v8/test/cctest/test-assembler-mips64.cc
2014-07-29 18:02:26 +00:00

1376 lines
38 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/v8.h"
#include "src/disassembler.h"
#include "src/factory.h"
#include "src/macro-assembler.h"
#include "src/mips64/macro-assembler-mips64.h"
#include "src/mips64/simulator-mips64.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
// Define these function prototypes to match JSEntryFunction in execution.cc.
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F2)(int x, int y, int p2, int p3, int p4);
typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);
#define __ assm.
TEST(MIPS0) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
// Addition.
__ addu(v0, a0, a1);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res =
reinterpret_cast<int64_t>(CALL_GENERATED_CODE(f, 0xab0, 0xc, 0, 0, 0));
::printf("f() = %ld\n", res);
CHECK_EQ(0xabcL, res);
}
TEST(MIPS1) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
Label L, C;
__ mov(a1, a0);
__ li(v0, 0);
__ b(&C);
__ nop();
__ bind(&L);
__ addu(v0, v0, a1);
__ addiu(a1, a1, -1);
__ bind(&C);
__ xori(v1, a1, 0);
__ Branch(&L, ne, v1, Operand((int64_t)0));
__ nop();
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F1 f = FUNCTION_CAST<F1>(code->entry());
int64_t res =
reinterpret_cast<int64_t>(CALL_GENERATED_CODE(f, 50, 0, 0, 0, 0));
::printf("f() = %ld\n", res);
CHECK_EQ(1275L, res);
}
TEST(MIPS2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
Label exit, error;
// ----- Test all instructions.
// Test lui, ori, and addiu, used in the li pseudo-instruction.
// This way we can then safely load registers with chosen values.
__ ori(a4, zero_reg, 0);
__ lui(a4, 0x1234);
__ ori(a4, a4, 0);
__ ori(a4, a4, 0x0f0f);
__ ori(a4, a4, 0xf0f0);
__ addiu(a5, a4, 1);
__ addiu(a6, a5, -0x10);
// Load values in temporary registers.
__ li(a4, 0x00000004);
__ li(a5, 0x00001234);
__ li(a6, 0x12345678);
__ li(a7, 0x7fffffff);
__ li(t0, 0xfffffffc);
__ li(t1, 0xffffedcc);
__ li(t2, 0xedcba988);
__ li(t3, 0x80000000);
// SPECIAL class.
__ srl(v0, a6, 8); // 0x00123456
__ sll(v0, v0, 11); // 0x91a2b000
__ sra(v0, v0, 3); // 0xf2345600
__ srav(v0, v0, a4); // 0xff234560
__ sllv(v0, v0, a4); // 0xf2345600
__ srlv(v0, v0, a4); // 0x0f234560
__ Branch(&error, ne, v0, Operand(0x0f234560));
__ nop();
__ addu(v0, a4, a5); // 0x00001238
__ subu(v0, v0, a4); // 0x00001234
__ Branch(&error, ne, v0, Operand(0x00001234));
__ nop();
__ addu(v1, a7, a4); // 32bit addu result is sign-extended into 64bit reg.
__ Branch(&error, ne, v1, Operand(0xffffffff80000003));
__ nop();
__ subu(v1, t3, a4); // 0x7ffffffc
__ Branch(&error, ne, v1, Operand(0x7ffffffc));
__ nop();
__ and_(v0, a5, a6); // 0x0000000000001230
__ or_(v0, v0, a5); // 0x0000000000001234
__ xor_(v0, v0, a6); // 0x000000001234444c
__ nor(v0, v0, a6); // 0xffffffffedcba987
__ Branch(&error, ne, v0, Operand(0xffffffffedcba983));
__ nop();
// Shift both 32bit number to left, to preserve meaning of next comparison.
__ dsll32(a7, a7, 0);
__ dsll32(t3, t3, 0);
__ slt(v0, t3, a7);
__ Branch(&error, ne, v0, Operand(0x1));
__ nop();
__ sltu(v0, t3, a7);
__ Branch(&error, ne, v0, Operand(zero_reg));
__ nop();
// Restore original values in registers.
__ dsrl32(a7, a7, 0);
__ dsrl32(t3, t3, 0);
// End of SPECIAL class.
__ addiu(v0, zero_reg, 0x7421); // 0x00007421
__ addiu(v0, v0, -0x1); // 0x00007420
__ addiu(v0, v0, -0x20); // 0x00007400
__ Branch(&error, ne, v0, Operand(0x00007400));
__ nop();
__ addiu(v1, a7, 0x1); // 0x80000000 - result is sign-extended.
__ Branch(&error, ne, v1, Operand(0xffffffff80000000));
__ nop();
__ slti(v0, a5, 0x00002000); // 0x1
__ slti(v0, v0, 0xffff8000); // 0x0
__ Branch(&error, ne, v0, Operand(zero_reg));
__ nop();
__ sltiu(v0, a5, 0x00002000); // 0x1
__ sltiu(v0, v0, 0x00008000); // 0x1
__ Branch(&error, ne, v0, Operand(0x1));
__ nop();
__ andi(v0, a5, 0xf0f0); // 0x00001030
__ ori(v0, v0, 0x8a00); // 0x00009a30
__ xori(v0, v0, 0x83cc); // 0x000019fc
__ Branch(&error, ne, v0, Operand(0x000019fc));
__ nop();
__ lui(v1, 0x8123); // Result is sign-extended into 64bit register.
__ Branch(&error, ne, v1, Operand(0xffffffff81230000));
__ nop();
// Bit twiddling instructions & conditional moves.
// Uses a4-t3 as set above.
__ Clz(v0, a4); // 29
__ Clz(v1, a5); // 19
__ addu(v0, v0, v1); // 48
__ Clz(v1, a6); // 3
__ addu(v0, v0, v1); // 51
__ Clz(v1, t3); // 0
__ addu(v0, v0, v1); // 51
__ Branch(&error, ne, v0, Operand(51));
__ Movn(a0, a7, a4); // Move a0<-a7 (a4 is NOT 0).
__ Ins(a0, a5, 12, 8); // 0x7ff34fff
__ Branch(&error, ne, a0, Operand(0x7ff34fff));
__ Movz(a0, t2, t3); // a0 not updated (t3 is NOT 0).
__ Ext(a1, a0, 8, 12); // 0x34f
__ Branch(&error, ne, a1, Operand(0x34f));
__ Movz(a0, t2, v1); // a0<-t2, v0 is 0, from 8 instr back.
__ Branch(&error, ne, a0, Operand(t2));
// Everything was correctly executed. Load the expected result.
__ li(v0, 0x31415926);
__ b(&exit);
__ nop();
__ bind(&error);
// Got an error. Return a wrong result.
__ li(v0, 666);
__ bind(&exit);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int64_t res =
reinterpret_cast<int64_t>(CALL_GENERATED_CODE(f, 0xab0, 0xc, 0, 0, 0));
::printf("f() = %ld\n", res);
CHECK_EQ(0x31415926L, res);
}
TEST(MIPS3) {
// Test floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
double i;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, NULL, 0);
Label L, C;
__ ldc1(f4, MemOperand(a0, OFFSET_OF(T, a)) );
__ ldc1(f6, MemOperand(a0, OFFSET_OF(T, b)) );
__ add_d(f8, f4, f6);
__ sdc1(f8, MemOperand(a0, OFFSET_OF(T, c)) ); // c = a + b.
__ mov_d(f10, f8); // c
__ neg_d(f12, f6); // -b
__ sub_d(f10, f10, f12);
__ sdc1(f10, MemOperand(a0, OFFSET_OF(T, d)) ); // d = c - (-b).
__ sdc1(f4, MemOperand(a0, OFFSET_OF(T, b)) ); // b = a.
__ li(a4, 120);
__ mtc1(a4, f14);
__ cvt_d_w(f14, f14); // f14 = 120.0.
__ mul_d(f10, f10, f14);
__ sdc1(f10, MemOperand(a0, OFFSET_OF(T, e)) ); // e = d * 120 = 1.8066e16.
__ div_d(f12, f10, f4);
__ sdc1(f12, MemOperand(a0, OFFSET_OF(T, f)) ); // f = e / a = 120.44.
__ sqrt_d(f14, f12);
__ sdc1(f14, MemOperand(a0, OFFSET_OF(T, g)) );
// g = sqrt(f) = 10.97451593465515908537
if (kArchVariant == kMips64r2) {
__ ldc1(f4, MemOperand(a0, OFFSET_OF(T, h)) );
__ ldc1(f6, MemOperand(a0, OFFSET_OF(T, i)) );
__ madd_d(f14, f6, f4, f6);
__ sdc1(f14, MemOperand(a0, OFFSET_OF(T, h)) );
}
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e14;
t.b = 2.75e11;
t.c = 0.0;
t.d = 0.0;
t.e = 0.0;
t.f = 0.0;
t.h = 1.5;
t.i = 2.75;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(1.5e14, t.a);
CHECK_EQ(1.5e14, t.b);
CHECK_EQ(1.50275e14, t.c);
CHECK_EQ(1.50550e14, t.d);
CHECK_EQ(1.8066e16, t.e);
CHECK_EQ(120.44, t.f);
CHECK_EQ(10.97451593465515908537, t.g);
if (kArchVariant == kMips64r2) {
CHECK_EQ(6.875, t.h);
}
}
TEST(MIPS4) {
// Test moves between floating point and integer registers.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
__ ldc1(f4, MemOperand(a0, OFFSET_OF(T, a)) );
__ ldc1(f5, MemOperand(a0, OFFSET_OF(T, b)) );
// Swap f4 and f5, by using 3 integer registers, a4-a6,
// both two 32-bit chunks, and one 64-bit chunk.
// mXhc1 is mips32/64-r2 only, not r1,
// but we will not support r1 in practice.
__ mfc1(a4, f4);
__ mfhc1(a5, f4);
__ dmfc1(a6, f5);
__ mtc1(a4, f5);
__ mthc1(a5, f5);
__ dmtc1(a6, f4);
// Store the swapped f4 and f5 back to memory.
__ sdc1(f4, MemOperand(a0, OFFSET_OF(T, a)) );
__ sdc1(f5, MemOperand(a0, OFFSET_OF(T, c)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e22;
t.b = 2.75e11;
t.c = 17.17;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(2.75e11, t.a);
CHECK_EQ(2.75e11, t.b);
CHECK_EQ(1.5e22, t.c);
}
TEST(MIPS5) {
// Test conversions between doubles and integers.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
int i;
int j;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
// Load all structure elements to registers.
__ ldc1(f4, MemOperand(a0, OFFSET_OF(T, a)) );
__ ldc1(f6, MemOperand(a0, OFFSET_OF(T, b)) );
__ lw(a4, MemOperand(a0, OFFSET_OF(T, i)) );
__ lw(a5, MemOperand(a0, OFFSET_OF(T, j)) );
// Convert double in f4 to int in element i.
__ cvt_w_d(f8, f4);
__ mfc1(a6, f8);
__ sw(a6, MemOperand(a0, OFFSET_OF(T, i)) );
// Convert double in f6 to int in element j.
__ cvt_w_d(f10, f6);
__ mfc1(a7, f10);
__ sw(a7, MemOperand(a0, OFFSET_OF(T, j)) );
// Convert int in original i (a4) to double in a.
__ mtc1(a4, f12);
__ cvt_d_w(f0, f12);
__ sdc1(f0, MemOperand(a0, OFFSET_OF(T, a)) );
// Convert int in original j (a5) to double in b.
__ mtc1(a5, f14);
__ cvt_d_w(f2, f14);
__ sdc1(f2, MemOperand(a0, OFFSET_OF(T, b)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e4;
t.b = 2.75e8;
t.i = 12345678;
t.j = -100000;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(12345678.0, t.a);
CHECK_EQ(-100000.0, t.b);
CHECK_EQ(15000, t.i);
CHECK_EQ(275000000, t.j);
}
TEST(MIPS6) {
// Test simple memory loads and stores.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
uint32_t ui;
int32_t si;
int32_t r1;
int32_t r2;
int32_t r3;
int32_t r4;
int32_t r5;
int32_t r6;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
// Basic word load/store.
__ lw(a4, MemOperand(a0, OFFSET_OF(T, ui)) );
__ sw(a4, MemOperand(a0, OFFSET_OF(T, r1)) );
// lh with positive data.
__ lh(a5, MemOperand(a0, OFFSET_OF(T, ui)) );
__ sw(a5, MemOperand(a0, OFFSET_OF(T, r2)) );
// lh with negative data.
__ lh(a6, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(a6, MemOperand(a0, OFFSET_OF(T, r3)) );
// lhu with negative data.
__ lhu(a7, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(a7, MemOperand(a0, OFFSET_OF(T, r4)) );
// lb with negative data.
__ lb(t0, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(t0, MemOperand(a0, OFFSET_OF(T, r5)) );
// sh writes only 1/2 of word.
__ lui(t1, 0x3333);
__ ori(t1, t1, 0x3333);
__ sw(t1, MemOperand(a0, OFFSET_OF(T, r6)) );
__ lhu(t1, MemOperand(a0, OFFSET_OF(T, si)) );
__ sh(t1, MemOperand(a0, OFFSET_OF(T, r6)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.ui = 0x11223344;
t.si = 0x99aabbcc;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(0x11223344, t.r1);
CHECK_EQ(0x3344, t.r2);
CHECK_EQ(0xffffbbcc, t.r3);
CHECK_EQ(0x0000bbcc, t.r4);
CHECK_EQ(0xffffffcc, t.r5);
CHECK_EQ(0x3333bbcc, t.r6);
}
TEST(MIPS7) {
// Test floating point compare and branch instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
int32_t result;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, NULL, 0);
Label neither_is_nan, less_than, outa_here;
__ ldc1(f4, MemOperand(a0, OFFSET_OF(T, a)) );
__ ldc1(f6, MemOperand(a0, OFFSET_OF(T, b)) );
if (kArchVariant != kMips64r6) {
__ c(UN, D, f4, f6);
__ bc1f(&neither_is_nan);
} else {
__ cmp(UN, L, f2, f4, f6);
__ bc1eqz(&neither_is_nan, f2);
}
__ nop();
__ sw(zero_reg, MemOperand(a0, OFFSET_OF(T, result)) );
__ Branch(&outa_here);
__ bind(&neither_is_nan);
if (kArchVariant == kMips64r6) {
__ cmp(OLT, L, f2, f6, f4);
__ bc1nez(&less_than, f2);
} else {
__ c(OLT, D, f6, f4, 2);
__ bc1t(&less_than, 2);
}
__ nop();
__ sw(zero_reg, MemOperand(a0, OFFSET_OF(T, result)) );
__ Branch(&outa_here);
__ bind(&less_than);
__ Addu(a4, zero_reg, Operand(1));
__ sw(a4, MemOperand(a0, OFFSET_OF(T, result)) ); // Set true.
// This test-case should have additional tests.
__ bind(&outa_here);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e14;
t.b = 2.75e11;
t.c = 2.0;
t.d = -4.0;
t.e = 0.0;
t.f = 0.0;
t.result = 0;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(1.5e14, t.a);
CHECK_EQ(2.75e11, t.b);
CHECK_EQ(1, t.result);
}
TEST(MIPS8) {
// Test ROTR and ROTRV instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t input;
int32_t result_rotr_4;
int32_t result_rotr_8;
int32_t result_rotr_12;
int32_t result_rotr_16;
int32_t result_rotr_20;
int32_t result_rotr_24;
int32_t result_rotr_28;
int32_t result_rotrv_4;
int32_t result_rotrv_8;
int32_t result_rotrv_12;
int32_t result_rotrv_16;
int32_t result_rotrv_20;
int32_t result_rotrv_24;
int32_t result_rotrv_28;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0);
// Basic word load.
__ lw(a4, MemOperand(a0, OFFSET_OF(T, input)) );
// ROTR instruction (called through the Ror macro).
__ Ror(a5, a4, 0x0004);
__ Ror(a6, a4, 0x0008);
__ Ror(a7, a4, 0x000c);
__ Ror(t0, a4, 0x0010);
__ Ror(t1, a4, 0x0014);
__ Ror(t2, a4, 0x0018);
__ Ror(t3, a4, 0x001c);
// Basic word store.
__ sw(a5, MemOperand(a0, OFFSET_OF(T, result_rotr_4)) );
__ sw(a6, MemOperand(a0, OFFSET_OF(T, result_rotr_8)) );
__ sw(a7, MemOperand(a0, OFFSET_OF(T, result_rotr_12)) );
__ sw(t0, MemOperand(a0, OFFSET_OF(T, result_rotr_16)) );
__ sw(t1, MemOperand(a0, OFFSET_OF(T, result_rotr_20)) );
__ sw(t2, MemOperand(a0, OFFSET_OF(T, result_rotr_24)) );
__ sw(t3, MemOperand(a0, OFFSET_OF(T, result_rotr_28)) );
// ROTRV instruction (called through the Ror macro).
__ li(t3, 0x0004);
__ Ror(a5, a4, t3);
__ li(t3, 0x0008);
__ Ror(a6, a4, t3);
__ li(t3, 0x000C);
__ Ror(a7, a4, t3);
__ li(t3, 0x0010);
__ Ror(t0, a4, t3);
__ li(t3, 0x0014);
__ Ror(t1, a4, t3);
__ li(t3, 0x0018);
__ Ror(t2, a4, t3);
__ li(t3, 0x001C);
__ Ror(t3, a4, t3);
// Basic word store.
__ sw(a5, MemOperand(a0, OFFSET_OF(T, result_rotrv_4)) );
__ sw(a6, MemOperand(a0, OFFSET_OF(T, result_rotrv_8)) );
__ sw(a7, MemOperand(a0, OFFSET_OF(T, result_rotrv_12)) );
__ sw(t0, MemOperand(a0, OFFSET_OF(T, result_rotrv_16)) );
__ sw(t1, MemOperand(a0, OFFSET_OF(T, result_rotrv_20)) );
__ sw(t2, MemOperand(a0, OFFSET_OF(T, result_rotrv_24)) );
__ sw(t3, MemOperand(a0, OFFSET_OF(T, result_rotrv_28)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.input = 0x12345678;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0x0, 0, 0, 0);
USE(dummy);
CHECK_EQ(0x81234567, t.result_rotr_4);
CHECK_EQ(0x78123456, t.result_rotr_8);
CHECK_EQ(0x67812345, t.result_rotr_12);
CHECK_EQ(0x56781234, t.result_rotr_16);
CHECK_EQ(0x45678123, t.result_rotr_20);
CHECK_EQ(0x34567812, t.result_rotr_24);
CHECK_EQ(0x23456781, t.result_rotr_28);
CHECK_EQ(0x81234567, t.result_rotrv_4);
CHECK_EQ(0x78123456, t.result_rotrv_8);
CHECK_EQ(0x67812345, t.result_rotrv_12);
CHECK_EQ(0x56781234, t.result_rotrv_16);
CHECK_EQ(0x45678123, t.result_rotrv_20);
CHECK_EQ(0x34567812, t.result_rotrv_24);
CHECK_EQ(0x23456781, t.result_rotrv_28);
}
TEST(MIPS9) {
// Test BRANCH improvements.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
Label exit, exit2, exit3;
__ Branch(&exit, ge, a0, Operand(zero_reg));
__ Branch(&exit2, ge, a0, Operand(0x00001FFF));
__ Branch(&exit3, ge, a0, Operand(0x0001FFFF));
__ bind(&exit);
__ bind(&exit2);
__ bind(&exit3);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
}
TEST(MIPS10) {
// Test conversions between doubles and long integers.
// Test hos the long ints map to FP regs pairs.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double a_converted;
double b;
int32_t dbl_mant;
int32_t dbl_exp;
int32_t long_hi;
int32_t long_lo;
int64_t long_as_int64;
int32_t b_long_hi;
int32_t b_long_lo;
int64_t b_long_as_int64;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
if (kArchVariant == kMips64r2) {
// Rewritten for FR=1 FPU mode:
// - 32 FP regs of 64-bits each, no odd/even pairs.
// - Note that cvt_l_d/cvt_d_l ARE legal in FR=1 mode.
// Load all structure elements to registers.
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, a)));
// Save the raw bits of the double.
__ mfc1(a4, f0);
__ mfhc1(a5, f0);
__ sw(a4, MemOperand(a0, OFFSET_OF(T, dbl_mant)));
__ sw(a5, MemOperand(a0, OFFSET_OF(T, dbl_exp)));
// Convert double in f0 to long, save hi/lo parts.
__ cvt_l_d(f0, f0);
__ mfc1(a4, f0); // f0 LS 32 bits of long.
__ mfhc1(a5, f0); // f0 MS 32 bits of long.
__ sw(a4, MemOperand(a0, OFFSET_OF(T, long_lo)));
__ sw(a5, MemOperand(a0, OFFSET_OF(T, long_hi)));
// Combine the high/low ints, convert back to double.
__ dsll32(a6, a5, 0); // Move a5 to high bits of a6.
__ or_(a6, a6, a4);
__ dmtc1(a6, f1);
__ cvt_d_l(f1, f1);
__ sdc1(f1, MemOperand(a0, OFFSET_OF(T, a_converted)));
// Convert the b long integers to double b.
__ lw(a4, MemOperand(a0, OFFSET_OF(T, b_long_lo)));
__ lw(a5, MemOperand(a0, OFFSET_OF(T, b_long_hi)));
__ mtc1(a4, f8); // f8 LS 32-bits.
__ mthc1(a5, f8); // f8 MS 32-bits.
__ cvt_d_l(f10, f8);
__ sdc1(f10, MemOperand(a0, OFFSET_OF(T, b)));
// Convert double b back to long-int.
__ ldc1(f31, MemOperand(a0, OFFSET_OF(T, b)));
__ cvt_l_d(f31, f31);
__ dmfc1(a7, f31);
__ sd(a7, MemOperand(a0, OFFSET_OF(T, b_long_as_int64)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 2.147483647e9; // 0x7fffffff -> 0x41DFFFFFFFC00000 as double.
t.b_long_hi = 0x000000ff; // 0xFF00FF00FF -> 0x426FE01FE01FE000 as double.
t.b_long_lo = 0x00ff00ff;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(0x41DFFFFF, t.dbl_exp);
CHECK_EQ(0xFFC00000, t.dbl_mant);
CHECK_EQ(0, t.long_hi);
CHECK_EQ(0x7fffffff, t.long_lo);
CHECK_EQ(2.147483647e9, t.a_converted);
// 0xFF00FF00FF -> 1.095233372415e12.
CHECK_EQ(1.095233372415e12, t.b);
CHECK_EQ(0xFF00FF00FF, t.b_long_as_int64);
}
}
TEST(MIPS11) {
// Do not run test on MIPS64r6, as these instructions are removed.
if (kArchVariant != kMips64r6) {
// Test LWL, LWR, SWL and SWR instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t reg_init;
int32_t mem_init;
int32_t lwl_0;
int32_t lwl_1;
int32_t lwl_2;
int32_t lwl_3;
int32_t lwr_0;
int32_t lwr_1;
int32_t lwr_2;
int32_t lwr_3;
int32_t swl_0;
int32_t swl_1;
int32_t swl_2;
int32_t swl_3;
int32_t swr_0;
int32_t swr_1;
int32_t swr_2;
int32_t swr_3;
} T;
T t;
Assembler assm(isolate, NULL, 0);
// Test all combinations of LWL and vAddr.
__ lw(a4, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwl(a4, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(a4, MemOperand(a0, OFFSET_OF(T, lwl_0)) );
__ lw(a5, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwl(a5, MemOperand(a0, OFFSET_OF(T, mem_init) + 1) );
__ sw(a5, MemOperand(a0, OFFSET_OF(T, lwl_1)) );
__ lw(a6, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwl(a6, MemOperand(a0, OFFSET_OF(T, mem_init) + 2) );
__ sw(a6, MemOperand(a0, OFFSET_OF(T, lwl_2)) );
__ lw(a7, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwl(a7, MemOperand(a0, OFFSET_OF(T, mem_init) + 3) );
__ sw(a7, MemOperand(a0, OFFSET_OF(T, lwl_3)) );
// Test all combinations of LWR and vAddr.
__ lw(a4, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwr(a4, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(a4, MemOperand(a0, OFFSET_OF(T, lwr_0)) );
__ lw(a5, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwr(a5, MemOperand(a0, OFFSET_OF(T, mem_init) + 1) );
__ sw(a5, MemOperand(a0, OFFSET_OF(T, lwr_1)) );
__ lw(a6, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwr(a6, MemOperand(a0, OFFSET_OF(T, mem_init) + 2) );
__ sw(a6, MemOperand(a0, OFFSET_OF(T, lwr_2)) );
__ lw(a7, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwr(a7, MemOperand(a0, OFFSET_OF(T, mem_init) + 3) );
__ sw(a7, MemOperand(a0, OFFSET_OF(T, lwr_3)) );
// Test all combinations of SWL and vAddr.
__ lw(a4, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(a4, MemOperand(a0, OFFSET_OF(T, swl_0)) );
__ lw(a4, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swl(a4, MemOperand(a0, OFFSET_OF(T, swl_0)) );
__ lw(a5, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(a5, MemOperand(a0, OFFSET_OF(T, swl_1)) );
__ lw(a5, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swl(a5, MemOperand(a0, OFFSET_OF(T, swl_1) + 1) );
__ lw(a6, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(a6, MemOperand(a0, OFFSET_OF(T, swl_2)) );
__ lw(a6, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swl(a6, MemOperand(a0, OFFSET_OF(T, swl_2) + 2) );
__ lw(a7, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(a7, MemOperand(a0, OFFSET_OF(T, swl_3)) );
__ lw(a7, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swl(a7, MemOperand(a0, OFFSET_OF(T, swl_3) + 3) );
// Test all combinations of SWR and vAddr.
__ lw(a4, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(a4, MemOperand(a0, OFFSET_OF(T, swr_0)) );
__ lw(a4, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swr(a4, MemOperand(a0, OFFSET_OF(T, swr_0)) );
__ lw(a5, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(a5, MemOperand(a0, OFFSET_OF(T, swr_1)) );
__ lw(a5, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swr(a5, MemOperand(a0, OFFSET_OF(T, swr_1) + 1) );
__ lw(a6, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(a6, MemOperand(a0, OFFSET_OF(T, swr_2)) );
__ lw(a6, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swr(a6, MemOperand(a0, OFFSET_OF(T, swr_2) + 2) );
__ lw(a7, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(a7, MemOperand(a0, OFFSET_OF(T, swr_3)) );
__ lw(a7, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swr(a7, MemOperand(a0, OFFSET_OF(T, swr_3) + 3) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.reg_init = 0xaabbccdd;
t.mem_init = 0x11223344;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(0x44bbccdd, t.lwl_0);
CHECK_EQ(0x3344ccdd, t.lwl_1);
CHECK_EQ(0x223344dd, t.lwl_2);
CHECK_EQ(0x11223344, t.lwl_3);
CHECK_EQ(0x11223344, t.lwr_0);
CHECK_EQ(0xaa112233, t.lwr_1);
CHECK_EQ(0xaabb1122, t.lwr_2);
CHECK_EQ(0xaabbcc11, t.lwr_3);
CHECK_EQ(0x112233aa, t.swl_0);
CHECK_EQ(0x1122aabb, t.swl_1);
CHECK_EQ(0x11aabbcc, t.swl_2);
CHECK_EQ(0xaabbccdd, t.swl_3);
CHECK_EQ(0xaabbccdd, t.swr_0);
CHECK_EQ(0xbbccdd44, t.swr_1);
CHECK_EQ(0xccdd3344, t.swr_2);
CHECK_EQ(0xdd223344, t.swr_3);
}
}
TEST(MIPS12) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t x;
int32_t y;
int32_t y1;
int32_t y2;
int32_t y3;
int32_t y4;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0);
__ mov(t2, fp); // Save frame pointer.
__ mov(fp, a0); // Access struct T by fp.
__ lw(a4, MemOperand(a0, OFFSET_OF(T, y)) );
__ lw(a7, MemOperand(a0, OFFSET_OF(T, y4)) );
__ addu(a5, a4, a7);
__ subu(t0, a4, a7);
__ nop();
__ push(a4); // These instructions disappear after opt.
__ Pop();
__ addu(a4, a4, a4);
__ nop();
__ Pop(); // These instructions disappear after opt.
__ push(a7);
__ nop();
__ push(a7); // These instructions disappear after opt.
__ pop(a7);
__ nop();
__ push(a7);
__ pop(t0);
__ nop();
__ sw(a4, MemOperand(fp, OFFSET_OF(T, y)) );
__ lw(a4, MemOperand(fp, OFFSET_OF(T, y)) );
__ nop();
__ sw(a4, MemOperand(fp, OFFSET_OF(T, y)) );
__ lw(a5, MemOperand(fp, OFFSET_OF(T, y)) );
__ nop();
__ push(a5);
__ lw(a5, MemOperand(fp, OFFSET_OF(T, y)) );
__ pop(a5);
__ nop();
__ push(a5);
__ lw(a6, MemOperand(fp, OFFSET_OF(T, y)) );
__ pop(a5);
__ nop();
__ push(a5);
__ lw(a6, MemOperand(fp, OFFSET_OF(T, y)) );
__ pop(a6);
__ nop();
__ push(a6);
__ lw(a6, MemOperand(fp, OFFSET_OF(T, y)) );
__ pop(a5);
__ nop();
__ push(a5);
__ lw(a6, MemOperand(fp, OFFSET_OF(T, y)) );
__ pop(a7);
__ nop();
__ mov(fp, t2);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.x = 1;
t.y = 2;
t.y1 = 3;
t.y2 = 4;
t.y3 = 0XBABA;
t.y4 = 0xDEDA;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(3, t.y1);
}
TEST(MIPS13) {
// Test Cvt_d_uw and Trunc_uw_d macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double cvt_big_out;
double cvt_small_out;
uint32_t trunc_big_out;
uint32_t trunc_small_out;
uint32_t cvt_big_in;
uint32_t cvt_small_in;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0);
__ sw(a4, MemOperand(a0, OFFSET_OF(T, cvt_small_in)));
__ Cvt_d_uw(f10, a4, f22);
__ sdc1(f10, MemOperand(a0, OFFSET_OF(T, cvt_small_out)));
__ Trunc_uw_d(f10, f10, f22);
__ swc1(f10, MemOperand(a0, OFFSET_OF(T, trunc_small_out)));
__ sw(a4, MemOperand(a0, OFFSET_OF(T, cvt_big_in)));
__ Cvt_d_uw(f8, a4, f22);
__ sdc1(f8, MemOperand(a0, OFFSET_OF(T, cvt_big_out)));
__ Trunc_uw_d(f8, f8, f22);
__ swc1(f8, MemOperand(a0, OFFSET_OF(T, trunc_big_out)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.cvt_big_in = 0xFFFFFFFF;
t.cvt_small_in = 333;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(t.cvt_big_out, static_cast<double>(t.cvt_big_in));
CHECK_EQ(t.cvt_small_out, static_cast<double>(t.cvt_small_in));
CHECK_EQ(static_cast<int>(t.trunc_big_out), static_cast<int>(t.cvt_big_in));
CHECK_EQ(static_cast<int>(t.trunc_small_out),
static_cast<int>(t.cvt_small_in));
}
TEST(MIPS14) {
// Test round, floor, ceil, trunc, cvt.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
#define ROUND_STRUCT_ELEMENT(x) \
int32_t x##_up_out; \
int32_t x##_down_out; \
int32_t neg_##x##_up_out; \
int32_t neg_##x##_down_out; \
uint32_t x##_err1_out; \
uint32_t x##_err2_out; \
uint32_t x##_err3_out; \
uint32_t x##_err4_out; \
int32_t x##_invalid_result;
typedef struct {
double round_up_in;
double round_down_in;
double neg_round_up_in;
double neg_round_down_in;
double err1_in;
double err2_in;
double err3_in;
double err4_in;
ROUND_STRUCT_ELEMENT(round)
ROUND_STRUCT_ELEMENT(floor)
ROUND_STRUCT_ELEMENT(ceil)
ROUND_STRUCT_ELEMENT(trunc)
ROUND_STRUCT_ELEMENT(cvt)
} T;
T t;
#undef ROUND_STRUCT_ELEMENT
MacroAssembler assm(isolate, NULL, 0);
// Save FCSR.
__ cfc1(a1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
#define RUN_ROUND_TEST(x) \
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, round_up_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, OFFSET_OF(T, x##_up_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, round_down_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, OFFSET_OF(T, x##_down_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, neg_round_up_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, OFFSET_OF(T, neg_##x##_up_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, neg_round_down_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, OFFSET_OF(T, neg_##x##_down_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, err1_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, OFFSET_OF(T, x##_err1_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, err2_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, OFFSET_OF(T, x##_err2_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, err3_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, OFFSET_OF(T, x##_err3_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, err4_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, OFFSET_OF(T, x##_err4_out))); \
__ swc1(f0, MemOperand(a0, OFFSET_OF(T, x##_invalid_result)));
RUN_ROUND_TEST(round)
RUN_ROUND_TEST(floor)
RUN_ROUND_TEST(ceil)
RUN_ROUND_TEST(trunc)
RUN_ROUND_TEST(cvt)
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.round_up_in = 123.51;
t.round_down_in = 123.49;
t.neg_round_up_in = -123.5;
t.neg_round_down_in = -123.49;
t.err1_in = 123.51;
t.err2_in = 1;
t.err3_in = static_cast<double>(1) + 0xFFFFFFFF;
t.err4_in = NAN;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
#define GET_FPU_ERR(x) (static_cast<int>(x & kFCSRFlagMask))
#define CHECK_ROUND_RESULT(type) \
CHECK(GET_FPU_ERR(t.type##_err1_out) & kFCSRInexactFlagMask); \
CHECK_EQ(0, GET_FPU_ERR(t.type##_err2_out)); \
CHECK(GET_FPU_ERR(t.type##_err3_out) & kFCSRInvalidOpFlagMask); \
CHECK(GET_FPU_ERR(t.type##_err4_out) & kFCSRInvalidOpFlagMask); \
CHECK_EQ(static_cast<int32_t>(kFPUInvalidResult), t.type##_invalid_result);
CHECK_ROUND_RESULT(round);
CHECK_ROUND_RESULT(floor);
CHECK_ROUND_RESULT(ceil);
CHECK_ROUND_RESULT(cvt);
}
TEST(MIPS15) {
// Test chaining of label usages within instructions (issue 1644).
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, NULL, 0);
Label target;
__ beq(v0, v1, &target);
__ nop();
__ bne(v0, v1, &target);
__ nop();
__ bind(&target);
__ nop();
}
// ----- mips64 tests -----------------------------------------------
TEST(MIPS16) {
// Test 64-bit memory loads and stores.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int64_t r1;
int64_t r2;
int64_t r3;
int64_t r4;
int64_t r5;
int64_t r6;
uint32_t ui;
int32_t si;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
// Basic 32-bit word load/store, with un-signed data.
__ lw(a4, MemOperand(a0, OFFSET_OF(T, ui)) );
__ sw(a4, MemOperand(a0, OFFSET_OF(T, r1)) );
// Check that the data got zero-extended into 64-bit a4.
__ sd(a4, MemOperand(a0, OFFSET_OF(T, r2)) );
// Basic 32-bit word load/store, with SIGNED data.
__ lw(a5, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(a5, MemOperand(a0, OFFSET_OF(T, r3)) );
// Check that the data got sign-extended into 64-bit a4.
__ sd(a5, MemOperand(a0, OFFSET_OF(T, r4)) );
// 32-bit UNSIGNED word load/store, with SIGNED data.
__ lwu(a6, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(a6, MemOperand(a0, OFFSET_OF(T, r5)) );
// Check that the data got zero-extended into 64-bit a4.
__ sd(a6, MemOperand(a0, OFFSET_OF(T, r6)) );
// lh with positive data.
__ lh(a5, MemOperand(a0, OFFSET_OF(T, ui)) );
__ sw(a5, MemOperand(a0, OFFSET_OF(T, r2)) );
// lh with negative data.
__ lh(a6, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(a6, MemOperand(a0, OFFSET_OF(T, r3)) );
// lhu with negative data.
__ lhu(a7, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(a7, MemOperand(a0, OFFSET_OF(T, r4)) );
// lb with negative data.
__ lb(t0, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(t0, MemOperand(a0, OFFSET_OF(T, r5)) );
// // sh writes only 1/2 of word.
__ lui(t1, 0x3333);
__ ori(t1, t1, 0x3333);
__ sw(t1, MemOperand(a0, OFFSET_OF(T, r6)) );
__ lhu(t1, MemOperand(a0, OFFSET_OF(T, si)) );
__ sh(t1, MemOperand(a0, OFFSET_OF(T, r6)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.ui = 0x44332211;
t.si = 0x99aabbcc;
t.r1 = 0x1111111111111111;
t.r2 = 0x2222222222222222;
t.r3 = 0x3333333333333333;
t.r4 = 0x4444444444444444;
t.r5 = 0x5555555555555555;
t.r6 = 0x6666666666666666;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
// Unsigned data, 32 & 64.
CHECK_EQ(0x1111111144332211L, t.r1);
CHECK_EQ(0x0000000000002211L, t.r2);
// Signed data, 32 & 64.
CHECK_EQ(0x33333333ffffbbccL, t.r3);
CHECK_EQ(0xffffffff0000bbccL, t.r4);
// Signed data, 32 & 64.
CHECK_EQ(0x55555555ffffffccL, t.r5);
CHECK_EQ(0x000000003333bbccL, t.r6);
}
#undef __