERIFIES(referencing_local_global);
// Referencing mutable glocals still invalid.
EXPECT_FAILURE_WITH_MSG(
referencing_mutable_global,
"mutable globals cannot be used in constant expressions");
}
}
TEST_F(WasmModuleVerifyTest, ZeroGlobals) {
static const byte data[] = {SECTION(Global, ENTRY_COUNT(0))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
}
TEST_F(WasmModuleVerifyTest, ExportMutableGlobal) {
{
static const byte data[] = {
SECTION(Global, // --
ENTRY_COUNT(1), // --
kI32Code, // local type
0, // immutable
WASM_INIT_EXPR_I32V_1(13)), // init
SECTION(Export, // --
ENTRY_COUNT(1), // export count
ADD_COUNT('n', 'a', 'm', 'e'), // name
kExternalGlobal, // global
0), // global index
};
EXPECT_VERIFIES(data);
}
{
static const byte data[] = {
SECTION(Global, // --
ENTRY_COUNT(1), // --
kI32Code, // local type
1, // mutable
WASM_INIT_EXPR_I32V_1(13)), // init
SECTION(Export, // --
ENTRY_COUNT(1), // export count
ADD_COUNT('n', 'a', 'm', 'e'), // name
kExternalGlobal, // global
0), // global index
};
EXPECT_VERIFIES(data);
}
}
static void AppendUint32v(std::vector<byte>* buffer, uint32_t val) {
while (true) {
uint32_t next = val >> 7;
uint32_t out = val & 0x7F;
if (next) {
buffer->push_back(static_cast<byte>(0x80 | out));
val = next;
} else {
buffer->push_back(static_cast<byte>(out));
break;
}
}
}
TEST_F(WasmModuleVerifyTest, NGlobals) {
static const byte data[] = {
kF32Code, // memory type
0, // immutable
WASM_INIT_EXPR_F32(7.7), // init
};
for (uint32_t i = 0; i < kV8MaxWasmGlobals; i = i * 13 + 1) {
std::vector<byte> buffer;
size_t size = SizeOfVarInt(i) + i * sizeof(data);
const byte globals[] = {kGlobalSectionCode, U32V_5(size)};
for (size_t g = 0; g != sizeof(globals); ++g) {
buffer.push_back(globals[g]);
}
AppendUint32v(&buffer, i); // Number of globals.
for (uint32_t j = 0; j < i; j++) {
buffer.insert(buffer.end(), data, data + sizeof(data));
}
ModuleResult result = DecodeModule(&buffer[0], &buffer[0] + buffer.size());
EXPECT_OK(result);
}
}
TEST_F(WasmModuleVerifyTest, TwoGlobals) {
static const byte data[] = {SECTION(Global, // --
ENTRY_COUNT(2), // --
kF32Code, // type
0, // immutable
WASM_INIT_EXPR_F32(22.0), // --
kF64Code, // type
1, // mutable
WASM_INIT_EXPR_F64(23.0))}; // --
{
// Should decode to exactly two globals.
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.value()->globals.size());
EXPECT_EQ(0u, result.value()->functions.size());
EXPECT_EQ(0u, result.value()->data_segments.size());
const WasmGlobal* g0 = &result.value()->globals[0];
EXPECT_EQ(kWasmF32, g0->type);
EXPECT_EQ(0u, g0->offset);
EXPECT_FALSE(g0->mutability);
const WasmGlobal* g1 = &result.value()->globals[1];
EXPECT_EQ(kWasmF64, g1->type);
EXPECT_EQ(8u, g1->offset);
EXPECT_TRUE(g1->mutability);
}
EXPECT_OFF_END_FAILURE(data, 1);
}
TEST_F(WasmModuleVerifyTest, RefNullGlobal) {
static const byte data[] = {SECTION(Global, ENTRY_COUNT(1), kFuncRefCode, 1,
WASM_REF_NULL(kFuncRefCode), kExprEnd)};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
}
TEST_F(WasmModuleVerifyTest, RefNullGlobalInvalid1) {
WASM_FEATURE_SCOPE(typed_funcref);
static const byte data[] = {SECTION(Global, ENTRY_COUNT(1), kRefNullCode, 0,
1, WASM_REF_NULL(0), kExprEnd)};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "Type index 0 is out of bounds");
}
TEST_F(WasmModuleVerifyTest, RefNullGlobalInvalid2) {
WASM_FEATURE_SCOPE(typed_funcref);
static const byte data[] = {SECTION(Global, ENTRY_COUNT(1), kFuncRefCode, 1,
kExprRefNull, U32V_5(1000001), kExprEnd)};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result,
"Type index 1000001 is greater than the maximum number 1000000 "
"of type definitions supported by V8");
}
TEST_F(WasmModuleVerifyTest, StructNewInitExpr) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
static const byte basic[] = {
SECTION(Type, ENTRY_COUNT(1), // --
WASM_STRUCT_DEF(FIELD_COUNT(1), STRUCT_FIELD(kI32Code, true))),
SECTION(Global, ENTRY_COUNT(1), // --
kRefCode, 0, 0, // type, mutability
WASM_INIT_EXPR_STRUCT_NEW(0, WASM_I32V(42)))};
EXPECT_VERIFIES(basic);
static const byte global_args[] = {
SECTION(Type, ENTRY_COUNT(1), // --
WASM_STRUCT_DEF(FIELD_COUNT(1), STRUCT_FIELD(kI32Code, true))),
SECTION(Global, ENTRY_COUNT(2), // --
kI32Code, 0, // type, mutability
WASM_INIT_EXPR_I32V_1(10), // --
kRefCode, 0, 0, // type, mutability
WASM_INIT_EXPR_STRUCT_NEW(0, WASM_GLOBAL_GET(0)))};
EXPECT_VERIFIES(global_args);
static const byte type_error[] = {
SECTION(Type, ENTRY_COUNT(2), // --
WASM_STRUCT_DEF(FIELD_COUNT(1), STRUCT_FIELD(kI32Code, true)),
WASM_STRUCT_DEF(FIELD_COUNT(1), STRUCT_FIELD(kI64Code, true))),
SECTION(Global, ENTRY_COUNT(1), // --
kRefCode, 1, 0, // type, mutability
WASM_INIT_EXPR_STRUCT_NEW(0, WASM_I32V(42)))};
EXPECT_FAILURE_WITH_MSG(
type_error,
"type error in constant expression[0] (expected (ref 1), got (ref 0))");
}
TEST_F(WasmModuleVerifyTest, ArrayNewFixedInitExpr) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
static const byte basic[] = {
SECTION(Type, ENTRY_COUNT(1), WASM_ARRAY_DEF(kI16Code, true)),
SECTION(Global, ENTRY_COUNT(1), // --
kRefCode, 0, 0, // type, mutability
WASM_INIT_EXPR_ARRAY_NEW_FIXED_STATIC(
0, 3, WASM_I32V(10), WASM_I32V(20), WASM_I32V(30)))};
EXPECT_VERIFIES(basic);
static const byte basic_static[] = {
SECTION(Type, ENTRY_COUNT(1), WASM_ARRAY_DEF(kI16Code, true)),
SECTION(Global, ENTRY_COUNT(1), // --
kRefCode, 0, 0, // type, mutability
WASM_INIT_EXPR_ARRAY_NEW_FIXED_STATIC(
0, 3, WASM_I32V(10), WASM_I32V(20), WASM_I32V(30)))};
EXPECT_VERIFIES(basic_static);
static const byte basic_immutable[] = {
SECTION(Type, ENTRY_COUNT(1), WASM_ARRAY_DEF(kI32Code, false)),
SECTION(Global, ENTRY_COUNT(1), // --
kRefCode, 0, 0, // type, mutability
WASM_INIT_EXPR_ARRAY_NEW_FIXED_STATIC(
0, 3, WASM_I32V(10), WASM_I32V(20), WASM_I32V(30)))};
EXPECT_VERIFIES(basic_immutable);
static const byte type_error[] = {
SECTION(Type, ENTRY_COUNT(2), // --
WASM_ARRAY_DEF(kI32Code, true),
WASM_ARRAY_DEF(WASM_SEQ(kRefCode, 0), true)),
SECTION(Global, ENTRY_COUNT(1), // --
kRefCode, 1, 0, // type, mutability
WASM_INIT_EXPR_ARRAY_NEW_FIXED_STATIC(0, 1, WASM_I32V(42)))};
EXPECT_FAILURE_WITH_MSG(
type_error,
"type error in constant expression[0] (expected (ref 1), got (ref 0))");
static const byte subexpr_type_error[] = {
SECTION(Type, ENTRY_COUNT(1), WASM_ARRAY_DEF(kI64Code, true)),
SECTION(Global, ENTRY_COUNT(1), // --
kRefCode, 0, 0, // type, mutability
WASM_INIT_EXPR_ARRAY_NEW_FIXED_STATIC(0, 2, WASM_I64V(42),
WASM_I32V(142)))};
EXPECT_FAILURE_WITH_MSG(subexpr_type_error,
"array.new_fixed_static[1] expected type i64, found "
"i32.const of type i32");
static const byte length_error[] = {
SECTION(Type, ENTRY_COUNT(1), WASM_ARRAY_DEF(kI16Code, true)),
SECTION(Global, ENTRY_COUNT(1), // --
kRefCode, 0, 0, // type, mutability
WASM_INIT_EXPR_ARRAY_NEW_FIXED_STATIC(
0, 10, WASM_I32V(10), WASM_I32V(20), WASM_I32V(30)))};
EXPECT_FAILURE_WITH_MSG(length_error,
"not enough arguments on the stack for "
"array.new_fixed_static (need 11, got 4)");
}
TEST_F(WasmModuleVerifyTest, EmptyStruct) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
static const byte empty_struct[] = {SECTION(Type, ENTRY_COUNT(1), // --
kWasmStructTypeCode, // --
U32V_1(0))}; // field count
EXPECT_VERIFIES(empty_struct);
}
TEST_F(WasmModuleVerifyTest, InvalidStructTypeDef) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
static const byte all_good[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmStructTypeCode, // --
U32V_1(1), // field count
kI32Code, // perfectly valid field type
1)}; // mutability
EXPECT_VERIFIES(all_good);
static const byte invalid_field_type[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmStructTypeCode, // --
U32V_1(1), // field count
kWasmArrayTypeCode, // bogus field type
1)}; // mutability
EXPECT_FAILURE_WITH_MSG(invalid_field_type, "invalid value type");
static const byte field_type_oob_ref[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmStructTypeCode, // --
U32V_1(1), // field count
kRefNullCode, // field type: reference...
3, // ...to nonexistent type
1)}; // mutability
EXPECT_FAILURE_WITH_MSG(field_type_oob_ref, "Type index 3 is out of bounds");
static const byte field_type_invalid_ref[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmStructTypeCode, // --
U32V_1(1), // field count
kRefNullCode, // field type: reference...
U32V_4(1234567), // ...to a type > kV8MaxWasmTypes
1)}; // mutability
EXPECT_FAILURE_WITH_MSG(field_type_invalid_ref, "greater than the maximum");
static const byte field_type_invalid_ref2[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmStructTypeCode, // --
U32V_1(1), // field count
kRefNullCode, // field type: reference...
kI32Code, // ...to a non-referenceable type
1)}; // mutability
EXPECT_FAILURE_WITH_MSG(field_type_invalid_ref2, "Unknown heap type");
static const byte not_enough_field_types[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmStructTypeCode, // --
U32V_1(2), // field count
kI32Code, // field type 1
1)}; // mutability 1
EXPECT_FAILURE_WITH_MSG(not_enough_field_types, "expected 1 byte");
static const byte not_enough_field_types2[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmStructTypeCode, // --
U32V_1(2), // field count
kI32Code, // field type 1
1, // mutability 1
kI32Code)}; // field type 2
EXPECT_FAILURE_WITH_MSG(not_enough_field_types2, "expected 1 byte");
static const byte invalid_mutability[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmStructTypeCode, // --
U32V_1(1), // field count
kI32Code, // field type
2)}; // invalid mutability value
EXPECT_FAILURE_WITH_MSG(invalid_mutability, "invalid mutability");
}
TEST_F(WasmModuleVerifyTest, InvalidArrayTypeDef) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
static const byte all_good[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmArrayTypeCode, // --
kI32Code, // perfectly valid field type
1)}; // mutability
EXPECT_VERIFIES(all_good);
static const byte invalid_field_type[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmArrayTypeCode, // --
kWasmArrayTypeCode, // bogus field type
1)}; // mutability
EXPECT_FAILURE_WITH_MSG(invalid_field_type, "invalid value type");
static const byte field_type_oob_ref[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmArrayTypeCode, // --
kRefNullCode, // field type: reference...
3, // ...to nonexistent type
1)}; // mutability
EXPECT_FAILURE_WITH_MSG(field_type_oob_ref, "Type index 3 is out of bounds");
static const byte field_type_invalid_ref[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmArrayTypeCode, // --
kRefNullCode, // field type: reference...
U32V_3(1234567), // ...to a type > kV8MaxWasmTypes
1)}; // mutability
EXPECT_FAILURE_WITH_MSG(field_type_invalid_ref, "Unknown heap type");
static const byte field_type_invalid_ref2[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmArrayTypeCode, // --
kRefNullCode, // field type: reference...
kI32Code, // ...to a non-referenceable type
1)}; // mutability
EXPECT_FAILURE_WITH_MSG(field_type_invalid_ref2, "Unknown heap type");
static const byte invalid_mutability[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmArrayTypeCode, // --
kI32Code, // field type
2)}; // invalid mutability value
EXPECT_FAILURE_WITH_MSG(invalid_mutability, "invalid mutability");
static const byte immutable[] = {SECTION(Type,
ENTRY_COUNT(1), // --
kWasmArrayTypeCode, // --
kI32Code, // field type
0)}; // immmutability
EXPECT_VERIFIES(immutable);
}
TEST_F(WasmModuleVerifyTest, TypeCanonicalization) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
FLAG_SCOPE(wasm_type_canonicalization);
static const byte identical_group[] = {
SECTION(Type, // --
ENTRY_COUNT(2), // two identical rec. groups
kWasmRecursiveTypeGroupCode, ENTRY_COUNT(1), // --
kWasmArrayTypeCode, kI32Code, 0, // --
kWasmRecursiveTypeGroupCode, ENTRY_COUNT(1), // --
kWasmArrayTypeCode, kI32Code, 0),
SECTION(Global, // --
ENTRY_COUNT(1), kRefCode, 0, 0, // Type, mutability
WASM_ARRAY_NEW_FIXED_STATIC(1, 1, WASM_I32V(10)),
kExprEnd) // initial value
};
// Global initializer should verify as identical type in other group
EXPECT_VERIFIES(identical_group);
static const byte non_identical_group[] = {
SECTION(Type, // --
ENTRY_COUNT(2), // two distrinct rec. groups
kWasmRecursiveTypeGroupCode, ENTRY_COUNT(1), // --
kWasmArrayTypeCode, kI32Code, 0, // --
kWasmRecursiveTypeGroupCode, ENTRY_COUNT(2), // --
kWasmArrayTypeCode, kI32Code, 0, // --
kWasmStructTypeCode, ENTRY_COUNT(0)),
SECTION(Global, // --
ENTRY_COUNT(1), kRefCode, 0, 0, // Type, mutability
WASM_ARRAY_NEW_FIXED_STATIC(1, 1, WASM_I32V(10)),
kExprEnd) // initial value
};
// Global initializer should not verify as type in distinct rec. group.
EXPECT_FAILURE_WITH_MSG(
non_identical_group,
"type error in constant expression[0] (expected (ref 0), got (ref 1))");
}
// Tests that all types in a rec. group are checked for supertype validity.
TEST_F(WasmModuleVerifyTest, InvalidSupertypeInRecGroup) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
FLAG_SCOPE(wasm_type_canonicalization);
static const byte invalid_supertype[] = {
SECTION(Type, ENTRY_COUNT(1), // --
kWasmRecursiveTypeGroupCode, ENTRY_COUNT(2), // --
kWasmArrayTypeCode, kI32Code, 0, // --
kWasmSubtypeCode, 1, 0, // supertype count, supertype
kWasmArrayTypeCode, kI64Code, 0)};
EXPECT_FAILURE_WITH_MSG(invalid_supertype,
"type 1 has invalid explicit supertype 0");
}
TEST_F(WasmModuleVerifyTest, ZeroExceptions) {
static const byte data[] = {SECTION(Tag, ENTRY_COUNT(0))};
FAIL_IF_NO_EXPERIMENTAL_EH(data);
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(0u, result.value()->tags.size());
}
TEST_F(WasmModuleVerifyTest, OneI32Exception) {
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(1), SIG_ENTRY_v_x(kI32Code)), // sig#0 (i32)
SECTION(Tag, ENTRY_COUNT(1),
EXCEPTION_ENTRY(SIG_INDEX(0)))}; // except[0] (sig#0)
FAIL_IF_NO_EXPERIMENTAL_EH(data);
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.value()->tags.size());
const WasmTag& e0 = result.value()->tags.front();
EXPECT_EQ(1u, e0.sig->parameter_count());
EXPECT_EQ(kWasmI32, e0.sig->GetParam(0));
}
TEST_F(WasmModuleVerifyTest, TwoExceptions) {
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(2),
SIG_ENTRY_v_x(kI32Code), // sig#0 (i32)
SIG_ENTRY_v_xx(kF32Code, kI64Code)), // sig#1 (f32, i64)
SECTION(Tag, ENTRY_COUNT(2),
EXCEPTION_ENTRY(SIG_INDEX(1)), // except[0] (sig#1)
EXCEPTION_ENTRY(SIG_INDEX(0)))}; // except[1] (sig#0)
FAIL_IF_NO_EXPERIMENTAL_EH(data);
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.value()->tags.size());
const WasmTag& e0 = result.value()->tags.front();
EXPECT_EQ(2u, e0.sig->parameter_count());
EXPECT_EQ(kWasmF32, e0.sig->GetParam(0));
EXPECT_EQ(kWasmI64, e0.sig->GetParam(1));
const WasmTag& e1 = result.value()->tags.back();
EXPECT_EQ(kWasmI32, e1.sig->GetParam(0));
}
TEST_F(WasmModuleVerifyTest, Exception_invalid_sig_index) {
static const byte data[] = {
TYPE_SECTION_ONE_SIG_VOID_VOID,
SECTION(Tag, ENTRY_COUNT(1),
EXCEPTION_ENTRY(
SIG_INDEX(23)))}; // except[0] (sig#23 [out-of-bounds])
FAIL_IF_NO_EXPERIMENTAL_EH(data);
// Should fail decoding exception section.
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "signature index 23 out of bounds");
}
TEST_F(WasmModuleVerifyTest, Exception_invalid_sig_return) {
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(1), SIG_ENTRY_i_i),
SECTION(Tag, ENTRY_COUNT(1),
EXCEPTION_ENTRY(
SIG_INDEX(0)))}; // except[0] (sig#0 [invalid-return-type])
FAIL_IF_NO_EXPERIMENTAL_EH(data);
// Should fail decoding exception section.
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "tag signature 0 has non-void return");
}
TEST_F(WasmModuleVerifyTest, Exception_invalid_attribute) {
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(1), SIG_ENTRY_i_i),
SECTION(Tag, ENTRY_COUNT(1), 23,
SIG_INDEX(0))}; // except[0] (sig#0) [invalid-attribute]
FAIL_IF_NO_EXPERIMENTAL_EH(data);
// Should fail decoding exception section.
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "exception attribute 23 not supported");
}
TEST_F(WasmModuleVerifyTest, TagSectionCorrectPlacement) {
static const byte data[] = {SECTION(Memory, ENTRY_COUNT(0)),
SECTION(Tag, ENTRY_COUNT(0)),
SECTION(Global, ENTRY_COUNT(0))};
FAIL_IF_NO_EXPERIMENTAL_EH(data);
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
}
TEST_F(WasmModuleVerifyTest, TagSectionAfterGlobal) {
static const byte data[] = {SECTION(Global, ENTRY_COUNT(0)),
SECTION(Tag, ENTRY_COUNT(0))};
FAIL_IF_NO_EXPERIMENTAL_EH(data);
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result,
"The Tag section must appear before the Global section");
}
TEST_F(WasmModuleVerifyTest, TagSectionBeforeMemory) {
static const byte data[] = {SECTION(Tag, ENTRY_COUNT(0)),
SECTION(Memory, ENTRY_COUNT(0))};
FAIL_IF_NO_EXPERIMENTAL_EH(data);
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "unexpected section <Memory>");
}
TEST_F(WasmModuleVerifyTest, TagSectionAfterTableBeforeMemory) {
static_assert(kMemorySectionCode + 1 == kGlobalSectionCode);
static const byte data[] = {SECTION(Table, ENTRY_COUNT(0)),
SECTION(Tag, ENTRY_COUNT(0)),
SECTION(Memory, ENTRY_COUNT(0))};
FAIL_IF_NO_EXPERIMENTAL_EH(data);
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "unexpected section <Memory>");
}
TEST_F(WasmModuleVerifyTest, TagImport) {
static const byte data[] = {
TYPE_SECTION_ONE_SIG_VOID_VOID,
SECTION(Import, // section header
ENTRY_COUNT(1), // number of imports
ADD_COUNT('m'), // module name
ADD_COUNT('e', 'x'), // tag name
kExternalTag, // import kind
EXCEPTION_ENTRY(SIG_INDEX(0)))}; // except[0] (sig#0)
FAIL_IF_NO_EXPERIMENTAL_EH(data);
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.value()->tags.size());
EXPECT_EQ(1u, result.value()->import_table.size());
}
TEST_F(WasmModuleVerifyTest, ExceptionExport) {
static const byte data[] = {
TYPE_SECTION_ONE_SIG_VOID_VOID,
SECTION(Tag, ENTRY_COUNT(1),
EXCEPTION_ENTRY(SIG_INDEX(0))), // except[0] (sig#0)
SECTION(Export, ENTRY_COUNT(1), // --
NO_NAME, // --
kExternalTag, // --
EXCEPTION_INDEX(0))};
FAIL_IF_NO_EXPERIMENTAL_EH(data);
WASM_FEATURE_SCOPE(eh);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.value()->tags.size());
EXPECT_EQ(1u, result.value()->export_table.size());
}
TEST_F(WasmModuleVerifyTest, OneSignature) {
{
static const byte data[] = {TYPE_SECTION_ONE_SIG_VOID_VOID};
EXPECT_VERIFIES(data);
}
{
static const byte data[] = {SECTION(Type, ENTRY_COUNT(1), SIG_ENTRY_i_i)};
EXPECT_VERIFIES(data);
}
}
TEST_F(WasmModuleVerifyTest, MultipleSignatures) {
static const byte data[] = {
SECTION(Type, // --
ENTRY_COUNT(3), // --
SIG_ENTRY_v_v, // void -> void
SIG_ENTRY_x_x(kI32Code, kF32Code), // f32 -> i32
SIG_ENTRY_x_xx(kI32Code, kF64Code, kF64Code)), // f64,f64 -> i32
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(3u, result.value()->types.size());
if (result.value()->types.size() == 3) {
EXPECT_EQ(0u, result.value()->signature(0)->return_count());
EXPECT_EQ(1u, result.value()->signature(1)->return_count());
EXPECT_EQ(1u, result.value()->signature(2)->return_count());
EXPECT_EQ(0u, result.value()->signature(0)->parameter_count());
EXPECT_EQ(1u, result.value()->signature(1)->parameter_count());
EXPECT_EQ(2u, result.value()->signature(2)->parameter_count());
}
EXPECT_OFF_END_FAILURE(data, 1);
}
TEST_F(WasmModuleVerifyTest, CanonicalTypeIds) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
static const byte data[] = {
SECTION(Type, // --
ENTRY_COUNT(5), // --
WASM_STRUCT_DEF( // Struct definition
FIELD_COUNT(1), // --
STRUCT_FIELD(kI32Code, true)), // --
SIG_ENTRY_x_x(kI32Code, kF32Code), // f32 -> i32
SIG_ENTRY_x_x(kI32Code, kF64Code), // f64 -> i32
SIG_ENTRY_x_x(kI32Code, kF32Code), // f32 -> i32 (again)
WASM_ARRAY_DEF(kI32Code, true)) // Array definition
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
const WasmModule* module = result.value().get();
EXPECT_EQ(5u, module->types.size());
EXPECT_EQ(5u, module->per_module_canonical_type_ids.size());
EXPECT_EQ(2u, module->signature_map.size());
// No canonicalization for structs.
EXPECT_EQ(0u, module->per_module_canonical_type_ids[0]);
EXPECT_EQ(0u, module->per_module_canonical_type_ids[1]);
EXPECT_EQ(1u, module->per_module_canonical_type_ids[2]);
EXPECT_EQ(0u, module->per_module_canonical_type_ids[3]);
// No canonicalization for arrays.
EXPECT_EQ(0u, module->per_module_canonical_type_ids[4]);
}
TEST_F(WasmModuleVerifyTest, DataSegmentWithImmutableImportedGlobal) {
// Import 2 globals so that we can initialize data with a global index != 0.
const byte data[] = {
SECTION(Import, // section header
ENTRY_COUNT(2), // number of imports
ADD_COUNT('m'), // module name
ADD_COUNT('f'), // global name
kExternalGlobal, // import kind
kI32Code, // type
0, // mutability
ADD_COUNT('n'), // module name
ADD_COUNT('g'), // global name
kExternalGlobal, // import kind
kI32Code, // type
0), // mutability
SECTION(Memory, ENTRY_COUNT(1), kWithMaximum, 28, 28),
SECTION(Data, ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_GLOBAL(1), // dest addr
U32V_1(3), // source size
'a', 'b', 'c') // data bytes
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
}
TEST_F(WasmModuleVerifyTest, DataSegmentWithMutableImportedGlobal) {
// Only an immutable imported global can be used as an init_expr.
const byte data[] = {
SECTION(Import, // section header
ENTRY_COUNT(1), // number of imports
ADD_COUNT('m'), // module name
ADD_COUNT('f'), // global name
kExternalGlobal, // import kind
kI32Code, // type
1), // mutability
SECTION(Memory, ENTRY_COUNT(1), kWithMaximum, 28, 28),
SECTION(Data, ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_GLOBAL(0), // dest addr
U32V_1(3), // source size
'a', 'b', 'c') // data bytes
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, DataSegmentWithImmutableGlobal) {
// Only an immutable imported global can be used as an init_expr.
const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1), kWithMaximum, 28, 28),
SECTION(Global, ENTRY_COUNT(1),
kI32Code, // local type
0, // immutable
WASM_INIT_EXPR_I32V_3(0x9BBAA)), // init
SECTION(Data, ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_GLOBAL(0), // dest addr
U32V_1(3), // source size
'a', 'b', 'c') // data bytes
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, OneDataSegment) {
const byte kDataSegmentSourceOffset = 24;
const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1), kWithMaximum, 28, 28),
SECTION(Data, ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_I32V_3(0x9BBAA), // dest addr
U32V_1(3), // source size
'a', 'b', 'c') // data bytes
};
{
EXPECT_VERIFIES(data);
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(0u, result.value()->globals.size());
EXPECT_EQ(0u, result.value()->functions.size());
EXPECT_EQ(1u, result.value()->data_segments.size());
const WasmDataSegment* segment = &result.value()->data_segments.back();
EXPECT_EQ(kDataSegmentSourceOffset, segment->source.offset());
EXPECT_EQ(3u, segment->source.length());
}
EXPECT_OFF_END_FAILURE(data, 14);
}
TEST_F(WasmModuleVerifyTest, TwoDataSegments) {
const byte kDataSegment0SourceOffset = 24;
const byte kDataSegment1SourceOffset = kDataSegment0SourceOffset + 11;
const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1), kWithMaximum, 28, 28),
SECTION(Data,
ENTRY_COUNT(2), // segment count
LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_I32V_3(0x7FFEE), // #0: dest addr
U32V_1(4), // source size
1, 2, 3, 4, // data bytes
LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_I32V_3(0x6DDCC), // #1: dest addr
U32V_1(10), // source size
1, 2, 3, 4, 5, 6, 7, 8, 9, 10) // data bytes
};
{
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(0u, result.value()->globals.size());
EXPECT_EQ(0u, result.value()->functions.size());
EXPECT_EQ(2u, result.value()->data_segments.size());
const WasmDataSegment* s0 = &result.value()->data_segments[0];
const WasmDataSegment* s1 = &result.value()->data_segments[1];
EXPECT_EQ(kDataSegment0SourceOffset, s0->source.offset());
EXPECT_EQ(4u, s0->source.length());
EXPECT_EQ(kDataSegment1SourceOffset, s1->source.offset());
EXPECT_EQ(10u, s1->source.length());
}
EXPECT_OFF_END_FAILURE(data, 14);
}
TEST_F(WasmModuleVerifyTest, DataWithoutMemory) {
const byte data[] = {
SECTION(Data, ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_I32V_3(0x9BBAA), // dest addr
U32V_1(3), // source size
'a', 'b', 'c') // data bytes
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, MaxMaximumMemorySize) {
{
const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1), kWithMaximum, 0, U32V_3(65536))};
EXPECT_VERIFIES(data);
}
{
const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1), kWithMaximum, 0, U32V_3(65537))};
EXPECT_FAILURE(data);
}
}
TEST_F(WasmModuleVerifyTest, InvalidMemoryLimits) {
{
const byte kInvalidLimits = 0x15;
const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1), kInvalidLimits, 0, 10)};
EXPECT_FAILURE_WITH_MSG(data, "invalid memory limits flags 0x15");
}
}
TEST_F(WasmModuleVerifyTest, DataSegment_wrong_init_type) {
const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1), kWithMaximum, 28, 28),
SECTION(Data, ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0,
WASM_INIT_EXPR_F64(9.9), // dest addr
U32V_1(3), // source size
'a', 'b', 'c') // data bytes
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, DataSegmentEndOverflow) {
const byte data[] = {
SECTION(Memory, // memory section
ENTRY_COUNT(1), kWithMaximum, 28, 28),
SECTION(Data, // data section
ENTRY_COUNT(1), // one entry
LINEAR_MEMORY_INDEX_0, // mem index
WASM_INIT_EXPR_I32V_1(0), // offset
U32V_5(0xFFFFFFFF)) // size
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, OneIndirectFunction) {
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(1), kFuncRefCode, 0, 1),
// code ----------------------------------------------------------------
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
if (result.ok()) {
EXPECT_EQ(1u, result.value()->types.size());
EXPECT_EQ(1u, result.value()->functions.size());
EXPECT_EQ(1u, result.value()->tables.size());
EXPECT_EQ(1u, result.value()->tables[0].initial_size);
}
}
TEST_F(WasmModuleVerifyTest, ElementSectionWithInternalTable) {
static const byte data[] = {
// table ---------------------------------------------------------------
SECTION(Table, ENTRY_COUNT(1), kFuncRefCode, 0, 1),
// elements ------------------------------------------------------------
SECTION(Element, ENTRY_COUNT(0))};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ElementSectionWithImportedTable) {
static const byte data[] = {
// imports -------------------------------------------------------------
SECTION(Import, ENTRY_COUNT(1),
ADD_COUNT('m'), // module name
ADD_COUNT('t'), // table name
kExternalTable, // import kind
kFuncRefCode, // elem_type
0, // no maximum field
1), // initial size
// elements ------------------------------------------------------------
SECTION(Element, ENTRY_COUNT(0))};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ElementSectionWithoutTable) {
// Test that an element section without a table causes a validation error.
static const byte data[] = {
// elements ------------------------------------------------------------
SECTION(Element,
ENTRY_COUNT(1), // entry count
0, // table index
0, // offset
0) // number of elements
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, Regression_735887) {
// Test with an invalid function index in the element section.
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(1), kFuncRefCode, 0, 1),
// elements ------------------------------------------------------------
SECTION(Element,
ENTRY_COUNT(1), // entry count
TABLE_INDEX0, WASM_INIT_EXPR_I32V_1(0),
1, // elements count
0x9A) // invalid I32V as function index
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, OneIndirectFunction_one_entry) {
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(1), kFuncRefCode, 0, 1),
// elements ------------------------------------------------------------
SECTION(Element,
ENTRY_COUNT(1), // entry count
TABLE_INDEX0, WASM_INIT_EXPR_I32V_1(0),
1, // elements count
FUNC_INDEX(0)),
// code ----------------------------------------------------------------
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.value()->types.size());
EXPECT_EQ(1u, result.value()->functions.size());
EXPECT_EQ(1u, result.value()->tables.size());
EXPECT_EQ(1u, result.value()->tables[0].initial_size);
}
TEST_F(WasmModuleVerifyTest, MultipleIndirectFunctions) {
static const byte data[] = {
// sig#0 -------------------------------------------------------
SECTION(Type,
ENTRY_COUNT(2), // --
SIG_ENTRY_v_v, // void -> void
SIG_ENTRY_v_x(kI32Code)), // void -> i32
// funcs ------------------------------------------------------
FOUR_EMPTY_FUNCTIONS(SIG_INDEX(0)),
// table declaration -------------------------------------------
SECTION(Table, ENTRY_COUNT(1), kFuncRefCode, 0, 8),
// table elements ----------------------------------------------
SECTION(Element,
ENTRY_COUNT(1), // entry count
TABLE_INDEX0, WASM_INIT_EXPR_I32V_1(0),
ADD_COUNT(FUNC_INDEX(0), FUNC_INDEX(1), FUNC_INDEX(2),
FUNC_INDEX(3), FUNC_INDEX(0), FUNC_INDEX(1),
FUNC_INDEX(2), FUNC_INDEX(3))),
FOUR_EMPTY_BODIES};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.value()->types.size());
EXPECT_EQ(4u, result.value()->functions.size());
EXPECT_EQ(1u, result.value()->tables.size());
EXPECT_EQ(8u, result.value()->tables[0].initial_size);
}
TEST_F(WasmModuleVerifyTest, ElementSectionMultipleTables) {
// Test that if we have multiple tables, in the element section we can target
// and initialize all tables.
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(2), // section header
kFuncRefCode, 0, 5, // table 0
kFuncRefCode, 0, 9), // table 1
// elements ------------------------------------------------------------
SECTION(Element,
ENTRY_COUNT(2), // entry count
TABLE_INDEX0, // element for table 0
WASM_INIT_EXPR_I32V_1(0), // index
1, // elements count
FUNC_INDEX(0), // function
TABLE_INDEX(1), // element for table 1
WASM_INIT_EXPR_I32V_1(7), // index
kExternalFunction, // type
2, // elements count
FUNC_INDEX(0), // entry 0
FUNC_INDEX(0)), // entry 1
// code ----------------------------------------------------------------
ONE_EMPTY_BODY};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ElementSectionMixedTables) {
// Test that if we have multiple tables, both imported and module-defined, in
// the element section we can target and initialize all tables.
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// imports -------------------------------------------------------------
SECTION(Import, ENTRY_COUNT(2),
ADD_COUNT('m'), // module name
ADD_COUNT('t'), // table name
kExternalTable, // import kind
kFuncRefCode, // elem_type
0, // no maximum field
5, // initial size
ADD_COUNT('m'), // module name
ADD_COUNT('s'), // table name
kExternalTable, // import kind
kFuncRefCode, // elem_type
0, // no maximum field
10), // initial size
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(2), // section header
kFuncRefCode, 0, 15, // table 0
kFuncRefCode, 0, 19), // table 1
// elements ------------------------------------------------------------
SECTION(Element,
4, // entry count
TABLE_INDEX0, // element for table 0
WASM_INIT_EXPR_I32V_1(0), // index
1, // elements count
FUNC_INDEX(0), // function
TABLE_INDEX(1), // element for table 1
WASM_INIT_EXPR_I32V_1(7), // index
kExternalFunction, // type
2, // elements count
FUNC_INDEX(0), // entry 0
FUNC_INDEX(0), // entry 1
TABLE_INDEX(2), // element for table 2
WASM_INIT_EXPR_I32V_1(12), // index
kExternalFunction, // type
1, // elements count
FUNC_INDEX(0), // function
TABLE_INDEX(3), // element for table 1
WASM_INIT_EXPR_I32V_1(17), // index
kExternalFunction, // type
2, // elements count
FUNC_INDEX(0), // entry 0
FUNC_INDEX(0)), // entry 1
// code ----------------------------------------------------------------
ONE_EMPTY_BODY};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ElementSectionMultipleTablesArbitraryOrder) {
// Test that the order in which tables are targeted in the element secion
// can be arbitrary.
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(2), // section header
kFuncRefCode, 0, 5, // table 0
kFuncRefCode, 0, 9), // table 1
// elements ------------------------------------------------------------
SECTION(Element,
ENTRY_COUNT(3), // entry count
TABLE_INDEX0, // element for table 1
WASM_INIT_EXPR_I32V_1(0), // index
1, // elements count
FUNC_INDEX(0), // function
TABLE_INDEX(1), // element for table 0
WASM_INIT_EXPR_I32V_1(7), // index
kExternalFunction, // type
2, // elements count
FUNC_INDEX(0), // entry 0
FUNC_INDEX(0), // entry 1
TABLE_INDEX0, // element for table 1
WASM_INIT_EXPR_I32V_1(3), // index
1, // elements count
FUNC_INDEX(0)), // function
// code ----------------------------------------------------------------
ONE_EMPTY_BODY};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ElementSectionMixedTablesArbitraryOrder) {
// Test that the order in which tables are targeted in the element secion can
// be arbitrary. In this test, tables can be both imported and module-defined.
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// imports -------------------------------------------------------------
SECTION(Import, ENTRY_COUNT(2),
ADD_COUNT('m'), // module name
ADD_COUNT('t'), // table name
kExternalTable, // import kind
kFuncRefCode, // elem_type
0, // no maximum field
5, // initial size
ADD_COUNT('m'), // module name
ADD_COUNT('s'), // table name
kExternalTable, // import kind
kFuncRefCode, // elem_type
0, // no maximum field
10), // initial size
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(2), // section header
kFuncRefCode, 0, 15, // table 0
kFuncRefCode, 0, 19), // table 1
// elements ------------------------------------------------------------
SECTION(Element,
4, // entry count
TABLE_INDEX(2), // element for table 0
WASM_INIT_EXPR_I32V_1(10), // index
kExternalFunction, // type
1, // elements count
FUNC_INDEX(0), // function
TABLE_INDEX(3), // element for table 1
WASM_INIT_EXPR_I32V_1(17), // index
kExternalFunction, // type
2, // elements count
FUNC_INDEX(0), // entry 0
FUNC_INDEX(0), // entry 1
TABLE_INDEX0, // element for table 2
WASM_INIT_EXPR_I32V_1(2), // index
1, // elements count
FUNC_INDEX(0), // function
TABLE_INDEX(1), // element for table 1
WASM_INIT_EXPR_I32V_1(7), // index
kExternalFunction, // type
2, // elements count
FUNC_INDEX(0), // entry 0
FUNC_INDEX(0)), // entry 1
// code ----------------------------------------------------------------
ONE_EMPTY_BODY};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ElementSectionInitExternRefTableWithFuncRef) {
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(2), // section header
kExternRefCode, 0, 5, // table 0
kFuncRefCode, 0, 9), // table 1
// elements ------------------------------------------------------------
SECTION(Element,
ENTRY_COUNT(2), // entry count
TABLE_INDEX0, // element for table 0
WASM_INIT_EXPR_I32V_1(0), // index
1, // elements count
FUNC_INDEX(0), // function
TABLE_INDEX(1), // element for table 1
WASM_INIT_EXPR_I32V_1(7), // index
kExternalFunction, // type
2, // elements count
FUNC_INDEX(0), // entry 0
FUNC_INDEX(0)), // entry 1
// code ----------------------------------------------------------------
ONE_EMPTY_BODY,
};
EXPECT_FAILURE_WITH_MSG(data,
"An active element segment with function indices as "
"elements must reference a table of type funcref. "
"Instead, table 0 of type externref is referenced.");
}
TEST_F(WasmModuleVerifyTest, ElementSectionInitFuncRefTableWithFuncRefNull) {
static const byte data[] = {
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(1), // section header
kFuncRefCode, 0, 9), // table 0
// elements ------------------------------------------------------------
SECTION(Element,
ENTRY_COUNT(1), // entry count
ACTIVE_WITH_ELEMENTS, TABLE_INDEX0, // element for table 0
WASM_INIT_EXPR_I32V_1(0), // index
kFuncRefCode, // .
1, // elements count
WASM_INIT_EXPR_FUNC_REF_NULL) // function
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ElementSectionInitFuncRefTableWithExternRefNull) {
static const byte data[] = {
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(1), // section header
kFuncRefCode, 0, 9), // table 0
// elements ------------------------------------------------------------
SECTION(Element,
ENTRY_COUNT(1), // entry count
ACTIVE_WITH_ELEMENTS, TABLE_INDEX0, // element for table 0
WASM_INIT_EXPR_I32V_1(0), // index
kFuncRefCode, // .
1, // elements count
WASM_INIT_EXPR_EXTERN_REF_NULL) // function
};
EXPECT_FAILURE_WITH_MSG(
data,
"type error in constant expression[0] (expected funcref, got externref)");
}
TEST_F(WasmModuleVerifyTest, ElementSectionDontInitExternRefImportedTable) {
// Test that imported tables of type ExternRef cannot be initialized in the
// elements section.
static const byte data[] = {
// sig#0 ---------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// imports -------------------------------------------------------------
SECTION(Import, ENTRY_COUNT(2),
ADD_COUNT('m'), // module name
ADD_COUNT('t'), // table name
kExternalTable, // import kind
kFuncRefCode, // elem_type
0, // no maximum field
5, // initial size
ADD_COUNT('m'), // module name
ADD_COUNT('s'), // table name
kExternalTable, // import kind
kExternRefCode, // elem_type
0, // no maximum field
10), // initial size
// funcs ---------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration ---------------------------------------------------
SECTION(Table, ENTRY_COUNT(2), // section header
kFuncRefCode, 0, 15, // table 0
kFuncRefCode, 0, 19), // table 1
// elements ------------------------------------------------------------
SECTION(Element,
ENTRY_COUNT(4), // entry count
TABLE_INDEX0, // element for table 0
WASM_INIT_EXPR_I32V_1(10), // index
1, // elements count
FUNC_INDEX(0), // function
TABLE_INDEX(1), // element for table 1
WASM_INIT_EXPR_I32V_1(17), // index
kExternalFunction, // type
2, // elements count
FUNC_INDEX(0), // entry 0
FUNC_INDEX(0)), // entry 1
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ElementSectionGlobalGetOutOfBounds) {
static const byte data[] = {
SECTION(Element, ENTRY_COUNT(1),
0x05, // Mode: Passive with expressions-as-elements
kFuncRefCode, // type
ENTRY_COUNT(1), // element count
kExprGlobalGet, 0x00, kExprEnd)}; // initial value
EXPECT_FAILURE_WITH_MSG(data, "Invalid global index: 0");
}
// Make sure extended constants do not work without the experimental feature.
TEST_F(WasmModuleVerifyTest, ExtendedConstantsFail) {
static const byte data[] = {
SECTION(Import, ENTRY_COUNT(1), // one import
0x01, 'm', 0x01, 'g', // module, name
kExternalGlobal, kI32Code, 0), // type, mutability
SECTION(Global, ENTRY_COUNT(1), // one defined global
kI32Code, 0, // type, mutability
// initializer
kExprGlobalGet, 0x00, kExprGlobalGet, 0x00, kExprI32Add,
kExprEnd)};
EXPECT_FAILURE_WITH_MSG(
data, "opcode i32.add is not allowed in constant expressions");
}
TEST_F(WasmModuleVerifyTest, ExtendedConstantsI32) {
WASM_FEATURE_SCOPE(extended_const);
static const byte data[] = {
SECTION(Import, ENTRY_COUNT(1), // one import
0x01, 'm', 0x01, 'g', // module, name
kExternalGlobal, kI32Code, 0), // type, mutability
SECTION(Global, ENTRY_COUNT(1), // one defined global
kI32Code, 0, // type, mutability
// initializer
kExprGlobalGet, 0x00, kExprGlobalGet, 0x00, kExprI32Add,
kExprGlobalGet, 0x00, kExprI32Sub, kExprGlobalGet, 0x00,
kExprI32Mul, kExprEnd)};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ExtendedConstantsI64) {
WASM_FEATURE_SCOPE(extended_const);
static const byte data[] = {
SECTION(Import, ENTRY_COUNT(1), // one import
0x01, 'm', 0x01, 'g', // module, name
kExternalGlobal, kI64Code, 0), // type, mutability
SECTION(Global, ENTRY_COUNT(1), // one defined global
kI64Code, 0, // type, mutability
// initializer
kExprGlobalGet, 0x00, kExprGlobalGet, 0x00, kExprI64Add,
kExprGlobalGet, 0x00, kExprI64Sub, kExprGlobalGet, 0x00,
kExprI64Mul, kExprEnd)};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ExtendedConstantsTypeError) {
WASM_FEATURE_SCOPE(extended_const);
static const byte data[] = {
SECTION(Import, ENTRY_COUNT(1), // one import
0x01, 'm', 0x01, 'g', // module, name
kExternalGlobal, kI32Code, 0), // type, mutability
SECTION(Global, ENTRY_COUNT(1), // one defined global
kI32Code, 0, // type, mutability
// initializer
kExprGlobalGet, 0x00, kExprI64Const, 1, kExprI32Add, kExprEnd)};
EXPECT_FAILURE_WITH_MSG(
data, "i32.add[1] expected type i32, found i64.const of type i64");
}
TEST_F(WasmModuleVerifyTest, IndirectFunctionNoFunctions) {
static const byte data[] = {
// sig#0 -------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// indirect table ----------------------------------------------
SECTION(Table, ENTRY_COUNT(1), 1, 0, 0)};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, IndirectFunctionInvalidIndex) {
static const byte data[] = {
// sig#0 -------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// functions ---------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// indirect table ----------------------------------------------
SECTION(Table, ENTRY_COUNT(1), 1, 1, 0)};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, MultipleTables) {
static const byte data[] = {
SECTION(Table, // table section
ENTRY_COUNT(2), // 2 tables
kFuncRefCode, // table 1: type
0, // table 1: no maximum
10, // table 1: minimum size
kExternRefCode, // table 2: type
0, // table 2: no maximum
11), // table 2: minimum size
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.value()->tables.size());
EXPECT_EQ(10u, result.value()->tables[0].initial_size);
EXPECT_EQ(kWasmFuncRef, result.value()->tables[0].type);
EXPECT_EQ(11u, result.value()->tables[1].initial_size);
EXPECT_EQ(kWasmExternRef, result.value()->tables[1].type);
}
TEST_F(WasmModuleVerifyTest, TypedFunctionTable) {
WASM_FEATURE_SCOPE(typed_funcref);
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(1), SIG_ENTRY_v_x(kI32Code)),
SECTION(Table, // table section
ENTRY_COUNT(1), // 1 table
kRefNullCode, 0, // table 0: type
0, 10)}; // table 0: limits
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(ValueType::RefNull(0), result.value()->tables[0].type);
}
TEST_F(WasmModuleVerifyTest, NullableTableIllegalInitializer) {
WASM_FEATURE_SCOPE(typed_funcref);
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(1), SIG_ENTRY_v_v), // type section
ONE_EMPTY_FUNCTION(0), // function section
SECTION(Table, // table section
ENTRY_COUNT(1), // 1 table
kRefNullCode, 0, // table 0: type
0, 10, // table 0: limits
kExprRefFunc, 0, kExprEnd)}; // table 0: initializer
EXPECT_FAILURE_WITH_MSG(
data,
"section was shorter than expected size (8 bytes expected, 5 decoded)");
}
TEST_F(WasmModuleVerifyTest, IllegalTableTypes) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
using Vec = std::vector<byte>;
static Vec table_types[] = {{kRefNullCode, 0}, {kRefNullCode, 1}};
for (Vec type : table_types) {
Vec data = {
SECTION(Type, ENTRY_COUNT(2),
WASM_STRUCT_DEF(FIELD_COUNT(1), STRUCT_FIELD(kI32Code, true)),
WASM_ARRAY_DEF(kI32Code, true)),
kTableSectionCode, static_cast<byte>(type.size() + 3), byte{1}};
// Last elements are section size and entry count
// Add table type
data.insert(data.end(), type.begin(), type.end());
// Add table limits
data.insert(data.end(), {byte{0}, byte{10}});
auto result = DecodeModule(data.data(), data.data() + data.size());
EXPECT_NOT_OK(result,
"Currently, only externref and function references are "
"allowed as table types");
}
}
TEST_F(WasmModuleVerifyTest, TableWithInitializer) {
WASM_FEATURE_SCOPE(typed_funcref);
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(1), SIG_ENTRY_v_v), // type section
ONE_EMPTY_FUNCTION(0), // function section
SECTION(Table, // table section
ENTRY_COUNT(1), // 1 table
0x40, // table 0: has initializer
kRefNullCode, 0, // table 0: type
0, 10, // table 0: limits
kExprRefFunc, 0, kExprEnd), // table 0: initial value
SECTION(Code, ENTRY_COUNT(1), NOP_BODY)};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(ValueType::RefNull(0), result.value()->tables[0].type);
}
TEST_F(WasmModuleVerifyTest, NonNullableTable) {
WASM_FEATURE_SCOPE(typed_funcref);
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(1), SIG_ENTRY_v_v), // type section
ONE_EMPTY_FUNCTION(0), // function section
SECTION(Table, // table section
ENTRY_COUNT(1), // 1 table
0x40, // table 0: has initializer
kRefCode, 0, // table 0: type
0, 10, // table 0: limits
kExprRefFunc, 0, kExprEnd), // table 0: initial value
SECTION(Code, ENTRY_COUNT(1), NOP_BODY)};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(ValueType::Ref(0), result.value()->tables[0].type);
}
TEST_F(WasmModuleVerifyTest, NonNullableTableNoInitializer) {
WASM_FEATURE_SCOPE(typed_funcref);
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(1), SIG_ENTRY_v_x(kI32Code)),
SECTION(Table, // table section
ENTRY_COUNT(2), // 2 tables
kRefCode, 0, // table 0: type
0, 10, // table 0: limits
kRefCode, 0, // table 1: type
5, 6)}; // table 1: limits
EXPECT_FAILURE_WITH_MSG(
data, "Table of non-defaultable table (ref 0) needs initial value");
}
TEST_F(WasmModuleVerifyTest, TieringCompilationHints) {
WASM_FEATURE_SCOPE(compilation_hints);
static const byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v),
FUNCTION_SECTION(3, 0, 0, 0),
SECTION_COMPILATION_HINTS(BASELINE_TIER_BASELINE | TOP_TIER_BASELINE,
BASELINE_TIER_BASELINE | TOP_TIER_OPTIMIZED,
BASELINE_TIER_OPTIMIZED | TOP_TIER_OPTIMIZED),
SECTION(Code, ENTRY_COUNT(3), NOP_BODY, NOP_BODY, NOP_BODY),
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(3u, result.value()->compilation_hints.size());
EXPECT_EQ(WasmCompilationHintStrategy::kDefault,
result.value()->compilation_hints[0].strategy);
EXPECT_EQ(WasmCompilationHintTier::kBaseline,
result.value()->compilation_hints[0].baseline_tier);
EXPECT_EQ(WasmCompilationHintTier::kBaseline,
result.value()->compilation_hints[0].top_tier);
EXPECT_EQ(WasmCompilationHintStrategy::kDefault,
result.value()->compilation_hints[1].strategy);
EXPECT_EQ(WasmCompilationHintTier::kBaseline,
result.value()->compilation_hints[1].baseline_tier);
EXPECT_EQ(WasmCompilationHintTier::kOptimized,
result.value()->compilation_hints[1].top_tier);
EXPECT_EQ(WasmCompilationHintStrategy::kDefault,
result.value()->compilation_hints[2].strategy);
EXPECT_EQ(WasmCompilationHintTier::kOptimized,
result.value()->compilation_hints[2].baseline_tier);
EXPECT_EQ(WasmCompilationHintTier::kOptimized,
result.value()->compilation_hints[2].top_tier);
}
TEST_F(WasmModuleVerifyTest, BranchHinting) {
WASM_FEATURE_SCOPE(branch_hinting);
static const byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v), FUNCTION_SECTION(2, 0, 0),
SECTION_BRANCH_HINTS(ENTRY_COUNT(2), 0 /*func_index*/, ENTRY_COUNT(1),
3 /* if offset*/, 1 /*reserved*/, 1 /*likely*/,
1 /*func_index*/, ENTRY_COUNT(1),
5 /* br_if offset*/, 1 /*reserved*/, 0 /*unlikely*/),
SECTION(Code, ENTRY_COUNT(2),
ADD_COUNT(0, /*no locals*/
WASM_IF(WASM_I32V_1(1), WASM_NOP), WASM_END),
ADD_COUNT(0, /*no locals*/
WASM_BLOCK(WASM_BR_IF(0, WASM_I32V_1(1))), WASM_END))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(2u, result.value()->branch_hints.size());
EXPECT_EQ(WasmBranchHint::kLikely,
result.value()->branch_hints[0].GetHintFor(3));
EXPECT_EQ(WasmBranchHint::kUnlikely,
result.value()->branch_hints[1].GetHintFor(5));
}
class WasmSignatureDecodeTest : public TestWithZone {
public:
WasmFeatures enabled_features_ = WasmFeatures::None();
const FunctionSig* DecodeSig(const byte* start, const byte* end) {
Result<const FunctionSig*> res =
DecodeWasmSignatureForTesting(enabled_features_, zone(), start, end);
EXPECT_TRUE(res.ok()) << res.error().message() << " at offset "
<< res.error().offset();
return res.ok() ? res.value() : nullptr;
}
V8_NODISCARD testing::AssertionResult DecodeSigError(const byte* start,
const byte* end) {
Result<const FunctionSig*> res =
DecodeWasmSignatureForTesting(enabled_features_, zone(), start, end);
if (res.ok()) {
return testing::AssertionFailure() << "unexpected valid signature";
}
return testing::AssertionSuccess();
}
};
TEST_F(WasmSignatureDecodeTest, Ok_v_v) {
static const byte data[] = {SIG_ENTRY_v_v};
v8::internal::AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
const FunctionSig* sig = DecodeSig(data, data + sizeof(data));
ASSERT_TRUE(sig != nullptr);
EXPECT_EQ(0u, sig->parameter_count());
EXPECT_EQ(0u, sig->return_count());
}
TEST_F(WasmSignatureDecodeTest, Ok_t_v) {
WASM_FEATURE_SCOPE(gc);
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(stringref);
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueTypePair ret_type = kValueTypes[i];
const byte data[] = {SIG_ENTRY_x(ret_type.code)};
const FunctionSig* sig = DecodeSig(data, data + sizeof(data));
SCOPED_TRACE("Return type " + ret_type.type.name());
ASSERT_TRUE(sig != nullptr);
EXPECT_EQ(0u, sig->parameter_count());
EXPECT_EQ(1u, sig->return_count());
EXPECT_EQ(ret_type.type, sig->GetReturn());
}
}
TEST_F(WasmSignatureDecodeTest, Ok_v_t) {
WASM_FEATURE_SCOPE(gc);
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(stringref);
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueTypePair param_type = kValueTypes[i];
const byte data[] = {SIG_ENTRY_v_x(param_type.code)};
const FunctionSig* sig = DecodeSig(data, data + sizeof(data));
SCOPED_TRACE("Param type " + param_type.type.name());
ASSERT_TRUE(sig != nullptr);
EXPECT_EQ(1u, sig->parameter_count());
EXPECT_EQ(0u, sig->return_count());
EXPECT_EQ(param_type.type, sig->GetParam(0));
}
}
TEST_F(WasmSignatureDecodeTest, Ok_t_t) {
WASM_FEATURE_SCOPE(gc);
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(stringref);
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueTypePair ret_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueTypePair param_type = kValueTypes[j];
const byte data[] = {SIG_ENTRY_x_x(ret_type.code, param_type.code)};
const FunctionSig* sig = DecodeSig(data, data + sizeof(data));
SCOPED_TRACE("Param type " + param_type.type.name());
ASSERT_TRUE(sig != nullptr);
EXPECT_EQ(1u, sig->parameter_count());
EXPECT_EQ(1u, sig->return_count());
EXPECT_EQ(param_type.type, sig->GetParam(0));
EXPECT_EQ(ret_type.type, sig->GetReturn());
}
}
}
TEST_F(WasmSignatureDecodeTest, Ok_i_tt) {
WASM_FEATURE_SCOPE(gc);
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(stringref);
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueTypePair p0_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueTypePair p1_type = kValueTypes[j];
const byte data[] = {
SIG_ENTRY_x_xx(kI32Code, p0_type.code, p1_type.code)};
const FunctionSig* sig = DecodeSig(data, data + sizeof(data));
SCOPED_TRACE("Signature i32(" + p0_type.type.name() + ", " +
p1_type.type.name() + ")");
ASSERT_TRUE(sig != nullptr);
EXPECT_EQ(2u, sig->parameter_count());
EXPECT_EQ(1u, sig->return_count());
EXPECT_EQ(p0_type.type, sig->GetParam(0));
EXPECT_EQ(p1_type.type, sig->GetParam(1));
}
}
}
TEST_F(WasmSignatureDecodeTest, Ok_tt_tt) {
WASM_FEATURE_SCOPE(gc);
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(stringref);
for (size_t i = 0; i < arraysize(kValueTypes); i++) {
ValueTypePair p0_type = kValueTypes[i];
for (size_t j = 0; j < arraysize(kValueTypes); j++) {
ValueTypePair p1_type = kValueTypes[j];
const byte data[] = {SIG_ENTRY_xx_xx(p0_type.code, p1_type.code,
p0_type.code, p1_type.code)};
const FunctionSig* sig = DecodeSig(data, data + sizeof(data));
SCOPED_TRACE("p0 = " + p0_type.type.name() +
", p1 = " + p1_type.type.name());
ASSERT_TRUE(sig != nullptr);
EXPECT_EQ(2u, sig->parameter_count());
EXPECT_EQ(2u, sig->return_count());
EXPECT_EQ(p0_type.type, sig->GetParam(0));
EXPECT_EQ(p1_type.type, sig->GetParam(1));
EXPECT_EQ(p0_type.type, sig->GetReturn(0));
EXPECT_EQ(p1_type.type, sig->GetReturn(1));
}
}
}
TEST_F(WasmSignatureDecodeTest, Simd) {
WASM_FEATURE_SCOPE(simd);
const byte data[] = {SIG_ENTRY_x(kS128Code)};
if (!CheckHardwareSupportsSimd()) {
EXPECT_TRUE(DecodeSigError(data, data + sizeof(data)))
<< "Type S128 should not be allowed on this hardware";
} else {
const FunctionSig* sig = DecodeSig(data, data + sizeof(data));
ASSERT_TRUE(sig != nullptr);
EXPECT_EQ(0u, sig->parameter_count());
EXPECT_EQ(1u, sig->return_count());
EXPECT_EQ(kWasmS128, sig->GetReturn());
}
}
TEST_F(WasmSignatureDecodeTest, TooManyParams) {
static const byte data[] = {kWasmFunctionTypeCode,
WASM_I32V_3(kV8MaxWasmFunctionParams + 1),
kI32Code, 0};
EXPECT_TRUE(DecodeSigError(data, data + sizeof(data)));
}
TEST_F(WasmSignatureDecodeTest, TooManyReturns) {
for (int i = 0; i < 2; i++) {
byte data[] = {kWasmFunctionTypeCode, 0,
WASM_I32V_3(kV8MaxWasmFunctionReturns + 1), kI32Code};
EXPECT_TRUE(DecodeSigError(data, data + sizeof(data)));
}
}
TEST_F(WasmSignatureDecodeTest, Fail_off_end) {
byte data[256];
for (int p = 0; p <= 255; p = p + 1 + p * 3) {
for (int i = 0; i <= p; i++) data[i] = kI32Code;
data[0] = static_cast<byte>(p);
for (int i = 0; i < p + 1; i++) {
// Should fall off the end for all signatures.
EXPECT_TRUE(DecodeSigError(data, data + sizeof(data)));
}
}
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_type) {
byte kInvalidType = 76;
for (size_t i = 0;; i++) {
byte data[] = {SIG_ENTRY_x_xx(kI32Code, kI32Code, kI32Code)};
if (i >= arraysize(data)) break;
data[i] = kInvalidType;
EXPECT_TRUE(DecodeSigError(data, data + sizeof(data)));
}
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_ret_type1) {
static const byte data[] = {SIG_ENTRY_x_x(kVoidCode, kI32Code)};
EXPECT_TRUE(DecodeSigError(data, data + sizeof(data)));
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_param_type1) {
static const byte data[] = {SIG_ENTRY_x_x(kI32Code, kVoidCode)};
EXPECT_TRUE(DecodeSigError(data, data + sizeof(data)));
}
TEST_F(WasmSignatureDecodeTest, Fail_invalid_param_type2) {
static const byte data[] = {SIG_ENTRY_x_xx(kI32Code, kI32Code, kVoidCode)};
EXPECT_TRUE(DecodeSigError(data, data + sizeof(data)));
}
class WasmFunctionVerifyTest : public TestWithIsolateAndZone {
public:
FunctionResult DecodeWasmFunction(const ModuleWireBytes& wire_bytes,
const WasmModule* module,
const byte* function_start,
const byte* function_end) {
WasmFeatures enabled_features;
return DecodeWasmFunctionForTesting(enabled_features, zone(), wire_bytes,
module, function_start, function_end,
isolate()->counters());
}
};
TEST_F(WasmFunctionVerifyTest, Ok_v_v_empty) {
static const byte data[] = {
SIG_ENTRY_v_v, // signature entry
4, // locals
3,
kI32Code, // --
4,
kI64Code, // --
5,
kF32Code, // --
6,
kF64Code, // --
kExprEnd // body
};
WasmModule module;
FunctionResult result = DecodeWasmFunction(ModuleWireBytes({}), &module, data,
data + sizeof(data));
EXPECT_OK(result);
if (result.value() && result.ok()) {
WasmFunction* function = result.value().get();
EXPECT_EQ(0u, function->sig->parameter_count());
EXPECT_EQ(0u, function->sig->return_count());
EXPECT_EQ(COUNT_ARGS(SIG_ENTRY_v_v), function->code.offset());
EXPECT_EQ(sizeof(data), function->code.end_offset());
// TODO(titzer): verify encoding of local declarations
}
}
TEST_F(WasmModuleVerifyTest, SectionWithoutNameLength) {
const byte data[] = {1};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, EmptyCustomSectionIsInvalid) {
// An empty custom section is invalid, because at least one byte for the
// length of the custom section name is required.
const byte data[] = {
0, // unknown section code.
0 // section length.
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, TheLoneliestOfValidModulesTheTrulyEmptyOne) {
const byte data[] = {
0, // unknown section code.
1, // section length, only one byte for the name length.
0, // string length of 0.
// Empty section name, no content, nothing but sadness.
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, OnlyUnknownSectionEmpty) {
const byte data[] = {
UNKNOWN_SECTION(0),
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, OnlyUnknownSectionNonEmpty) {
const byte data[] = {
UNKNOWN_SECTION(5),
0xFF,
0xFF,
0xFF,
0xFF,
0xFF, // section data
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, SignatureFollowedByEmptyUnknownSection) {
const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID,
// -----------------------------------------------------------
UNKNOWN_SECTION(0)};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, SignatureFollowedByUnknownSection) {
const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID,
// -----------------------------------------------------------
UNKNOWN_SECTION(5),
0xFF,
0xFF,
0xFF,
0xFF,
0xFF,
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, UnknownSectionOverflow) {
static const byte data[] = {
UNKNOWN_SECTION(9),
1,
2,
3,
4,
5,
6,
7,
8,
9,
10, // 10 byte section
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, UnknownSectionUnderflow) {
static const byte data[] = {
UNKNOWN_SECTION(333),
1,
2,
3,
4, // 4 byte section
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, UnknownSectionSkipped) {
static const byte data[] = {
UNKNOWN_SECTION(1),
0, // one byte section
SECTION(Global, ENTRY_COUNT(1),
kI32Code, // memory type
0, // exported
WASM_INIT_EXPR_I32V_1(33)), // init
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.value()->globals.size());
EXPECT_EQ(0u, result.value()->functions.size());
EXPECT_EQ(0u, result.value()->data_segments.size());
const WasmGlobal* global = &result.value()->globals.back();
EXPECT_EQ(kWasmI32, global->type);
EXPECT_EQ(0u, global->offset);
}
TEST_F(WasmModuleVerifyTest, ImportTable_empty) {
static const byte data[] = {SECTION(Type, ENTRY_COUNT(0)),
SECTION(Import, ENTRY_COUNT(0))};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_nosigs1) {
static const byte data[] = {SECTION(Import, ENTRY_COUNT(0))};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_mutable_global) {
{
static const byte data[] = {
SECTION(Import, // section header
ENTRY_COUNT(1), // number of imports
ADD_COUNT('m'), // module name
ADD_COUNT('f'), // global name
kExternalGlobal, // import kind
kI32Code, // type
0), // mutability
};
EXPECT_VERIFIES(data);
}
{
static const byte data[] = {
SECTION(Import, // section header
ENTRY_COUNT(1), // sig table
ADD_COUNT('m'), // module name
ADD_COUNT('f'), // global name
kExternalGlobal, // import kind
kI32Code, // type
1), // mutability
};
EXPECT_VERIFIES(data);
}
}
TEST_F(WasmModuleVerifyTest, ImportTable_mutability_malformed) {
static const byte data[] = {
SECTION(Import,
ENTRY_COUNT(1), // --
ADD_COUNT('m'), // module name
ADD_COUNT('g'), // global name
kExternalGlobal, // import kind
kI32Code, // type
2), // invalid mutability
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_nosigs2) {
static const byte data[] = {
SECTION(Import, ENTRY_COUNT(1), // sig table
ADD_COUNT('m'), // module name
ADD_COUNT('f'), // function name
kExternalFunction, // import kind
SIG_INDEX(0)), // sig index
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_invalid_sig) {
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(0)), // --
SECTION(Import, ENTRY_COUNT(1), // --
ADD_COUNT('m'), // module name
ADD_COUNT('f'), // function name
kExternalFunction, // import kind
SIG_INDEX(0)), // sig index
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_one_sig) {
static const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID,
SECTION(Import,
ENTRY_COUNT(1), // --
ADD_COUNT('m'), // module name
ADD_COUNT('f'), // function name
kExternalFunction, // import kind
SIG_INDEX(0)), // sig index
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_invalid_module) {
static const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID, // --
SECTION(Import, // --
ENTRY_COUNT(1), // --
NO_NAME, // module name
ADD_COUNT('f'), // function name
kExternalFunction, // import kind
SIG_INDEX(0), // sig index
0), // auxiliary data
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ImportTable_off_end) {
static const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID,
SECTION(Import, ENTRY_COUNT(1),
ADD_COUNT('m'), // module name
ADD_COUNT('f'), // function name
kExternalFunction), // import kind
SIG_INDEX(0), // sig index (outside import section!)
};
EXPECT_OFF_END_FAILURE(data, arraysize(data) - 3);
}
TEST_F(WasmModuleVerifyTest, ExportTable_empty1) {
static const byte data[] = { // signatures
TYPE_SECTION_ONE_SIG_VOID_VOID, // --
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
SECTION(Export, ENTRY_COUNT(0)), // --
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.value()->functions.size());
EXPECT_EQ(0u, result.value()->export_table.size());
}
TEST_F(WasmModuleVerifyTest, ExportTable_empty2) {
static const byte data[] = {SECTION(Type, ENTRY_COUNT(0)),
SECTION(Export, ENTRY_COUNT(0))};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ExportTable_NoFunctions2) {
static const byte data[] = {SECTION(Export, ENTRY_COUNT(0))};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, ExportTableOne) {
static const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID, ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
SECTION(Export,
ENTRY_COUNT(1), // exports
NO_NAME, // --
kExternalFunction, // --
FUNC_INDEX(0)), // --
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.value()->functions.size());
EXPECT_EQ(1u, result.value()->export_table.size());
}
TEST_F(WasmModuleVerifyTest, ExportNameWithInvalidStringLength) {
static const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID, ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
SECTION(Export,
ENTRY_COUNT(1), // exports
U32V_1(84), // invalid string length
'e', // --
kExternalFunction, // --
FUNC_INDEX(0), // --
0, 0, 0) // auxiliary data
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, ExportTableTwo) {
static const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID, ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
SECTION(Export,
ENTRY_COUNT(2), // exports
ADD_COUNT('n', 'a', 'm', 'e'), // --
kExternalFunction, // --
FUNC_INDEX(0), // --
ADD_COUNT('n', 'o', 'm'), // --
kExternalFunction, // --
FUNC_INDEX(0)), // --
ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(1u, result.value()->functions.size());
EXPECT_EQ(2u, result.value()->export_table.size());
}
TEST_F(WasmModuleVerifyTest, ExportTableThree) {
static const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID, THREE_EMPTY_FUNCTIONS(SIG_INDEX(0)),
SECTION(Export,
ENTRY_COUNT(3), // exports
ADD_COUNT('a'), // --
kExternalFunction,
FUNC_INDEX(0), // --
ADD_COUNT('b'), // --
kExternalFunction,
FUNC_INDEX(1), // --
ADD_COUNT('c'), // --
kExternalFunction,
FUNC_INDEX(2)), // --
THREE_EMPTY_BODIES};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
EXPECT_EQ(3u, result.value()->functions.size());
EXPECT_EQ(3u, result.value()->export_table.size());
}
TEST_F(WasmModuleVerifyTest, ExportTableThreeOne) {
for (int i = 0; i < 6; i++) {
const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID, THREE_EMPTY_FUNCTIONS(SIG_INDEX(0)),
SECTION(Export,
ENTRY_COUNT(1), // exports
ADD_COUNT('e', 'x'), // --
kExternalFunction,
FUNC_INDEX(i)), // --
THREE_EMPTY_BODIES};
if (i < 3) {
EXPECT_VERIFIES(data);
} else {
EXPECT_FAILURE(data);
}
}
}
TEST_F(WasmModuleVerifyTest, ExportTableOne_off_end) {
static const byte data[] = {
// signatures
TYPE_SECTION_ONE_SIG_VOID_VOID, ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
SECTION(Export,
ENTRY_COUNT(1), // exports
NO_NAME, // --
kExternalFunction,
FUNC_INDEX(0), // --
0, 0, 0) // auxiliary data
};
EXPECT_OFF_END_FAILURE(data, arraysize(data) - 3);
}
TEST_F(WasmModuleVerifyTest, Regression_648070) {
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(0)), // --
SECTION(Function, U32V_5(3500228624)) // function count = 3500228624
}; // --
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, Regression_738097) {
// The function body size caused an integer overflow in the module decoder.
static const byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SECTION(1, 0), // --
SECTION(Code, // --
ENTRY_COUNT(1), // --
U32V_5(0xFFFFFFFF), // function size,
0) // No real body
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodySizeLimit) {
const uint32_t delta = 3;
for (uint32_t body_size = kV8MaxWasmFunctionSize - delta;
body_size < kV8MaxWasmFunctionSize + delta; body_size++) {
byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SECTION(1, 0), // --
kCodeSectionCode, // code section
U32V_5(1 + body_size + 5), // section size
1, // # functions
U32V_5(body_size) // body size
};
size_t total = sizeof(data) + body_size;
byte* buffer = reinterpret_cast<byte*>(calloc(1, total));
memcpy(buffer, data, sizeof(data));
ModuleResult result = DecodeModule(buffer, buffer + total);
if (body_size <= kV8MaxWasmFunctionSize) {
EXPECT_TRUE(result.ok());
} else {
EXPECT_FALSE(result.ok());
}
free(buffer);
}
}
TEST_F(WasmModuleVerifyTest, IllegalTypeCode) {
static const byte data[] = {TYPE_SECTION(1, SIG_ENTRY_v_x(0x41))};
EXPECT_FAILURE_WITH_MSG(data, "invalid value type");
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_empty) {
static const byte data[] = {
EMPTY_TYPE_SECTION, // --
EMPTY_FUNCTION_SECTION, // --
EMPTY_FUNCTION_BODIES_SECTION // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_one_empty) {
static const byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SECTION(1, 0), // --
ONE_EMPTY_BODY // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_one_nop) {
static const byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SECTION(1, 0), // --
SECTION(Code, ENTRY_COUNT(1), NOP_BODY) // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_count_mismatch1) {
static const byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SECTION(2, 0, 0), // --
ONE_EMPTY_BODY // --
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, FunctionBodies_count_mismatch2) {
static const byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SECTION(1, 0), // --
SECTION(Code, ENTRY_COUNT(2), NOP_BODY, NOP_BODY) // --
};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, Names_empty) {
static const byte data[] = {EMPTY_TYPE_SECTION, EMPTY_FUNCTION_SECTION,
EMPTY_FUNCTION_BODIES_SECTION,
EMPTY_NAMES_SECTION};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Names_one_empty) {
// TODO(wasm): This test does not test anything (corrupt name section does not
// fail validation).
static const byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SECTION(1, 0), // --
ONE_EMPTY_BODY, // --
SECTION_NAMES(ENTRY_COUNT(1), FOO_STRING, NO_LOCAL_NAMES) // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Names_two_empty) {
// TODO(wasm): This test does not test anything (corrupt name section does not
// fail validation).
static const byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SECTION(2, 0, 0), // --
TWO_EMPTY_BODIES, // --
SECTION_NAMES(ENTRY_COUNT(2), // --
FOO_STRING, NO_LOCAL_NAMES, // --
FOO_STRING, NO_LOCAL_NAMES), // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Regression684855) {
static const byte data[] = {
SECTION_NAMES(0xFB, // functions count
0x27, // |
0x00, // function name length
0xFF, // local names count
0xFF, // |
0xFF, // |
0xFF, // |
0xFF, // |
0xFF, // error: "varint too large"
0xFF, // |
0x00, // --
0x00) // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, FunctionSectionWithoutCodeSection) {
static const byte data[] = {
TYPE_SECTION(1, SIG_ENTRY_v_v), // Type section.
FUNCTION_SECTION(1, 0), // Function section.
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "function count is 1, but code section is absent");
}
TEST_F(WasmModuleVerifyTest, CodeSectionWithoutFunctionSection) {
static const byte data[] = {ONE_EMPTY_BODY};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "function body count 1 mismatch (0 expected)");
}
TEST_F(WasmModuleVerifyTest, EmptyFunctionSectionWithoutCodeSection) {
static const byte data[] = {SECTION(Function, ENTRY_COUNT(0))};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, DoubleNonEmptyFunctionSection) {
// Regression test for https://crbug.com/1342274.
static const byte data[] = {TYPE_SECTION(1, SIG_ENTRY_v_v), // --
FUNCTION_SECTION(1, 0), // --
FUNCTION_SECTION(1, 0)};
EXPECT_FAILURE(data);
}
TEST_F(WasmModuleVerifyTest, EmptyCodeSectionWithoutFunctionSection) {
static const byte data[] = {SECTION(Code, ENTRY_COUNT(0))};
EXPECT_VERIFIES(data);
}
// TODO(manoskouk): Reintroduce tests deleted in
// https://chromium-review.googlesource.com/c/v8/v8/+/2972910 in some other
// form.
TEST_F(WasmModuleVerifyTest, Multiple_Named_Sections) {
static const byte data[] = {
SECTION(Unknown, ADD_COUNT('X'), 17, 18), // --
SECTION(Unknown, ADD_COUNT('f', 'o', 'o'), 5, 6, 7, 8, 9), // --
SECTION(Unknown, ADD_COUNT('o', 't', 'h', 'e', 'r'), 7, 8), // --
};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, Section_Name_No_UTF8) {
static const byte data[] = {SECTION(Unknown, 1, 0xFF, 17, 18)};
EXPECT_FAILURE(data);
}
class WasmModuleCustomSectionTest : public TestWithIsolateAndZone {
public:
void CheckSections(const byte* module_start, const byte* module_end,
const CustomSectionOffset* expected, size_t num_expected) {
std::vector<CustomSectionOffset> custom_sections =
DecodeCustomSections(module_start, module_end);
CHECK_EQ(num_expected, custom_sections.size());
for (size_t i = 0; i < num_expected; i++) {
EXPECT_EQ(expected[i].section.offset(),
custom_sections[i].section.offset());
EXPECT_EQ(expected[i].section.length(),
custom_sections[i].section.length());
EXPECT_EQ(expected[i].name.offset(), custom_sections[i].name.offset());
EXPECT_EQ(expected[i].name.length(), custom_sections[i].name.length());
EXPECT_EQ(expected[i].payload.offset(),
custom_sections[i].payload.offset());
EXPECT_EQ(expected[i].payload.length(),
custom_sections[i].payload.length());
}
}
};
TEST_F(WasmModuleCustomSectionTest, ThreeUnknownSections) {
static constexpr byte data[] = {
U32_LE(kWasmMagic), // --
U32_LE(kWasmVersion), // --
SECTION(Unknown, 1, 'X', 17, 18), // --
SECTION(Unknown, 3, 'f', 'o', 'o', 5, 6, 7, 8, 9), // --
SECTION(Unknown, 5, 'o', 't', 'h', 'e', 'r', 7, 8), // --
};
static const CustomSectionOffset expected[] = {
// section, name, payload
{{10, 4}, {11, 1}, {12, 2}}, // --
{{16, 9}, {17, 3}, {20, 5}}, // --
{{27, 8}, {28, 5}, {33, 2}}, // --
};
CheckSections(data, data + sizeof(data), expected, arraysize(expected));
}
TEST_F(WasmModuleCustomSectionTest, TwoKnownTwoUnknownSections) {
static const byte data[] = {
U32_LE(kWasmMagic), // --
U32_LE(kWasmVersion), // --
TYPE_SECTION(2, SIG_ENTRY_v_v, SIG_ENTRY_v_v), // --
SECTION(Unknown, ADD_COUNT('X'), 17, 18), // --
ONE_EMPTY_FUNCTION(SIG_INDEX(0)), // --
SECTION(Unknown, ADD_COUNT('o', 't', 'h', 'e', 'r'), 7, 8), // --
};
static const CustomSectionOffset expected[] = {
// section, name, payload
{{19, 4}, {20, 1}, {21, 2}}, // --
{{29, 8}, {30, 5}, {35, 2}}, // --
};
CheckSections(data, data + sizeof(data), expected, arraysize(expected));
}
TEST_F(WasmModuleVerifyTest, SourceMappingURLSection) {
static const byte data[] = {
WASM_MODULE_HEADER,
SECTION_SRC_MAP('s', 'r', 'c', '/', 'x', 'y', 'z', '.', 'c')};
ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data));
EXPECT_TRUE(result.ok());
EXPECT_EQ(WasmDebugSymbols::Type::SourceMap,
result.value()->debug_symbols.type);
ModuleWireBytes wire_bytes(data, data + sizeof(data));
WasmName external_url =
wire_bytes.GetNameOrNull(result.value()->debug_symbols.external_url);
EXPECT_EQ("src/xyz.c", std::string(external_url.data(), external_url.size()));
}
TEST_F(WasmModuleVerifyTest, BadSourceMappingURLSection) {
static const byte data[] = {
WASM_MODULE_HEADER,
SECTION_SRC_MAP('s', 'r', 'c', '/', 'x', 0xff, 'z', '.', 'c')};
ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data));
EXPECT_TRUE(result.ok());
EXPECT_EQ(WasmDebugSymbols::Type::None, result.value()->debug_symbols.type);
EXPECT_EQ(0u, result.value()->debug_symbols.external_url.length());
}
TEST_F(WasmModuleVerifyTest, MultipleSourceMappingURLSections) {
static const byte data[] = {WASM_MODULE_HEADER,
SECTION_SRC_MAP('a', 'b', 'c'),
SECTION_SRC_MAP('p', 'q', 'r')};
ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data));
EXPECT_TRUE(result.ok());
EXPECT_EQ(WasmDebugSymbols::Type::SourceMap,
result.value()->debug_symbols.type);
ModuleWireBytes wire_bytes(data, data + sizeof(data));
WasmName external_url =
wire_bytes.GetNameOrNull(result.value()->debug_symbols.external_url);
EXPECT_EQ("abc", std::string(external_url.data(), external_url.size()));
}
TEST_F(WasmModuleVerifyTest, MultipleNameSections) {
static const byte data[] = {
SECTION_NAMES(0, ADD_COUNT(ADD_COUNT('a', 'b', 'c'))),
SECTION_NAMES(0, ADD_COUNT(ADD_COUNT('p', 'q', 'r', 's')))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_TRUE(result.ok());
EXPECT_EQ(3u, result.value()->name.length());
}
TEST_F(WasmModuleVerifyTest, BadNameSection) {
static const byte data[] = {SECTION_NAMES(
0, ADD_COUNT(ADD_COUNT('s', 'r', 'c', '/', 'x', 0xff, 'z', '.', 'c')))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_TRUE(result.ok());
EXPECT_EQ(0u, result.value()->name.length());
}
TEST_F(WasmModuleVerifyTest, PassiveDataSegment) {
static const byte data[] = {
// memory declaration ----------------------------------------------------
SECTION(Memory, ENTRY_COUNT(1), 0, 1),
// data segments --------------------------------------------------------
SECTION(Data, ENTRY_COUNT(1), PASSIVE, ADD_COUNT('h', 'i')),
};
EXPECT_VERIFIES(data);
EXPECT_OFF_END_FAILURE(data, arraysize(data) - 5);
}
TEST_F(WasmModuleVerifyTest, ActiveElementSegmentWithElements) {
static const byte data[] = {
// sig#0 -----------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs -----------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration -----------------------------------------------------
SECTION(Table, ENTRY_COUNT(1), kFuncRefCode, 0, 1),
// element segments -----------------------------------------------------
SECTION(Element, ENTRY_COUNT(1), ACTIVE_WITH_ELEMENTS, TABLE_INDEX0,
WASM_INIT_EXPR_I32V_1(0), kFuncRefCode, U32V_1(3),
REF_FUNC_ELEMENT(0), REF_FUNC_ELEMENT(0), REF_NULL_ELEMENT),
// code ------------------------------------------------------------------
ONE_EMPTY_BODY};
EXPECT_VERIFIES(data);
EXPECT_OFF_END_FAILURE(data, arraysize(data) - 5);
}
TEST_F(WasmModuleVerifyTest, PassiveElementSegment) {
static const byte data[] = {
// sig#0 -----------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs -----------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration -----------------------------------------------------
SECTION(Table, ENTRY_COUNT(1), kFuncRefCode, 0, 1),
// element segments -----------------------------------------------------
SECTION(Element, ENTRY_COUNT(1), PASSIVE_WITH_ELEMENTS, kFuncRefCode,
U32V_1(3), REF_FUNC_ELEMENT(0), REF_FUNC_ELEMENT(0),
REF_NULL_ELEMENT),
// code ------------------------------------------------------------------
ONE_EMPTY_BODY};
EXPECT_VERIFIES(data);
EXPECT_OFF_END_FAILURE(data, arraysize(data) - 5);
}
TEST_F(WasmModuleVerifyTest, PassiveElementSegmentExternRef) {
static const byte data[] = {
// sig#0 -----------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs -----------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration -----------------------------------------------------
SECTION(Table, ENTRY_COUNT(1), kFuncRefCode, 0, 1),
// element segments -----------------------------------------------------
SECTION(Element, ENTRY_COUNT(1), PASSIVE_WITH_ELEMENTS, kExternRefCode,
U32V_1(0)),
// code ------------------------------------------------------------------
ONE_EMPTY_BODY};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, PassiveElementSegmentWithIndices) {
static const byte data[] = {
// sig#0 -----------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs -----------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// table declaration -----------------------------------------------------
SECTION(Table, ENTRY_COUNT(1), kFuncRefCode, 0, 1),
// element segments ------------------------------------------------------
SECTION(Element, ENTRY_COUNT(1), PASSIVE, kExternalFunction,
ENTRY_COUNT(3), U32V_1(0), U32V_1(0), U32V_1(0)),
// code ------------------------------------------------------------------
ONE_EMPTY_BODY};
EXPECT_VERIFIES(data);
EXPECT_OFF_END_FAILURE(data, arraysize(data) - 5);
}
TEST_F(WasmModuleVerifyTest, DeclarativeElementSegmentFuncRef) {
static const byte data[] = {
// sig#0 -----------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs -----------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// element segments -----------------------------------------------------
SECTION(Element, // section name
ENTRY_COUNT(1), // entry count
DECLARATIVE_WITH_ELEMENTS, // flags
kFuncRefCode, // local type
U32V_1(0)), // func ref count
// code ------------------------------------------------------------------
ONE_EMPTY_BODY};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, DeclarativeElementSegmentWithInvalidIndex) {
static const byte data[] = {
// sig#0 -----------------------------------------------------------------
TYPE_SECTION_ONE_SIG_VOID_VOID,
// funcs -----------------------------------------------------------------
ONE_EMPTY_FUNCTION(SIG_INDEX(0)),
// element segments -----------------------------------------------------
SECTION(Element, // section name
ENTRY_COUNT(1), // entry count
DECLARATIVE, // flags
kExternalFunction, // type
ENTRY_COUNT(2), // func index count
U32V_1(0), // func index
U32V_1(1)), // func index
// code ------------------------------------------------------------------
ONE_EMPTY_BODY};
EXPECT_FAILURE_WITH_MSG(data, "function index 1 out of bounds");
}
TEST_F(WasmModuleVerifyTest, DataCountSectionCorrectPlacement) {
static const byte data[] = {SECTION(Element, ENTRY_COUNT(0)),
SECTION(DataCount, ENTRY_COUNT(0)),
SECTION(Code, ENTRY_COUNT(0))};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, DataCountSectionAfterCode) {
static const byte data[] = {SECTION(Code, ENTRY_COUNT(0)),
SECTION(DataCount, ENTRY_COUNT(0))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result,
"The DataCount section must appear before the Code section");
}
TEST_F(WasmModuleVerifyTest, DataCountSectionBeforeElement) {
static const byte data[] = {SECTION(DataCount, ENTRY_COUNT(0)),
SECTION(Element, ENTRY_COUNT(0))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "unexpected section <Element>");
}
TEST_F(WasmModuleVerifyTest, DataCountSectionAfterStartBeforeElement) {
static_assert(kStartSectionCode + 1 == kElementSectionCode);
static const byte data[] = {
// We need the start section for this test, but the start section must
// reference a valid function, which requires the type and function
// sections too.
TYPE_SECTION(1, SIG_ENTRY_v_v), // Type section.
FUNCTION_SECTION(1, 0), // Function section.
SECTION(Start, U32V_1(0)), // Start section.
SECTION(DataCount, ENTRY_COUNT(0)), // DataCount section.
SECTION(Element, ENTRY_COUNT(0)) // Element section.
};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "unexpected section <Element>");
}
TEST_F(WasmModuleVerifyTest, MultipleDataCountSections) {
static const byte data[] = {SECTION(DataCount, ENTRY_COUNT(0)),
SECTION(DataCount, ENTRY_COUNT(0))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "Multiple DataCount sections not allowed");
}
TEST_F(WasmModuleVerifyTest, DataCountSegmentCountMatch) {
static const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1), 0, 1), // Memory section.
SECTION(DataCount, ENTRY_COUNT(1)), // DataCount section.
SECTION(Data, ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0, // Data section.
WASM_INIT_EXPR_I32V_1(12), ADD_COUNT('h', 'i'))};
EXPECT_VERIFIES(data);
}
TEST_F(WasmModuleVerifyTest, DataCountSegmentCount_greater) {
static const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1), 0, 1), // Memory section.
SECTION(DataCount, ENTRY_COUNT(3)), // DataCount section.
SECTION(Data, ENTRY_COUNT(0))}; // Data section.
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "data segments count 0 mismatch (3 expected)");
}
TEST_F(WasmModuleVerifyTest, DataCountSegmentCount_less) {
static const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1), 0, 1), // Memory section.
SECTION(DataCount, ENTRY_COUNT(0)), // DataCount section.
SECTION(Data, ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0, // Data section.
WASM_INIT_EXPR_I32V_1(12), ADD_COUNT('a', 'b', 'c'))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "data segments count 1 mismatch (0 expected)");
}
TEST_F(WasmModuleVerifyTest, DataCountSegmentCount_omitted) {
static const byte data[] = {SECTION(Memory, ENTRY_COUNT(1), 0, 1),
SECTION(DataCount, ENTRY_COUNT(1))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "data segments count 0 mismatch (1 expected)");
}
TEST_F(WasmModuleVerifyTest, GcStructIdsPass) {
WASM_FEATURE_SCOPE(gc);
WASM_FEATURE_SCOPE(typed_funcref);
static const byte data[] = {SECTION(
Type, ENTRY_COUNT(1), // One recursive group...
kWasmRecursiveTypeGroupCode, ENTRY_COUNT(3), // with three entries.
WASM_STRUCT_DEF(FIELD_COUNT(3), STRUCT_FIELD(kI32Code, true),
STRUCT_FIELD(WASM_OPT_REF(0), true),
STRUCT_FIELD(WASM_OPT_REF(1), true)),
WASM_STRUCT_DEF(FIELD_COUNT(2), STRUCT_FIELD(WASM_OPT_REF(0), true),
STRUCT_FIELD(WASM_OPT_REF(2), true)),
WASM_ARRAY_DEF(WASM_OPT_REF(0), true))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_OK(result);
}
TEST_F(WasmModuleVerifyTest, OutOfBoundsTypeInGlobal) {
WASM_FEATURE_SCOPE(typed_funcref);
static const byte data[] = {
SECTION(Global, ENTRY_COUNT(1), kRefCode, 0, WASM_REF_NULL(0), kExprEnd)};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "Type index 0 is out of bounds");
}
TEST_F(WasmModuleVerifyTest, OutOfBoundsTypeInType) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(1),
WASM_STRUCT_DEF(FIELD_COUNT(1), STRUCT_FIELD(kRefCode, true)))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "Type index 1 is out of bounds");
}
TEST_F(WasmModuleVerifyTest, ForwardSupertype) {
WASM_FEATURE_SCOPE(typed_funcref);
WASM_FEATURE_SCOPE(gc);
static const byte data[] = {
SECTION(Type, ENTRY_COUNT(1), kWasmRecursiveTypeGroupCode, ENTRY_COUNT(1),
kWasmSubtypeCode, ENTRY_COUNT(1), 0,
WASM_STRUCT_DEF(FIELD_COUNT(1), STRUCT_FIELD(kRefCode, true)))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "type 0: forward-declared supertype 0");
}
TEST_F(WasmModuleVerifyTest, IllegalPackedFields) {
WASM_FEATURE_SCOPE(gc);
WASM_FEATURE_SCOPE(typed_funcref);
static const byte data[] = {
SECTION(Global, ENTRY_COUNT(1), kI16Code, 0, WASM_INIT_EXPR_I32V_1(13))};
ModuleResult result = DecodeModule(data, data + sizeof(data));
EXPECT_NOT_OK(result, "invalid value type");
}
TEST_F(WasmModuleVerifyTest, Memory64DataSegment) {
WASM_FEATURE_SCOPE(memory64);
for (bool enable_memory64 : {false, true}) {
for (bool use_memory64 : {false, true}) {
byte const_opcode = use_memory64 ? kExprI64Const : kExprI32Const;
const byte data[] = {
SECTION(Memory, ENTRY_COUNT(1),
enable_memory64 ? kMemory64WithMaximum : kWithMaximum, 28,
28),
SECTION(Data, ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0, // -
const_opcode, 0, kExprEnd, // dest addr
U32V_1(3), // source size
'a', 'b', 'c') // data bytes
};
if (enable_memory64 == use_memory64) {
EXPECT_VERIFIES(data);
} else if (enable_memory64) {
EXPECT_FAILURE_WITH_MSG(data, "expected i64, got i32");
} else {
EXPECT_FAILURE_WITH_MSG(data, "expected i32, got i64");
}
}
}
}
#undef EXPECT_INIT_EXPR
#undef EXPECT_INIT_EXPR_FAIL
#undef WASM_INIT_EXPR_I32V_1
#undef WASM_INIT_EXPR_I32V_2
#undef WASM_INIT_EXPR_I32V_3
#undef WASM_INIT_EXPR_I32V_4
#undef WASM_INIT_EXPR_I32V_5
#undef WASM_INIT_EXPR_F32
#undef WASM_INIT_EXPR_I64
#undef WASM_INIT_EXPR_F64
#undef WASM_INIT_EXPR_EXTERN_REF_NULL
#undef WASM_INIT_EXPR_FUNC_REF_NULL
#undef WASM_INIT_EXPR_REF_FUNC
#undef WASM_INIT_EXPR_GLOBAL
#undef REF_NULL_ELEMENT
#undef REF_FUNC_ELEMENT
#undef EMPTY_BODY
#undef NOP_BODY
#undef SIG_ENTRY_i_i
#undef UNKNOWN_SECTION
#undef ADD_COUNT
#undef SECTION
#undef TYPE_SECTION
#undef FUNCTION_SECTION
#undef FOO_STRING
#undef NO_LOCAL_NAMES
#undef EMPTY_TYPE_SECTION
#undef EMPTY_FUNCTION_SECTION
#undef EMPTY_FUNCTION_BODIES_SECTION
#undef SECTION_NAMES
#undef EMPTY_NAMES_SECTION
#undef SECTION_SRC_MAP
#undef SECTION_COMPILATION_HINTS
#undef FAIL_IF_NO_EXPERIMENTAL_EH
#undef X1
#undef X2
#undef X3
#undef X4
#undef ONE_EMPTY_FUNCTION
#undef TWO_EMPTY_FUNCTIONS
#undef THREE_EMPTY_FUNCTIONS
#undef FOUR_EMPTY_FUNCTIONS
#undef ONE_EMPTY_BODY
#undef TWO_EMPTY_BODIES
#undef THREE_EMPTY_BODIES
#undef FOUR_EMPTY_BODIES
#undef TYPE_SECTION_ONE_SIG_VOID_VOID
#undef LINEAR_MEMORY_INDEX_0
#undef FIELD_COUNT
#undef STRUCT_FIELD
#undef WASM_REF
#undef WASM_OPT_REF
#undef WASM_STRUCT_DEF
#undef WASM_ARRAY_DEF
#undef WASM_FUNCTION_DEF
#undef EXCEPTION_ENTRY
#undef EXPECT_VERIFIES
#undef EXPECT_FAILURE_LEN
#undef EXPECT_FAILURE
#undef EXPECT_OFF_END_FAILURE
#undef EXPECT_OK
#undef EXPECT_NOT_OK
} // namespace module_decoder_unittest
} // namespace wasm
} // namespace internal
} // namespace v8