v8/test/unittests/heap/cppgc/minor-gc-unittest.cc
Anton Bikineev a687e9fade cppgc: young-gen: Implement remembered set invalidation
This CL adds invalidations for slots that reside in promptly freed or
shrunk storage.

Bug: chromium:1029379
Change-Id: I05e0ede55c202c952b26f452053b8777d1a2ffae
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3431488
Reviewed-by: Omer Katz <omerkatz@chromium.org>
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Commit-Queue: Anton Bikineev <bikineev@chromium.org>
Cr-Commit-Position: refs/heads/main@{#78912}
2022-02-03 00:37:42 +00:00

328 lines
9.9 KiB
C++

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if defined(CPPGC_YOUNG_GENERATION)
#include "include/cppgc/allocation.h"
#include "include/cppgc/explicit-management.h"
#include "include/cppgc/heap-consistency.h"
#include "include/cppgc/internal/caged-heap-local-data.h"
#include "include/cppgc/persistent.h"
#include "src/heap/cppgc/heap-object-header.h"
#include "src/heap/cppgc/heap.h"
#include "test/unittests/heap/cppgc/tests.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace cppgc {
namespace internal {
namespace {
class SimpleGCedBase : public GarbageCollected<SimpleGCedBase> {
public:
static size_t destructed_objects;
virtual ~SimpleGCedBase() { ++destructed_objects; }
virtual void Trace(Visitor* v) const { v->Trace(next); }
Member<SimpleGCedBase> next;
};
size_t SimpleGCedBase::destructed_objects;
template <size_t Size>
class SimpleGCed : public SimpleGCedBase {
char array[Size];
};
using Small = SimpleGCed<64>;
using Large = SimpleGCed<kLargeObjectSizeThreshold * 2>;
template <typename Type>
struct OtherType;
template <>
struct OtherType<Small> {
using Type = Large;
};
template <>
struct OtherType<Large> {
using Type = Small;
};
class MinorGCTest : public testing::TestWithHeap {
public:
MinorGCTest() {
CollectMajor();
SimpleGCedBase::destructed_objects = 0;
}
static size_t DestructedObjects() {
return SimpleGCedBase::destructed_objects;
}
void CollectMinor() {
Heap::From(GetHeap())->CollectGarbage(
Heap::Config::MinorPreciseAtomicConfig());
}
void CollectMajor() {
Heap::From(GetHeap())->CollectGarbage(Heap::Config::PreciseAtomicConfig());
}
};
template <typename SmallOrLarge>
class MinorGCTestForType : public MinorGCTest {
public:
using Type = SmallOrLarge;
};
} // namespace
using ObjectTypes = ::testing::Types<Small, Large>;
TYPED_TEST_SUITE(MinorGCTestForType, ObjectTypes);
TYPED_TEST(MinorGCTestForType, MinorCollection) {
using Type = typename TestFixture::Type;
MakeGarbageCollected<Type>(this->GetAllocationHandle());
EXPECT_EQ(0u, TestFixture::DestructedObjects());
MinorGCTest::CollectMinor();
EXPECT_EQ(1u, TestFixture::DestructedObjects());
{
subtle::NoGarbageCollectionScope no_gc_scope(*Heap::From(this->GetHeap()));
Type* prev = nullptr;
for (size_t i = 0; i < 64; ++i) {
auto* ptr = MakeGarbageCollected<Type>(this->GetAllocationHandle());
ptr->next = prev;
prev = ptr;
}
}
MinorGCTest::CollectMinor();
EXPECT_EQ(65u, TestFixture::DestructedObjects());
}
TYPED_TEST(MinorGCTestForType, StickyBits) {
using Type = typename TestFixture::Type;
Persistent<Type> p1 = MakeGarbageCollected<Type>(this->GetAllocationHandle());
TestFixture::CollectMinor();
EXPECT_FALSE(HeapObjectHeader::FromObject(p1.Get()).IsYoung());
TestFixture::CollectMajor();
EXPECT_FALSE(HeapObjectHeader::FromObject(p1.Get()).IsYoung());
EXPECT_EQ(0u, TestFixture::DestructedObjects());
}
TYPED_TEST(MinorGCTestForType, OldObjectIsNotVisited) {
using Type = typename TestFixture::Type;
Persistent<Type> p = MakeGarbageCollected<Type>(this->GetAllocationHandle());
TestFixture::CollectMinor();
EXPECT_EQ(0u, TestFixture::DestructedObjects());
EXPECT_FALSE(HeapObjectHeader::FromObject(p.Get()).IsYoung());
// Check that the old deleted object won't be visited during minor GC.
Type* raw = p.Release();
TestFixture::CollectMinor();
EXPECT_EQ(0u, TestFixture::DestructedObjects());
EXPECT_FALSE(HeapObjectHeader::FromObject(raw).IsYoung());
EXPECT_FALSE(HeapObjectHeader::FromObject(raw).IsFree());
// Check that the old deleted object will be revisited in major GC.
TestFixture::CollectMajor();
EXPECT_EQ(1u, TestFixture::DestructedObjects());
}
template <typename Type1, typename Type2>
void InterGenerationalPointerTest(MinorGCTest* test, cppgc::Heap* heap) {
auto* internal_heap = Heap::From(heap);
Persistent<Type1> old =
MakeGarbageCollected<Type1>(heap->GetAllocationHandle());
test->CollectMinor();
EXPECT_FALSE(HeapObjectHeader::FromObject(old.Get()).IsYoung());
Type2* young = nullptr;
{
subtle::NoGarbageCollectionScope no_gc_scope(*Heap::From(heap));
// Allocate young objects.
for (size_t i = 0; i < 64; ++i) {
auto* ptr = MakeGarbageCollected<Type2>(heap->GetAllocationHandle());
ptr->next = young;
young = ptr;
EXPECT_TRUE(HeapObjectHeader::FromObject(young).IsYoung());
const uintptr_t offset =
internal_heap->caged_heap().OffsetFromAddress(young);
// Age may be young or unknown.
EXPECT_NE(AgeTable::Age::kOld,
Heap::From(heap)->caged_heap().local_data().age_table[offset]);
}
}
const auto& set = Heap::From(heap)->remembered_slots();
auto set_size_before = set.size();
// Issue generational barrier.
old->next = young;
EXPECT_EQ(set_size_before + 1u, set.size());
// Check that the remembered set is visited.
test->CollectMinor();
EXPECT_EQ(0u, MinorGCTest::DestructedObjects());
EXPECT_TRUE(set.empty());
for (size_t i = 0; i < 64; ++i) {
EXPECT_FALSE(HeapObjectHeader::FromObject(young).IsFree());
EXPECT_FALSE(HeapObjectHeader::FromObject(young).IsYoung());
young = static_cast<Type2*>(young->next.Get());
}
old.Release();
test->CollectMajor();
EXPECT_EQ(65u, MinorGCTest::DestructedObjects());
}
TYPED_TEST(MinorGCTestForType, InterGenerationalPointerForSamePageTypes) {
using Type = typename TestFixture::Type;
InterGenerationalPointerTest<Type, Type>(this, this->GetHeap());
}
TYPED_TEST(MinorGCTestForType, InterGenerationalPointerForDifferentPageTypes) {
using Type = typename TestFixture::Type;
InterGenerationalPointerTest<Type, typename OtherType<Type>::Type>(
this, this->GetHeap());
}
TYPED_TEST(MinorGCTestForType, OmitGenerationalBarrierForOnStackObject) {
using Type = typename TestFixture::Type;
class StackAllocated : GarbageCollected<StackAllocated> {
CPPGC_STACK_ALLOCATED();
public:
Type* ptr = nullptr;
} stack_object;
// Try issuing generational barrier for on-stack object.
stack_object.ptr = MakeGarbageCollected<Type>(this->GetAllocationHandle());
subtle::HeapConsistency::WriteBarrierParams params;
EXPECT_EQ(subtle::HeapConsistency::WriteBarrierType::kNone,
subtle::HeapConsistency::GetWriteBarrierType(
reinterpret_cast<void*>(&stack_object.ptr), stack_object.ptr,
params));
}
TYPED_TEST(MinorGCTestForType, OmitGenerationalBarrierForSentinels) {
using Type = typename TestFixture::Type;
Persistent<Type> old =
MakeGarbageCollected<Type>(this->GetAllocationHandle());
TestFixture::CollectMinor();
EXPECT_FALSE(HeapObjectHeader::FromObject(old.Get()).IsYoung());
const auto& set = Heap::From(this->GetHeap())->remembered_slots();
const size_t set_size_before_barrier = set.size();
// Try issuing generational barrier for nullptr.
old->next = static_cast<Type*>(nullptr);
EXPECT_EQ(set_size_before_barrier, set.size());
// Try issuing generational barrier for sentinel.
old->next = static_cast<Type*>(kSentinelPointer);
EXPECT_EQ(set_size_before_barrier, set.size());
}
template <typename From, typename To>
void TestRememberedSetInvalidation(MinorGCTest& test) {
Persistent<From> old = MakeGarbageCollected<From>(test.GetAllocationHandle());
test.CollectMinor();
auto* young = MakeGarbageCollected<To>(test.GetAllocationHandle());
const auto& set = Heap::From(test.GetHeap())->remembered_slots();
const size_t set_size_before_barrier = set.size();
// Issue the generational barrier.
old->next = young;
EXPECT_EQ(set_size_before_barrier + 1, set.size());
// Release the persistent and free the old object.
auto* old_raw = old.Release();
subtle::FreeUnreferencedObject(test.GetHeapHandle(), *old_raw);
// Check that the reference was invalidated.
EXPECT_EQ(set_size_before_barrier, set.size());
// Visiting remembered slots must not fail.
test.CollectMinor();
}
TYPED_TEST(MinorGCTestForType, RememberedSetInvalidationOnPromptlyFree) {
using Type1 = typename TestFixture::Type;
using Type2 = typename OtherType<Type1>::Type;
TestRememberedSetInvalidation<Type1, Type1>(*this);
TestRememberedSetInvalidation<Type1, Type2>(*this);
}
TEST_F(MinorGCTest, RememberedSetInvalidationOnShrink) {
using Member = Member<Small>;
static constexpr size_t kTrailingMembers = 64;
static constexpr size_t kBytesToAllocate = kTrailingMembers * sizeof(Member);
static constexpr size_t kFirstMemberToInvalidate = 63;
static constexpr size_t kLastMemberToInvalidate = kTrailingMembers;
// Create an object with additional kBytesToAllocate bytes.
Persistent<Small> old = MakeGarbageCollected<Small>(
this->GetAllocationHandle(), AdditionalBytes(kBytesToAllocate));
auto get_member = [&old](size_t i) -> Member& {
return *reinterpret_cast<Member*>(reinterpret_cast<uint8_t*>(old.Get()) +
sizeof(Small) + i * sizeof(Member));
};
CollectMinor();
auto* young = MakeGarbageCollected<Small>(GetAllocationHandle());
const auto& set = Heap::From(GetHeap())->remembered_slots();
const size_t set_size_before_barrier = set.size();
// Issue the generational barriers.
for (size_t i = kFirstMemberToInvalidate; i < kLastMemberToInvalidate; ++i) {
// Construct the member.
new (&get_member(i)) Member;
// Issue the barrier.
get_member(i) = young;
}
// Check that barriers hit (kLastMemberToInvalidate -
// kFirstMemberToInvalidate) times.
EXPECT_EQ(set_size_before_barrier +
(kLastMemberToInvalidate - kFirstMemberToInvalidate),
set.size());
// Shrink the buffer for old object.
subtle::Resize(*old, AdditionalBytes(kBytesToAllocate / 2));
// Check that the reference was invalidated.
EXPECT_EQ(set_size_before_barrier, set.size());
// Visiting remembered slots must not fail.
CollectMinor();
}
} // namespace internal
} // namespace cppgc
#endif