v8/src/utils.h
jochen@chromium.org 65a983a481 Reland 20962 "Break cyclic reference between utils and platform."
Don't use OS::MemCopy in BitCast. It's crucial that the compiler can
optimize the memcpy away.

>  Platform includes utils.h for the definition of Vector<>, so utils.h
>  can't include platform.h and has to use memcpy instead of OS::MemCopy.
>
>  We split out Vector<> into its own header to break this cycle
>  dependency.
>
>  BUG=none
>  R=mstarzinger@chromium.org
>  LOG=n
>
>  Review URL: https://codereview.chromium.org/251753002

TBR=jkummerow@chromium.org
LOG=n
BUG=none

Review URL: https://codereview.chromium.org/252683004

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@20983 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-04-25 13:43:58 +00:00

1060 lines
31 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_UTILS_H_
#define V8_UTILS_H_
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "allocation.h"
#include "checks.h"
#include "globals.h"
#include "platform.h"
#include "vector.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// General helper functions
#define IS_POWER_OF_TWO(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
// Returns true iff x is a power of 2. Cannot be used with the maximally
// negative value of the type T (the -1 overflows).
template <typename T>
inline bool IsPowerOf2(T x) {
return IS_POWER_OF_TWO(x);
}
// X must be a power of 2. Returns the number of trailing zeros.
inline int WhichPowerOf2(uint32_t x) {
ASSERT(IsPowerOf2(x));
int bits = 0;
#ifdef DEBUG
int original_x = x;
#endif
if (x >= 0x10000) {
bits += 16;
x >>= 16;
}
if (x >= 0x100) {
bits += 8;
x >>= 8;
}
if (x >= 0x10) {
bits += 4;
x >>= 4;
}
switch (x) {
default: UNREACHABLE();
case 8: bits++; // Fall through.
case 4: bits++; // Fall through.
case 2: bits++; // Fall through.
case 1: break;
}
ASSERT_EQ(1 << bits, original_x);
return bits;
return 0;
}
inline int MostSignificantBit(uint32_t x) {
static const int msb4[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4};
int nibble = 0;
if (x & 0xffff0000) {
nibble += 16;
x >>= 16;
}
if (x & 0xff00) {
nibble += 8;
x >>= 8;
}
if (x & 0xf0) {
nibble += 4;
x >>= 4;
}
return nibble + msb4[x];
}
// The C++ standard leaves the semantics of '>>' undefined for
// negative signed operands. Most implementations do the right thing,
// though.
inline int ArithmeticShiftRight(int x, int s) {
return x >> s;
}
// Compute the 0-relative offset of some absolute value x of type T.
// This allows conversion of Addresses and integral types into
// 0-relative int offsets.
template <typename T>
inline intptr_t OffsetFrom(T x) {
return x - static_cast<T>(0);
}
// Compute the absolute value of type T for some 0-relative offset x.
// This allows conversion of 0-relative int offsets into Addresses and
// integral types.
template <typename T>
inline T AddressFrom(intptr_t x) {
return static_cast<T>(static_cast<T>(0) + x);
}
// Return the largest multiple of m which is <= x.
template <typename T>
inline T RoundDown(T x, intptr_t m) {
ASSERT(IsPowerOf2(m));
return AddressFrom<T>(OffsetFrom(x) & -m);
}
// Return the smallest multiple of m which is >= x.
template <typename T>
inline T RoundUp(T x, intptr_t m) {
return RoundDown<T>(static_cast<T>(x + m - 1), m);
}
// Increment a pointer until it has the specified alignment.
// This works like RoundUp, but it works correctly on pointer types where
// sizeof(*pointer) might not be 1.
template<class T>
T AlignUp(T pointer, size_t alignment) {
ASSERT(sizeof(pointer) == sizeof(uintptr_t));
uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
return reinterpret_cast<T>(RoundUp(pointer_raw, alignment));
}
template <typename T>
int Compare(const T& a, const T& b) {
if (a == b)
return 0;
else if (a < b)
return -1;
else
return 1;
}
template <typename T>
int PointerValueCompare(const T* a, const T* b) {
return Compare<T>(*a, *b);
}
// Compare function to compare the object pointer value of two
// handlified objects. The handles are passed as pointers to the
// handles.
template<typename T> class Handle; // Forward declaration.
template <typename T>
int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
return Compare<T*>(*(*a), *(*b));
}
// Returns the smallest power of two which is >= x. If you pass in a
// number that is already a power of two, it is returned as is.
// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
// figure 3-3, page 48, where the function is called clp2.
inline uint32_t RoundUpToPowerOf2(uint32_t x) {
ASSERT(x <= 0x80000000u);
x = x - 1;
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
return x + 1;
}
inline uint32_t RoundDownToPowerOf2(uint32_t x) {
uint32_t rounded_up = RoundUpToPowerOf2(x);
if (rounded_up > x) return rounded_up >> 1;
return rounded_up;
}
template <typename T, typename U>
inline bool IsAligned(T value, U alignment) {
return (value & (alignment - 1)) == 0;
}
// Returns true if (addr + offset) is aligned.
inline bool IsAddressAligned(Address addr,
intptr_t alignment,
int offset = 0) {
intptr_t offs = OffsetFrom(addr + offset);
return IsAligned(offs, alignment);
}
// Returns the maximum of the two parameters.
template <typename T>
T Max(T a, T b) {
return a < b ? b : a;
}
// Returns the minimum of the two parameters.
template <typename T>
T Min(T a, T b) {
return a < b ? a : b;
}
// Returns the absolute value of its argument.
template <typename T>
T Abs(T a) {
return a < 0 ? -a : a;
}
// Returns the negative absolute value of its argument.
template <typename T>
T NegAbs(T a) {
return a < 0 ? a : -a;
}
// TODO(svenpanne) Clean up the whole power-of-2 mess.
inline int32_t WhichPowerOf2Abs(int32_t x) {
return (x == kMinInt) ? 31 : WhichPowerOf2(Abs(x));
}
// ----------------------------------------------------------------------------
// BitField is a help template for encoding and decode bitfield with
// unsigned content.
template<class T, int shift, int size, class U>
class BitFieldBase {
public:
// A type U mask of bit field. To use all bits of a type U of x bits
// in a bitfield without compiler warnings we have to compute 2^x
// without using a shift count of x in the computation.
static const U kOne = static_cast<U>(1U);
static const U kMask = ((kOne << shift) << size) - (kOne << shift);
static const U kShift = shift;
static const U kSize = size;
// Value for the field with all bits set.
static const T kMax = static_cast<T>((1U << size) - 1);
// Tells whether the provided value fits into the bit field.
static bool is_valid(T value) {
return (static_cast<U>(value) & ~static_cast<U>(kMax)) == 0;
}
// Returns a type U with the bit field value encoded.
static U encode(T value) {
ASSERT(is_valid(value));
return static_cast<U>(value) << shift;
}
// Returns a type U with the bit field value updated.
static U update(U previous, T value) {
return (previous & ~kMask) | encode(value);
}
// Extracts the bit field from the value.
static T decode(U value) {
return static_cast<T>((value & kMask) >> shift);
}
};
template<class T, int shift, int size>
class BitField : public BitFieldBase<T, shift, size, uint32_t> { };
template<class T, int shift, int size>
class BitField64 : public BitFieldBase<T, shift, size, uint64_t> { };
// ----------------------------------------------------------------------------
// Hash function.
static const uint32_t kZeroHashSeed = 0;
// Thomas Wang, Integer Hash Functions.
// http://www.concentric.net/~Ttwang/tech/inthash.htm
inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) {
uint32_t hash = key;
hash = hash ^ seed;
hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1;
hash = hash ^ (hash >> 12);
hash = hash + (hash << 2);
hash = hash ^ (hash >> 4);
hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11);
hash = hash ^ (hash >> 16);
return hash;
}
inline uint32_t ComputeLongHash(uint64_t key) {
uint64_t hash = key;
hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1;
hash = hash ^ (hash >> 31);
hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4);
hash = hash ^ (hash >> 11);
hash = hash + (hash << 6);
hash = hash ^ (hash >> 22);
return static_cast<uint32_t>(hash);
}
inline uint32_t ComputePointerHash(void* ptr) {
return ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)),
v8::internal::kZeroHashSeed);
}
// ----------------------------------------------------------------------------
// Miscellaneous
// A static resource holds a static instance that can be reserved in
// a local scope using an instance of Access. Attempts to re-reserve
// the instance will cause an error.
template <typename T>
class StaticResource {
public:
StaticResource() : is_reserved_(false) {}
private:
template <typename S> friend class Access;
T instance_;
bool is_reserved_;
};
// Locally scoped access to a static resource.
template <typename T>
class Access {
public:
explicit Access(StaticResource<T>* resource)
: resource_(resource)
, instance_(&resource->instance_) {
ASSERT(!resource->is_reserved_);
resource->is_reserved_ = true;
}
~Access() {
resource_->is_reserved_ = false;
resource_ = NULL;
instance_ = NULL;
}
T* value() { return instance_; }
T* operator -> () { return instance_; }
private:
StaticResource<T>* resource_;
T* instance_;
};
// A pointer that can only be set once and doesn't allow NULL values.
template<typename T>
class SetOncePointer {
public:
SetOncePointer() : pointer_(NULL) { }
bool is_set() const { return pointer_ != NULL; }
T* get() const {
ASSERT(pointer_ != NULL);
return pointer_;
}
void set(T* value) {
ASSERT(pointer_ == NULL && value != NULL);
pointer_ = value;
}
private:
T* pointer_;
};
template <typename T, int kSize>
class EmbeddedVector : public Vector<T> {
public:
EmbeddedVector() : Vector<T>(buffer_, kSize) { }
explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
for (int i = 0; i < kSize; ++i) {
buffer_[i] = initial_value;
}
}
// When copying, make underlying Vector to reference our buffer.
EmbeddedVector(const EmbeddedVector& rhs)
: Vector<T>(rhs) {
OS::MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize);
set_start(buffer_);
}
EmbeddedVector& operator=(const EmbeddedVector& rhs) {
if (this == &rhs) return *this;
Vector<T>::operator=(rhs);
OS::MemCopy(buffer_, rhs.buffer_, sizeof(T) * kSize);
this->set_start(buffer_);
return *this;
}
private:
T buffer_[kSize];
};
/*
* A class that collects values into a backing store.
* Specialized versions of the class can allow access to the backing store
* in different ways.
* There is no guarantee that the backing store is contiguous (and, as a
* consequence, no guarantees that consecutively added elements are adjacent
* in memory). The collector may move elements unless it has guaranteed not
* to.
*/
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class Collector {
public:
explicit Collector(int initial_capacity = kMinCapacity)
: index_(0), size_(0) {
current_chunk_ = Vector<T>::New(initial_capacity);
}
virtual ~Collector() {
// Free backing store (in reverse allocation order).
current_chunk_.Dispose();
for (int i = chunks_.length() - 1; i >= 0; i--) {
chunks_.at(i).Dispose();
}
}
// Add a single element.
inline void Add(T value) {
if (index_ >= current_chunk_.length()) {
Grow(1);
}
current_chunk_[index_] = value;
index_++;
size_++;
}
// Add a block of contiguous elements and return a Vector backed by the
// memory area.
// A basic Collector will keep this vector valid as long as the Collector
// is alive.
inline Vector<T> AddBlock(int size, T initial_value) {
ASSERT(size > 0);
if (size > current_chunk_.length() - index_) {
Grow(size);
}
T* position = current_chunk_.start() + index_;
index_ += size;
size_ += size;
for (int i = 0; i < size; i++) {
position[i] = initial_value;
}
return Vector<T>(position, size);
}
// Add a contiguous block of elements and return a vector backed
// by the added block.
// A basic Collector will keep this vector valid as long as the Collector
// is alive.
inline Vector<T> AddBlock(Vector<const T> source) {
if (source.length() > current_chunk_.length() - index_) {
Grow(source.length());
}
T* position = current_chunk_.start() + index_;
index_ += source.length();
size_ += source.length();
for (int i = 0; i < source.length(); i++) {
position[i] = source[i];
}
return Vector<T>(position, source.length());
}
// Write the contents of the collector into the provided vector.
void WriteTo(Vector<T> destination) {
ASSERT(size_ <= destination.length());
int position = 0;
for (int i = 0; i < chunks_.length(); i++) {
Vector<T> chunk = chunks_.at(i);
for (int j = 0; j < chunk.length(); j++) {
destination[position] = chunk[j];
position++;
}
}
for (int i = 0; i < index_; i++) {
destination[position] = current_chunk_[i];
position++;
}
}
// Allocate a single contiguous vector, copy all the collected
// elements to the vector, and return it.
// The caller is responsible for freeing the memory of the returned
// vector (e.g., using Vector::Dispose).
Vector<T> ToVector() {
Vector<T> new_store = Vector<T>::New(size_);
WriteTo(new_store);
return new_store;
}
// Resets the collector to be empty.
virtual void Reset();
// Total number of elements added to collector so far.
inline int size() { return size_; }
protected:
static const int kMinCapacity = 16;
List<Vector<T> > chunks_;
Vector<T> current_chunk_; // Block of memory currently being written into.
int index_; // Current index in current chunk.
int size_; // Total number of elements in collector.
// Creates a new current chunk, and stores the old chunk in the chunks_ list.
void Grow(int min_capacity) {
ASSERT(growth_factor > 1);
int new_capacity;
int current_length = current_chunk_.length();
if (current_length < kMinCapacity) {
// The collector started out as empty.
new_capacity = min_capacity * growth_factor;
if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
} else {
int growth = current_length * (growth_factor - 1);
if (growth > max_growth) {
growth = max_growth;
}
new_capacity = current_length + growth;
if (new_capacity < min_capacity) {
new_capacity = min_capacity + growth;
}
}
NewChunk(new_capacity);
ASSERT(index_ + min_capacity <= current_chunk_.length());
}
// Before replacing the current chunk, give a subclass the option to move
// some of the current data into the new chunk. The function may update
// the current index_ value to represent data no longer in the current chunk.
// Returns the initial index of the new chunk (after copied data).
virtual void NewChunk(int new_capacity) {
Vector<T> new_chunk = Vector<T>::New(new_capacity);
if (index_ > 0) {
chunks_.Add(current_chunk_.SubVector(0, index_));
} else {
current_chunk_.Dispose();
}
current_chunk_ = new_chunk;
index_ = 0;
}
};
/*
* A collector that allows sequences of values to be guaranteed to
* stay consecutive.
* If the backing store grows while a sequence is active, the current
* sequence might be moved, but after the sequence is ended, it will
* not move again.
* NOTICE: Blocks allocated using Collector::AddBlock(int) can move
* as well, if inside an active sequence where another element is added.
*/
template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
class SequenceCollector : public Collector<T, growth_factor, max_growth> {
public:
explicit SequenceCollector(int initial_capacity)
: Collector<T, growth_factor, max_growth>(initial_capacity),
sequence_start_(kNoSequence) { }
virtual ~SequenceCollector() {}
void StartSequence() {
ASSERT(sequence_start_ == kNoSequence);
sequence_start_ = this->index_;
}
Vector<T> EndSequence() {
ASSERT(sequence_start_ != kNoSequence);
int sequence_start = sequence_start_;
sequence_start_ = kNoSequence;
if (sequence_start == this->index_) return Vector<T>();
return this->current_chunk_.SubVector(sequence_start, this->index_);
}
// Drops the currently added sequence, and all collected elements in it.
void DropSequence() {
ASSERT(sequence_start_ != kNoSequence);
int sequence_length = this->index_ - sequence_start_;
this->index_ = sequence_start_;
this->size_ -= sequence_length;
sequence_start_ = kNoSequence;
}
virtual void Reset() {
sequence_start_ = kNoSequence;
this->Collector<T, growth_factor, max_growth>::Reset();
}
private:
static const int kNoSequence = -1;
int sequence_start_;
// Move the currently active sequence to the new chunk.
virtual void NewChunk(int new_capacity) {
if (sequence_start_ == kNoSequence) {
// Fall back on default behavior if no sequence has been started.
this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
return;
}
int sequence_length = this->index_ - sequence_start_;
Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
ASSERT(sequence_length < new_chunk.length());
for (int i = 0; i < sequence_length; i++) {
new_chunk[i] = this->current_chunk_[sequence_start_ + i];
}
if (sequence_start_ > 0) {
this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
} else {
this->current_chunk_.Dispose();
}
this->current_chunk_ = new_chunk;
this->index_ = sequence_length;
sequence_start_ = 0;
}
};
// Compare ASCII/16bit chars to ASCII/16bit chars.
template <typename lchar, typename rchar>
inline int CompareCharsUnsigned(const lchar* lhs,
const rchar* rhs,
int chars) {
const lchar* limit = lhs + chars;
#ifdef V8_HOST_CAN_READ_UNALIGNED
if (sizeof(*lhs) == sizeof(*rhs)) {
// Number of characters in a uintptr_t.
static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT
while (lhs <= limit - kStepSize) {
if (*reinterpret_cast<const uintptr_t*>(lhs) !=
*reinterpret_cast<const uintptr_t*>(rhs)) {
break;
}
lhs += kStepSize;
rhs += kStepSize;
}
}
#endif
while (lhs < limit) {
int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
if (r != 0) return r;
++lhs;
++rhs;
}
return 0;
}
template<typename lchar, typename rchar>
inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
ASSERT(sizeof(lchar) <= 2);
ASSERT(sizeof(rchar) <= 2);
if (sizeof(lchar) == 1) {
if (sizeof(rchar) == 1) {
return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
reinterpret_cast<const uint8_t*>(rhs),
chars);
} else {
return CompareCharsUnsigned(reinterpret_cast<const uint8_t*>(lhs),
reinterpret_cast<const uint16_t*>(rhs),
chars);
}
} else {
if (sizeof(rchar) == 1) {
return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
reinterpret_cast<const uint8_t*>(rhs),
chars);
} else {
return CompareCharsUnsigned(reinterpret_cast<const uint16_t*>(lhs),
reinterpret_cast<const uint16_t*>(rhs),
chars);
}
}
}
// Calculate 10^exponent.
inline int TenToThe(int exponent) {
ASSERT(exponent <= 9);
ASSERT(exponent >= 1);
int answer = 10;
for (int i = 1; i < exponent; i++) answer *= 10;
return answer;
}
// The type-based aliasing rule allows the compiler to assume that pointers of
// different types (for some definition of different) never alias each other.
// Thus the following code does not work:
//
// float f = foo();
// int fbits = *(int*)(&f);
//
// The compiler 'knows' that the int pointer can't refer to f since the types
// don't match, so the compiler may cache f in a register, leaving random data
// in fbits. Using C++ style casts makes no difference, however a pointer to
// char data is assumed to alias any other pointer. This is the 'memcpy
// exception'.
//
// Bit_cast uses the memcpy exception to move the bits from a variable of one
// type of a variable of another type. Of course the end result is likely to
// be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005)
// will completely optimize BitCast away.
//
// There is an additional use for BitCast.
// Recent gccs will warn when they see casts that may result in breakage due to
// the type-based aliasing rule. If you have checked that there is no breakage
// you can use BitCast to cast one pointer type to another. This confuses gcc
// enough that it can no longer see that you have cast one pointer type to
// another thus avoiding the warning.
// We need different implementations of BitCast for pointer and non-pointer
// values. We use partial specialization of auxiliary struct to work around
// issues with template functions overloading.
template <class Dest, class Source>
struct BitCastHelper {
STATIC_ASSERT(sizeof(Dest) == sizeof(Source));
INLINE(static Dest cast(const Source& source)) {
Dest dest;
memcpy(&dest, &source, sizeof(dest));
return dest;
}
};
template <class Dest, class Source>
struct BitCastHelper<Dest, Source*> {
INLINE(static Dest cast(Source* source)) {
return BitCastHelper<Dest, uintptr_t>::
cast(reinterpret_cast<uintptr_t>(source));
}
};
template <class Dest, class Source>
INLINE(Dest BitCast(const Source& source));
template <class Dest, class Source>
inline Dest BitCast(const Source& source) {
return BitCastHelper<Dest, Source>::cast(source);
}
template<typename ElementType, int NumElements>
class EmbeddedContainer {
public:
EmbeddedContainer() : elems_() { }
int length() const { return NumElements; }
const ElementType& operator[](int i) const {
ASSERT(i < length());
return elems_[i];
}
ElementType& operator[](int i) {
ASSERT(i < length());
return elems_[i];
}
private:
ElementType elems_[NumElements];
};
template<typename ElementType>
class EmbeddedContainer<ElementType, 0> {
public:
int length() const { return 0; }
const ElementType& operator[](int i) const {
UNREACHABLE();
static ElementType t = 0;
return t;
}
ElementType& operator[](int i) {
UNREACHABLE();
static ElementType t = 0;
return t;
}
};
// Helper class for building result strings in a character buffer. The
// purpose of the class is to use safe operations that checks the
// buffer bounds on all operations in debug mode.
// This simple base class does not allow formatted output.
class SimpleStringBuilder {
public:
// Create a string builder with a buffer of the given size. The
// buffer is allocated through NewArray<char> and must be
// deallocated by the caller of Finalize().
explicit SimpleStringBuilder(int size);
SimpleStringBuilder(char* buffer, int size)
: buffer_(buffer, size), position_(0) { }
~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }
int size() const { return buffer_.length(); }
// Get the current position in the builder.
int position() const {
ASSERT(!is_finalized());
return position_;
}
// Reset the position.
void Reset() { position_ = 0; }
// Add a single character to the builder. It is not allowed to add
// 0-characters; use the Finalize() method to terminate the string
// instead.
void AddCharacter(char c) {
ASSERT(c != '\0');
ASSERT(!is_finalized() && position_ < buffer_.length());
buffer_[position_++] = c;
}
// Add an entire string to the builder. Uses strlen() internally to
// compute the length of the input string.
void AddString(const char* s);
// Add the first 'n' characters of the given string 's' to the
// builder. The input string must have enough characters.
void AddSubstring(const char* s, int n);
// Add character padding to the builder. If count is non-positive,
// nothing is added to the builder.
void AddPadding(char c, int count);
// Add the decimal representation of the value.
void AddDecimalInteger(int value);
// Finalize the string by 0-terminating it and returning the buffer.
char* Finalize();
protected:
Vector<char> buffer_;
int position_;
bool is_finalized() const { return position_ < 0; }
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
};
// A poor man's version of STL's bitset: A bit set of enums E (without explicit
// values), fitting into an integral type T.
template <class E, class T = int>
class EnumSet {
public:
explicit EnumSet(T bits = 0) : bits_(bits) {}
bool IsEmpty() const { return bits_ == 0; }
bool Contains(E element) const { return (bits_ & Mask(element)) != 0; }
bool ContainsAnyOf(const EnumSet& set) const {
return (bits_ & set.bits_) != 0;
}
void Add(E element) { bits_ |= Mask(element); }
void Add(const EnumSet& set) { bits_ |= set.bits_; }
void Remove(E element) { bits_ &= ~Mask(element); }
void Remove(const EnumSet& set) { bits_ &= ~set.bits_; }
void RemoveAll() { bits_ = 0; }
void Intersect(const EnumSet& set) { bits_ &= set.bits_; }
T ToIntegral() const { return bits_; }
bool operator==(const EnumSet& set) { return bits_ == set.bits_; }
bool operator!=(const EnumSet& set) { return bits_ != set.bits_; }
EnumSet<E, T> operator|(const EnumSet& set) const {
return EnumSet<E, T>(bits_ | set.bits_);
}
private:
T Mask(E element) const {
// The strange typing in ASSERT is necessary to avoid stupid warnings, see:
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680
ASSERT(static_cast<int>(element) < static_cast<int>(sizeof(T) * CHAR_BIT));
return static_cast<T>(1) << element;
}
T bits_;
};
// Bit field extraction.
inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
}
inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
}
inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
return (x << (31 - msb)) >> (lsb + 31 - msb);
}
inline int signed_bitextract_64(int msb, int lsb, int x) {
// TODO(jbramley): This is broken for big bitfields.
return (x << (63 - msb)) >> (lsb + 63 - msb);
}
// Check number width.
inline bool is_intn(int64_t x, unsigned n) {
ASSERT((0 < n) && (n < 64));
int64_t limit = static_cast<int64_t>(1) << (n - 1);
return (-limit <= x) && (x < limit);
}
inline bool is_uintn(int64_t x, unsigned n) {
ASSERT((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
return !(x >> n);
}
template <class T>
inline T truncate_to_intn(T x, unsigned n) {
ASSERT((0 < n) && (n < (sizeof(x) * kBitsPerByte)));
return (x & ((static_cast<T>(1) << n) - 1));
}
#define INT_1_TO_63_LIST(V) \
V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \
V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \
V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \
V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \
V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \
V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \
V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \
V(57) V(58) V(59) V(60) V(61) V(62) V(63)
#define DECLARE_IS_INT_N(N) \
inline bool is_int##N(int64_t x) { return is_intn(x, N); }
#define DECLARE_IS_UINT_N(N) \
template <class T> \
inline bool is_uint##N(T x) { return is_uintn(x, N); }
#define DECLARE_TRUNCATE_TO_INT_N(N) \
template <class T> \
inline T truncate_to_int##N(T x) { return truncate_to_intn(x, N); }
INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
#undef DECLARE_IS_INT_N
#undef DECLARE_IS_UINT_N
#undef DECLARE_TRUNCATE_TO_INT_N
class TypeFeedbackId {
public:
explicit TypeFeedbackId(int id) : id_(id) { }
int ToInt() const { return id_; }
static TypeFeedbackId None() { return TypeFeedbackId(kNoneId); }
bool IsNone() const { return id_ == kNoneId; }
private:
static const int kNoneId = -1;
int id_;
};
class BailoutId {
public:
explicit BailoutId(int id) : id_(id) { }
int ToInt() const { return id_; }
static BailoutId None() { return BailoutId(kNoneId); }
static BailoutId FunctionEntry() { return BailoutId(kFunctionEntryId); }
static BailoutId Declarations() { return BailoutId(kDeclarationsId); }
static BailoutId FirstUsable() { return BailoutId(kFirstUsableId); }
static BailoutId StubEntry() { return BailoutId(kStubEntryId); }
bool IsNone() const { return id_ == kNoneId; }
bool operator==(const BailoutId& other) const { return id_ == other.id_; }
bool operator!=(const BailoutId& other) const { return id_ != other.id_; }
private:
static const int kNoneId = -1;
// Using 0 could disguise errors.
static const int kFunctionEntryId = 2;
// This AST id identifies the point after the declarations have been visited.
// We need it to capture the environment effects of declarations that emit
// code (function declarations).
static const int kDeclarationsId = 3;
// Every FunctionState starts with this id.
static const int kFirstUsableId = 4;
// Every compiled stub starts with this id.
static const int kStubEntryId = 5;
int id_;
};
template <class C>
class ContainerPointerWrapper {
public:
typedef typename C::iterator iterator;
typedef typename C::reverse_iterator reverse_iterator;
explicit ContainerPointerWrapper(C* container) : container_(container) {}
iterator begin() { return container_->begin(); }
iterator end() { return container_->end(); }
reverse_iterator rbegin() { return container_->rbegin(); }
reverse_iterator rend() { return container_->rend(); }
private:
C* container_;
};
} } // namespace v8::internal
#endif // V8_UTILS_H_