v8/test/fuzzer/wasm-fuzzer-common.cc
Matthias Liedtke 661f0220c7 Revert "[wasm-gc] Ref types: Convert dataref to structref"
This reverts commit 20327d1599.

Reason for revert: The code for structref/dataref is in use in
combination with array types, so the change breaks their use cases.
Reverting to restore the previous semantics of dataref.

Original change's description:
> [wasm-gc] Ref types: Convert dataref to structref
>
> This change changes the type hierarchy in a non-backwards compatible
> way: dataref is replaced with structref meaning that arrayref is
> no longer a subtype of it.
>
> Bug: v8:7748
> Change-Id: I965267d9ed11ea7c7d7df133cc39ee63e6b5abc3
> Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3929041
> Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
> Commit-Queue: Matthias Liedtke <mliedtke@chromium.org>
> Cr-Commit-Position: refs/heads/main@{#83515}

Bug: v8:7748
Change-Id: I2a0bcafafe6f67df87aac86813f74573b708cce4
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3936156
Commit-Queue: Matthias Liedtke <mliedtke@chromium.org>
Reviewed-by: Jakob Kummerow <jkummerow@chromium.org>
Bot-Commit: Rubber Stamper <rubber-stamper@appspot.gserviceaccount.com>
Cr-Commit-Position: refs/heads/main@{#83544}
2022-10-05 16:48:37 +00:00

861 lines
31 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/fuzzer/wasm-fuzzer-common.h"
#include <ctime>
#include "include/v8-context.h"
#include "include/v8-exception.h"
#include "include/v8-isolate.h"
#include "include/v8-local-handle.h"
#include "include/v8-metrics.h"
#include "src/execution/isolate.h"
#include "src/utils/ostreams.h"
#include "src/wasm/baseline/liftoff-compiler.h"
#include "src/wasm/function-body-decoder-impl.h"
#include "src/wasm/module-instantiate.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-feature-flags.h"
#include "src/wasm/wasm-module-builder.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/wasm/wasm-opcodes-inl.h"
#include "src/zone/accounting-allocator.h"
#include "src/zone/zone.h"
#include "test/common/flag-utils.h"
#include "test/common/wasm/wasm-module-runner.h"
#include "test/fuzzer/fuzzer-support.h"
namespace v8 {
namespace internal {
namespace wasm {
namespace fuzzer {
// Compile a baseline module. We pass a pointer to a max step counter and a
// nondeterminsm flag that are updated during execution by Liftoff.
Handle<WasmModuleObject> CompileReferenceModule(Zone* zone, Isolate* isolate,
ModuleWireBytes wire_bytes,
ErrorThrower* thrower,
int32_t* max_steps,
int32_t* nondeterminism) {
// Create the native module.
std::shared_ptr<NativeModule> native_module;
constexpr bool kNoVerifyFunctions = false;
auto enabled_features = i::wasm::WasmFeatures::FromIsolate(isolate);
ModuleResult module_res = DecodeWasmModule(
enabled_features, wire_bytes.start(), wire_bytes.end(),
kNoVerifyFunctions, ModuleOrigin::kWasmOrigin, isolate->counters(),
isolate->metrics_recorder(), v8::metrics::Recorder::ContextId::Empty(),
DecodingMethod::kSync, GetWasmEngine()->allocator());
CHECK(module_res.ok());
std::shared_ptr<WasmModule> module = module_res.value();
CHECK_NOT_NULL(module);
native_module =
GetWasmEngine()->NewNativeModule(isolate, enabled_features, module, 0);
native_module->SetWireBytes(
base::OwnedVector<uint8_t>::Of(wire_bytes.module_bytes()));
// Compile all functions with Liftoff.
WasmCodeRefScope code_ref_scope;
auto env = native_module->CreateCompilationEnv();
for (size_t i = module->num_imported_functions; i < module->functions.size();
++i) {
auto& func = module->functions[i];
base::Vector<const uint8_t> func_code = wire_bytes.GetFunctionBytes(&func);
FunctionBody func_body(func.sig, func.code.offset(), func_code.begin(),
func_code.end());
auto result =
ExecuteLiftoffCompilation(&env, func_body,
LiftoffOptions{}
.set_func_index(func.func_index)
.set_for_debugging(kForDebugging)
.set_max_steps(max_steps)
.set_nondeterminism(nondeterminism));
native_module->PublishCode(
native_module->AddCompiledCode(std::move(result)));
}
// Create the module object.
constexpr base::Vector<const char> kNoSourceUrl;
Handle<Script> script =
GetWasmEngine()->GetOrCreateScript(isolate, native_module, kNoSourceUrl);
isolate->heap()->EnsureWasmCanonicalRttsSize(module->MaxCanonicalTypeIndex() +
1);
return WasmModuleObject::New(isolate, std::move(native_module), script);
}
void InterpretAndExecuteModule(i::Isolate* isolate,
Handle<WasmModuleObject> module_object,
Handle<WasmModuleObject> module_ref,
int32_t* max_steps, int32_t* nondeterminism) {
// We do not instantiate the module if there is a start function, because a
// start function can contain an infinite loop which we cannot handle.
if (module_object->module()->start_function_index >= 0) return;
HandleScope handle_scope(isolate); // Avoid leaking handles.
Handle<WasmInstanceObject> instance_ref;
// Try to instantiate the reference instance, return if it fails. Use
// {module_ref} if provided (for "Liftoff as reference"), {module_object}
// otherwise (for "interpreter as reference").
{
ErrorThrower thrower(isolate, "InterpretAndExecuteModule");
if (!GetWasmEngine()
->SyncInstantiate(
isolate, &thrower,
module_ref.is_null() ? module_object : module_ref, {},
{}) // no imports & memory
.ToHandle(&instance_ref)) {
isolate->clear_pending_exception();
thrower.Reset(); // Ignore errors.
return;
}
}
// Get the "main" exported function. Do nothing if it does not exist.
Handle<WasmExportedFunction> main_function;
if (!testing::GetExportedFunction(isolate, instance_ref, "main")
.ToHandle(&main_function)) {
return;
}
base::OwnedVector<Handle<Object>> compiled_args =
testing::MakeDefaultArguments(isolate, main_function->sig());
bool exception_ref = false;
int32_t result_ref = 0;
if (module_ref.is_null()) {
// Use the interpreter as reference.
base::OwnedVector<WasmValue> arguments =
testing::MakeDefaultInterpreterArguments(isolate, main_function->sig());
testing::WasmInterpretationResult interpreter_result =
testing::InterpretWasmModule(isolate, instance_ref,
main_function->function_index(),
arguments.begin());
if (interpreter_result.failed()) return;
// The WebAssembly spec allows the sign bit of NaN to be non-deterministic.
// This sign bit can make the difference between an infinite loop and
// terminating code. With possible non-determinism we cannot guarantee that
// the generated code will not go into an infinite loop and cause a timeout
// in Clusterfuzz. Therefore we do not execute the generated code if the
// result may be non-deterministic.
if (interpreter_result.possible_nondeterminism()) return;
if (interpreter_result.finished()) {
result_ref = interpreter_result.result();
} else {
DCHECK(interpreter_result.trapped());
exception_ref = true;
}
} else {
// Use Liftoff code as reference.
result_ref = testing::CallWasmFunctionForTesting(
isolate, instance_ref, "main", static_cast<int>(compiled_args.size()),
compiled_args.begin(), &exception_ref);
// Reached max steps, do not try to execute the test module as it might
// never terminate.
if (*max_steps == 0) return;
// If there is nondeterminism, we cannot guarantee the behavior of the test
// module, and in particular it may not terminate.
if (*nondeterminism != 0) return;
}
// Instantiate a fresh instance for the actual (non-ref) execution.
Handle<WasmInstanceObject> instance;
{
ErrorThrower thrower(isolate, "InterpretAndExecuteModule (second)");
// We instantiated before, so the second instantiation must also succeed.
if (!GetWasmEngine()
->SyncInstantiate(isolate, &thrower, module_object, {},
{}) // no imports & memory
.ToHandle(&instance)) {
DCHECK(thrower.error());
// The only reason to fail the second instantiation should be OOM. Make
// this a proper OOM crash so that ClusterFuzz categorizes it as such.
if (strstr(thrower.error_msg(), "Out of memory")) {
V8::FatalProcessOutOfMemory(isolate, "Wasm fuzzer second instantiation",
thrower.error_msg());
}
FATAL("Second instantiation failed unexpectedly: %s",
thrower.error_msg());
}
DCHECK(!thrower.error());
}
bool exception = false;
int32_t result = testing::CallWasmFunctionForTesting(
isolate, instance, "main", static_cast<int>(compiled_args.size()),
compiled_args.begin(), &exception);
if (exception_ref != exception) {
const char* exception_text[] = {"no exception", "exception"};
FATAL("expected: %s; got: %s", exception_text[exception_ref],
exception_text[exception]);
}
if (!exception) {
CHECK_EQ(result_ref, result);
}
}
namespace {
struct PrintSig {
const size_t num;
const std::function<ValueType(size_t)> getter;
};
PrintSig PrintParameters(const FunctionSig* sig) {
return {sig->parameter_count(), [=](size_t i) { return sig->GetParam(i); }};
}
PrintSig PrintReturns(const FunctionSig* sig) {
return {sig->return_count(), [=](size_t i) { return sig->GetReturn(i); }};
}
std::string index_raw(uint32_t arg) {
return arg < 128 ? std::to_string(arg)
: "wasmUnsignedLeb(" + std::to_string(arg) + ")";
}
std::string index(uint32_t arg) { return index_raw(arg) + ", "; }
std::string HeapTypeToJSByteEncoding(HeapType heap_type) {
switch (heap_type.representation()) {
case HeapType::kFunc:
return "kFuncRefCode";
case HeapType::kEq:
return "kEqRefCode";
case HeapType::kI31:
return "kI31RefCode";
case HeapType::kData:
return "kDataRefCode";
case HeapType::kArray:
return "kArrayRefCode";
case HeapType::kAny:
return "kAnyRefCode";
case HeapType::kExtern:
return "kExternRefCode";
case HeapType::kNone:
return "kNullRefCode";
case HeapType::kNoFunc:
return "kNullFuncRefCode";
case HeapType::kNoExtern:
return "kNullExternRefCode";
case HeapType::kBottom:
UNREACHABLE();
default:
return index_raw(heap_type.ref_index());
}
}
std::string HeapTypeToConstantName(HeapType heap_type) {
switch (heap_type.representation()) {
case HeapType::kFunc:
return "kWasmFuncRef";
case HeapType::kEq:
return "kWasmEqRef";
case HeapType::kI31:
return "kWasmI31Ref";
case HeapType::kData:
return "kWasmDataRef";
case HeapType::kArray:
return "kWasmArrayRef";
case HeapType::kExtern:
return "kWasmExternRef";
case HeapType::kAny:
return "kWasmAnyRef";
case HeapType::kNone:
return "kWasmNullRef";
case HeapType::kNoFunc:
return "kWasmNullFuncRef";
case HeapType::kNoExtern:
return "kWasmNullExternRef";
case HeapType::kBottom:
UNREACHABLE();
default:
return std::to_string(heap_type.ref_index());
}
}
std::string ValueTypeToConstantName(ValueType type) {
switch (type.kind()) {
case kI8:
return "kWasmI8";
case kI16:
return "kWasmI16";
case kI32:
return "kWasmI32";
case kI64:
return "kWasmI64";
case kF32:
return "kWasmF32";
case kF64:
return "kWasmF64";
case kS128:
return "kWasmS128";
case kRefNull:
switch (type.heap_representation()) {
case HeapType::kFunc:
return "kWasmFuncRef";
case HeapType::kEq:
return "kWasmEqRef";
case HeapType::kExtern:
return "kWasmExternRef";
case HeapType::kAny:
return "kWasmAnyRef";
case HeapType::kBottom:
UNREACHABLE();
case HeapType::kData:
case HeapType::kArray:
case HeapType::kI31:
default:
return "wasmRefNullType(" + HeapTypeToConstantName(type.heap_type()) +
")";
}
case kRef:
return "wasmRefType(" + HeapTypeToConstantName(type.heap_type()) + ")";
case kRtt:
case kVoid:
case kBottom:
UNREACHABLE();
}
}
std::ostream& operator<<(std::ostream& os, const PrintSig& print) {
os << "[";
for (size_t i = 0; i < print.num; ++i) {
os << (i == 0 ? "" : ", ") << ValueTypeToConstantName(print.getter(i));
}
return os << "]";
}
struct PrintName {
WasmName name;
PrintName(ModuleWireBytes wire_bytes, WireBytesRef ref)
: name(wire_bytes.GetNameOrNull(ref)) {}
};
std::ostream& operator<<(std::ostream& os, const PrintName& name) {
return os.put('\'').write(name.name.begin(), name.name.size()).put('\'');
}
// An interface for WasmFullDecoder which appends to a stream a textual
// representation of the expression, compatible with wasm-module-builder.js.
class InitExprInterface {
public:
static constexpr Decoder::ValidateFlag validate = Decoder::kFullValidation;
static constexpr DecodingMode decoding_mode = kConstantExpression;
struct Value : public ValueBase<validate> {
template <typename... Args>
explicit Value(Args&&... args) V8_NOEXCEPT
: ValueBase(std::forward<Args>(args)...) {}
};
using Control = ControlBase<Value, validate>;
using FullDecoder =
WasmFullDecoder<validate, InitExprInterface, decoding_mode>;
explicit InitExprInterface(StdoutStream& os) : os_(os) { os_ << "["; }
#define EMPTY_INTERFACE_FUNCTION(name, ...) \
V8_INLINE void name(FullDecoder* decoder, ##__VA_ARGS__) {}
INTERFACE_META_FUNCTIONS(EMPTY_INTERFACE_FUNCTION)
#undef EMPTY_INTERFACE_FUNCTION
#define UNREACHABLE_INTERFACE_FUNCTION(name, ...) \
V8_INLINE void name(FullDecoder* decoder, ##__VA_ARGS__) { UNREACHABLE(); }
INTERFACE_NON_CONSTANT_FUNCTIONS(UNREACHABLE_INTERFACE_FUNCTION)
#undef UNREACHABLE_INTERFACE_FUNCTION
void I32Const(FullDecoder* decoder, Value* result, int32_t value) {
os_ << "...wasmI32Const(" << value << "), ";
}
void I64Const(FullDecoder* decoder, Value* result, int64_t value) {
os_ << "...wasmI64Const(" << value << "), ";
}
void F32Const(FullDecoder* decoder, Value* result, float value) {
os_ << "...wasmF32Const(" << value << "), ";
}
void F64Const(FullDecoder* decoder, Value* result, double value) {
os_ << "...wasmF64Const(" << value << "), ";
}
void S128Const(FullDecoder* decoder, Simd128Immediate<validate>& imm,
Value* result) {
os_ << "kSimdPrefix, kExprS128Const, " << std::hex;
for (int i = 0; i < kSimd128Size; i++) {
os_ << "0x" << static_cast<int>(imm.value[i]) << ", ";
}
os_ << std::dec;
}
void BinOp(FullDecoder* decoder, WasmOpcode opcode, const Value& lhs,
const Value& rhs, Value* result) {
// TODO(12089): Implement.
UNIMPLEMENTED();
}
void RefNull(FullDecoder* decoder, ValueType type, Value* result) {
os_ << "kExprRefNull, " << HeapTypeToJSByteEncoding(type.heap_type())
<< ", ";
}
void RefFunc(FullDecoder* decoder, uint32_t function_index, Value* result) {
os_ << "kExprRefFunc, " << index(function_index);
}
void GlobalGet(FullDecoder* decoder, Value* result,
const GlobalIndexImmediate<validate>& imm) {
os_ << "kWasmGlobalGet, " << index(imm.index);
}
// The following operations assume non-rtt versions of the instructions.
void StructNew(FullDecoder* decoder,
const StructIndexImmediate<validate>& imm, const Value& rtt,
const Value args[], Value* result) {
os_ << "kGCPrefix, kExprStructNew, " << index(imm.index);
}
void StructNewDefault(FullDecoder* decoder,
const StructIndexImmediate<validate>& imm,
const Value& rtt, Value* result) {
os_ << "kGCPrefix, kExprStructNewDefault, " << index(imm.index);
}
void ArrayNew(FullDecoder* decoder, const ArrayIndexImmediate<validate>& imm,
const Value& length, const Value& initial_value,
const Value& rtt, Value* result) {
os_ << "kGCPrefix, kExprArrayNew, " << index(imm.index);
}
void ArrayNewDefault(FullDecoder* decoder,
const ArrayIndexImmediate<validate>& imm,
const Value& length, const Value& rtt, Value* result) {
os_ << "kGCPrefix, kExprArrayNewDefault, " << index(imm.index);
}
void ArrayNewFixed(FullDecoder* decoder,
const ArrayIndexImmediate<validate>& imm,
const base::Vector<Value>& elements, const Value& rtt,
Value* result) {
os_ << "kGCPrefix, kExprArrayNewFixed, " << index(imm.index)
<< index(static_cast<uint32_t>(elements.size()));
}
void ArrayNewSegment(FullDecoder* decoder,
const ArrayIndexImmediate<validate>& array_imm,
const IndexImmediate<validate>& data_segment_imm,
const Value& offset_value, const Value& length_value,
const Value& rtt, Value* result) {
// TODO(7748): Implement.
UNIMPLEMENTED();
}
void I31New(FullDecoder* decoder, const Value& input, Value* result) {
os_ << "kGCPrefix, kExprI31New, ";
}
// Since we treat all instructions as rtt-less, we should not print rtts.
void RttCanon(FullDecoder* decoder, uint32_t type_index, Value* result) {}
void StringConst(FullDecoder* decoder,
const StringConstImmediate<validate>& imm, Value* result) {
os_ << "...GCInstr(kExprStringConst), " << index(imm.index);
}
void DoReturn(FullDecoder* decoder, uint32_t /*drop_values*/) { os_ << "]"; }
private:
StdoutStream& os_;
};
void DecodeAndAppendInitExpr(StdoutStream& os, Zone* zone,
const WasmModule* module,
ModuleWireBytes module_bytes,
ConstantExpression init, ValueType expected) {
switch (init.kind()) {
case ConstantExpression::kEmpty:
UNREACHABLE();
case ConstantExpression::kI32Const:
os << "wasmI32Const(" << init.i32_value() << ")";
break;
case ConstantExpression::kRefNull:
os << "[kExprRefNull, " << HeapTypeToJSByteEncoding(HeapType(init.repr()))
<< "]";
break;
case ConstantExpression::kRefFunc:
os << "[kExprRefFunc, " << index(init.index()) << "]";
break;
case ConstantExpression::kWireBytesRef: {
WireBytesRef ref = init.wire_bytes_ref();
auto sig = FixedSizeSignature<ValueType>::Returns(expected);
FunctionBody body(&sig, ref.offset(), module_bytes.start() + ref.offset(),
module_bytes.start() + ref.end_offset());
WasmFeatures detected;
WasmFullDecoder<Decoder::kFullValidation, InitExprInterface,
kConstantExpression>
decoder(zone, module, WasmFeatures::All(), &detected, body, os);
decoder.DecodeFunctionBody();
break;
}
}
}
} // namespace
void GenerateTestCase(Isolate* isolate, ModuleWireBytes wire_bytes,
bool compiles) {
constexpr bool kVerifyFunctions = false;
auto enabled_features = i::wasm::WasmFeatures::FromIsolate(isolate);
ModuleResult module_res = DecodeWasmModule(
enabled_features, wire_bytes.start(), wire_bytes.end(), kVerifyFunctions,
ModuleOrigin::kWasmOrigin, isolate->counters(),
isolate->metrics_recorder(), v8::metrics::Recorder::ContextId::Empty(),
DecodingMethod::kSync, GetWasmEngine()->allocator());
CHECK_WITH_MSG(module_res.ok(), module_res.error().message().c_str());
WasmModule* module = module_res.value().get();
CHECK_NOT_NULL(module);
AccountingAllocator allocator;
Zone zone(&allocator, "constant expression zone");
StdoutStream os;
tzset();
time_t current_time = time(nullptr);
struct tm current_localtime;
#ifdef V8_OS_WIN
localtime_s(&current_localtime, &current_time);
#else
localtime_r(&current_time, &current_localtime);
#endif
int year = 1900 + current_localtime.tm_year;
os << "// Copyright " << year
<< " the V8 project authors. All rights reserved.\n"
"// Use of this source code is governed by a BSD-style license that "
"can be\n"
"// found in the LICENSE file.\n"
"\n"
"// Flags: --wasm-staging --experimental-wasm-gc\n"
"\n"
"d8.file.execute('test/mjsunit/wasm/wasm-module-builder.js');\n"
"\n"
"const builder = new WasmModuleBuilder();\n";
for (int i = 0; i < static_cast<int>(module->types.size()); i++) {
if (module->has_struct(i)) {
const StructType* struct_type = module->types[i].struct_type;
os << "builder.addStruct([";
int field_count = struct_type->field_count();
for (int index = 0; index < field_count; index++) {
os << "makeField(" << ValueTypeToConstantName(struct_type->field(index))
<< ", " << (struct_type->mutability(index) ? "true" : "false")
<< ")";
if (index + 1 < field_count) os << ", ";
}
os << "]);\n";
} else if (module->has_array(i)) {
const ArrayType* array_type = module->types[i].array_type;
os << "builder.addArray("
<< ValueTypeToConstantName(array_type->element_type()) << ", "
<< (array_type->mutability() ? "true" : "false") << ");\n";
} else {
DCHECK(module->has_signature(i));
const FunctionSig* sig = module->types[i].function_sig;
os << "builder.addType(makeSig(" << PrintParameters(sig) << ", "
<< PrintReturns(sig) << "));\n";
}
}
for (WasmImport imported : module->import_table) {
// TODO(wasm): Support other imports when needed.
CHECK_EQ(kExternalFunction, imported.kind);
auto module_name = PrintName(wire_bytes, imported.module_name);
auto field_name = PrintName(wire_bytes, imported.field_name);
int sig_index = module->functions[imported.index].sig_index;
os << "builder.addImport(" << module_name << ", " << field_name << ", "
<< sig_index << " /* sig */);\n";
}
if (module->has_memory) {
os << "builder.addMemory(" << module->initial_pages;
if (module->has_maximum_pages) {
os << ", " << module->maximum_pages;
} else {
os << ", undefined";
}
os << ", " << (module->mem_export ? "true" : "false");
if (module->has_shared_memory) {
os << ", true";
}
os << ");\n";
}
for (WasmDataSegment segment : module->data_segments) {
base::Vector<const uint8_t> data = wire_bytes.module_bytes().SubVector(
segment.source.offset(), segment.source.end_offset());
if (segment.active) {
// TODO(wasm): Add other expressions when needed.
CHECK_EQ(ConstantExpression::kI32Const, segment.dest_addr.kind());
os << "builder.addDataSegment(" << segment.dest_addr.i32_value() << ", ";
} else {
os << "builder.addPassiveDataSegment(";
}
os << "[";
if (!data.empty()) {
os << unsigned{data[0]};
for (unsigned byte : data + 1) os << ", " << byte;
}
os << "]);\n";
}
for (WasmGlobal& global : module->globals) {
os << "builder.addGlobal(" << ValueTypeToConstantName(global.type) << ", "
<< global.mutability << ", ";
DecodeAndAppendInitExpr(os, &zone, module, wire_bytes, global.init,
global.type);
os << ");\n";
}
Zone tmp_zone(isolate->allocator(), ZONE_NAME);
// TODO(9495): Add support for tables with explicit initializers.
for (const WasmTable& table : module->tables) {
os << "builder.addTable(" << ValueTypeToConstantName(table.type) << ", "
<< table.initial_size << ", "
<< (table.has_maximum_size ? std::to_string(table.maximum_size)
: "undefined")
<< ", undefined)\n";
}
for (const WasmElemSegment& elem_segment : module->elem_segments) {
const char* status_str =
elem_segment.status == WasmElemSegment::kStatusActive
? "Active"
: elem_segment.status == WasmElemSegment::kStatusPassive
? "Passive"
: "Declarative";
os << "builder.add" << status_str << "ElementSegment(";
if (elem_segment.status == WasmElemSegment::kStatusActive) {
os << elem_segment.table_index << ", ";
DecodeAndAppendInitExpr(os, &zone, module, wire_bytes,
elem_segment.offset, kWasmI32);
os << ", ";
}
os << "[";
for (uint32_t i = 0; i < elem_segment.entries.size(); i++) {
if (elem_segment.element_type == WasmElemSegment::kExpressionElements) {
DecodeAndAppendInitExpr(os, &zone, module, wire_bytes,
elem_segment.entries[i], elem_segment.type);
} else {
os << elem_segment.entries[i].index();
}
if (i < elem_segment.entries.size() - 1) os << ", ";
}
os << "], "
<< (elem_segment.element_type == WasmElemSegment::kExpressionElements
? ValueTypeToConstantName(elem_segment.type)
: "undefined")
<< ");\n";
}
for (const WasmTag& tag : module->tags) {
os << "builder.addTag(makeSig(" << PrintParameters(tag.ToFunctionSig())
<< ", []));\n";
}
for (const WasmFunction& func : module->functions) {
if (func.imported) continue;
base::Vector<const uint8_t> func_code = wire_bytes.GetFunctionBytes(&func);
os << "// Generate function " << (func.func_index + 1) << " (out of "
<< module->functions.size() << ").\n";
// Add function.
os << "builder.addFunction(undefined, " << func.sig_index
<< " /* sig */)\n";
// Add locals.
BodyLocalDecls decls(&tmp_zone);
DecodeLocalDecls(enabled_features, &decls, module, func_code.begin(),
func_code.end());
if (!decls.type_list.empty()) {
os << " ";
for (size_t pos = 0, count = 1, locals = decls.type_list.size();
pos < locals; pos += count, count = 1) {
ValueType type = decls.type_list[pos];
while (pos + count < locals && decls.type_list[pos + count] == type) {
++count;
}
os << ".addLocals(" << ValueTypeToConstantName(type) << ", " << count
<< ")";
}
os << "\n";
}
// Add body.
os << " .addBodyWithEnd([\n";
FunctionBody func_body(func.sig, func.code.offset(), func_code.begin(),
func_code.end());
PrintRawWasmCode(isolate->allocator(), func_body, module, kOmitLocals);
os << "]);\n";
}
for (WasmExport& exp : module->export_table) {
if (exp.kind != kExternalFunction) continue;
os << "builder.addExport(" << PrintName(wire_bytes, exp.name) << ", "
<< exp.index << ");\n";
}
if (compiles) {
os << "const instance = builder.instantiate();\n"
"print(instance.exports.main(1, 2, 3));\n";
} else {
os << "assertThrows(function() { builder.instantiate(); }, "
"WebAssembly.CompileError);\n";
}
}
void OneTimeEnableStagedWasmFeatures(v8::Isolate* isolate) {
struct EnableStagedWasmFeatures {
explicit EnableStagedWasmFeatures(v8::Isolate* isolate) {
#define ENABLE_STAGED_FEATURES(feat, desc, val) \
v8_flags.experimental_wasm_##feat = true;
FOREACH_WASM_STAGING_FEATURE_FLAG(ENABLE_STAGED_FEATURES)
#undef ENABLE_STAGED_FEATURES
isolate->InstallConditionalFeatures(isolate->GetCurrentContext());
}
};
// The compiler will properly synchronize the constructor call.
static EnableStagedWasmFeatures one_time_enable_staged_features(isolate);
}
void WasmExecutionFuzzer::FuzzWasmModule(base::Vector<const uint8_t> data,
bool require_valid) {
v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get();
v8::Isolate* isolate = support->GetIsolate();
// Strictly enforce the input size limit. Note that setting "max_len" on the
// fuzzer target is not enough, since different fuzzers are used and not all
// respect that limit.
if (data.size() > max_input_size()) return;
i::Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate);
// Clear any pending exceptions from a prior run.
i_isolate->clear_pending_exception();
v8::Isolate::Scope isolate_scope(isolate);
v8::HandleScope handle_scope(isolate);
v8::Context::Scope context_scope(support->GetContext());
// We explicitly enable staged WebAssembly features here to increase fuzzer
// coverage. For libfuzzer fuzzers it is not possible that the fuzzer enables
// the flag by itself.
OneTimeEnableStagedWasmFeatures(isolate);
v8::TryCatch try_catch(isolate);
HandleScope scope(i_isolate);
AccountingAllocator allocator;
Zone zone(&allocator, ZONE_NAME);
ZoneBuffer buffer(&zone);
// The first byte specifies some internal configuration, like which function
// is compiled with with compiler, and other flags.
uint8_t configuration_byte = data.empty() ? 0 : data[0];
if (!data.empty()) data += 1;
// Derive the compiler configuration for the first four functions from the
// configuration byte, to choose for each function between:
// 0: TurboFan
// 1: Liftoff
// 2: Liftoff for debugging
uint8_t tier_mask = 0;
uint8_t debug_mask = 0;
for (int i = 0; i < 4; ++i, configuration_byte /= 3) {
int compiler_config = configuration_byte % 3;
tier_mask |= (compiler_config == 0) << i;
debug_mask |= (compiler_config == 2) << i;
}
// Note: After dividing by 3 for 4 times, configuration_byte is within [0, 3].
// Control whether Liftoff or the interpreter will be used as the reference
// tier.
// TODO(thibaudm): Port nondeterminism detection to arm.
#if defined(V8_TARGET_ARCH_X64) || defined(V8_TARGET_ARCH_X86) || \
defined(V8_TARGET_ARCH_ARM64) || defined(V8_TARGET_ARCH_ARM)
bool liftoff_as_reference = configuration_byte & 1;
#else
bool liftoff_as_reference = false;
#endif
FlagScope<bool> turbo_mid_tier_regalloc(
&v8_flags.turbo_force_mid_tier_regalloc, configuration_byte == 0);
if (!GenerateModule(i_isolate, &zone, data, &buffer, liftoff_as_reference)) {
return;
}
testing::SetupIsolateForWasmModule(i_isolate);
ErrorThrower interpreter_thrower(i_isolate, "Interpreter");
ModuleWireBytes wire_bytes(buffer.begin(), buffer.end());
if (require_valid && v8_flags.wasm_fuzzer_gen_test) {
GenerateTestCase(i_isolate, wire_bytes, true);
}
auto enabled_features = i::wasm::WasmFeatures::FromIsolate(i_isolate);
MaybeHandle<WasmModuleObject> compiled_module;
{
// Explicitly enable Liftoff, disable tiering and set the tier_mask. This
// way, we deterministically test a combination of Liftoff and Turbofan.
FlagScope<bool> liftoff(&v8_flags.liftoff, true);
FlagScope<bool> no_tier_up(&v8_flags.wasm_tier_up, false);
FlagScope<int> tier_mask_scope(&v8_flags.wasm_tier_mask_for_testing,
tier_mask);
FlagScope<int> debug_mask_scope(&v8_flags.wasm_debug_mask_for_testing,
debug_mask);
compiled_module = GetWasmEngine()->SyncCompile(
i_isolate, enabled_features, &interpreter_thrower, wire_bytes);
}
bool compiles = !compiled_module.is_null();
if (!require_valid && v8_flags.wasm_fuzzer_gen_test) {
GenerateTestCase(i_isolate, wire_bytes, compiles);
}
std::string error_message;
bool result = GetWasmEngine()->SyncValidate(i_isolate, enabled_features,
wire_bytes, &error_message);
CHECK_EQ(compiles, result);
CHECK_WITH_MSG(
!require_valid || result,
("Generated module should validate, but got: " + error_message).c_str());
if (!compiles) return;
int32_t max_steps = 16 * 1024;
int32_t nondeterminism = false;
Handle<WasmModuleObject> module_ref;
if (liftoff_as_reference) {
module_ref = CompileReferenceModule(&zone, i_isolate, wire_bytes,
&interpreter_thrower, &max_steps,
&nondeterminism);
}
InterpretAndExecuteModule(i_isolate, compiled_module.ToHandleChecked(),
module_ref, &max_steps, &nondeterminism);
}
} // namespace fuzzer
} // namespace wasm
} // namespace internal
} // namespace v8