v8/test/cctest/test-global-handles.cc
jkummerow@chromium.org 665c45c92d Un-revert "Implement simple effect typing for variables" and "Handle switch effects"
This re-lands r15776 and r15777, reverting the revert in r15786.

R=rossberg@chromium.org

Review URL: https://codereview.chromium.org/22144006

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@16071 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2013-08-06 12:57:23 +00:00

507 lines
17 KiB
C++

// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <map>
#include <vector>
#include "global-handles.h"
#include "cctest.h"
using namespace v8::internal;
using v8::UniqueId;
static List<Object*> skippable_objects;
static List<Object*> can_skip_called_objects;
static bool CanSkipCallback(Heap* heap, Object** pointer) {
can_skip_called_objects.Add(*pointer);
return skippable_objects.Contains(*pointer);
}
static void ResetCanSkipData() {
skippable_objects.Clear();
can_skip_called_objects.Clear();
}
class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
public:
TestRetainedObjectInfo() : has_been_disposed_(false) {}
bool has_been_disposed() { return has_been_disposed_; }
virtual void Dispose() {
ASSERT(!has_been_disposed_);
has_been_disposed_ = true;
}
virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
return other == this;
}
virtual intptr_t GetHash() { return 0; }
virtual const char* GetLabel() { return "whatever"; }
private:
bool has_been_disposed_;
};
class TestObjectVisitor : public ObjectVisitor {
public:
virtual void VisitPointers(Object** start, Object** end) {
for (Object** o = start; o != end; ++o)
visited.Add(*o);
}
List<Object*> visited;
};
TEST(IterateObjectGroupsOldApi) {
CcTest::InitializeVM();
GlobalHandles* global_handles = Isolate::Current()->global_handles();
v8::HandleScope handle_scope(CcTest::isolate());
Handle<Object> g1s1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g1s2 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2s1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2s2 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
TestRetainedObjectInfo info1;
TestRetainedObjectInfo info2;
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
global_handles->AddObjectGroup(g1_objects, 2, &info1);
global_handles->AddObjectGroup(g2_objects, 2, &info2);
}
// Iterate the object groups. First skip all.
{
ResetCanSkipData();
skippable_objects.Add(*g1s1.location());
skippable_objects.Add(*g1s2.location());
skippable_objects.Add(*g2s1.location());
skippable_objects.Add(*g2s2.location());
TestObjectVisitor visitor;
global_handles->IterateObjectGroups(&visitor, &CanSkipCallback);
// CanSkipCallback was called for all objects.
ASSERT(can_skip_called_objects.length() == 4);
ASSERT(can_skip_called_objects.Contains(*g1s1.location()));
ASSERT(can_skip_called_objects.Contains(*g1s2.location()));
ASSERT(can_skip_called_objects.Contains(*g2s1.location()));
ASSERT(can_skip_called_objects.Contains(*g2s2.location()));
// Nothing was visited.
ASSERT(visitor.visited.length() == 0);
ASSERT(!info1.has_been_disposed());
ASSERT(!info2.has_been_disposed());
}
// Iterate again, now only skip the second object group.
{
ResetCanSkipData();
// The first grough should still be visited, since only one object is
// skipped.
skippable_objects.Add(*g1s1.location());
skippable_objects.Add(*g2s1.location());
skippable_objects.Add(*g2s2.location());
TestObjectVisitor visitor;
global_handles->IterateObjectGroups(&visitor, &CanSkipCallback);
// CanSkipCallback was called for all objects.
ASSERT(can_skip_called_objects.length() == 3 ||
can_skip_called_objects.length() == 4);
ASSERT(can_skip_called_objects.Contains(*g1s2.location()));
ASSERT(can_skip_called_objects.Contains(*g2s1.location()));
ASSERT(can_skip_called_objects.Contains(*g2s2.location()));
// The first group was visited.
ASSERT(visitor.visited.length() == 2);
ASSERT(visitor.visited.Contains(*g1s1.location()));
ASSERT(visitor.visited.Contains(*g1s2.location()));
ASSERT(info1.has_been_disposed());
ASSERT(!info2.has_been_disposed());
}
// Iterate again, don't skip anything.
{
ResetCanSkipData();
TestObjectVisitor visitor;
global_handles->IterateObjectGroups(&visitor, &CanSkipCallback);
// CanSkipCallback was called for all objects.
ASSERT(can_skip_called_objects.length() == 1);
ASSERT(can_skip_called_objects.Contains(*g2s1.location()) ||
can_skip_called_objects.Contains(*g2s2.location()));
// The second group was visited.
ASSERT(visitor.visited.length() == 2);
ASSERT(visitor.visited.Contains(*g2s1.location()));
ASSERT(visitor.visited.Contains(*g2s2.location()));
ASSERT(info2.has_been_disposed());
}
}
TEST(IterateObjectGroups) {
CcTest::InitializeVM();
GlobalHandles* global_handles = Isolate::Current()->global_handles();
v8::HandleScope handle_scope(CcTest::isolate());
Handle<Object> g1s1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g1s2 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2s1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2s2 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
TestRetainedObjectInfo info1;
TestRetainedObjectInfo info2;
global_handles->SetObjectGroupId(g2s1.location(), UniqueId(2));
global_handles->SetObjectGroupId(g2s2.location(), UniqueId(2));
global_handles->SetRetainedObjectInfo(UniqueId(2), &info2);
global_handles->SetObjectGroupId(g1s1.location(), UniqueId(1));
global_handles->SetObjectGroupId(g1s2.location(), UniqueId(1));
global_handles->SetRetainedObjectInfo(UniqueId(1), &info1);
// Iterate the object groups. First skip all.
{
ResetCanSkipData();
skippable_objects.Add(*g1s1.location());
skippable_objects.Add(*g1s2.location());
skippable_objects.Add(*g2s1.location());
skippable_objects.Add(*g2s2.location());
TestObjectVisitor visitor;
global_handles->IterateObjectGroups(&visitor, &CanSkipCallback);
// CanSkipCallback was called for all objects.
ASSERT(can_skip_called_objects.length() == 4);
ASSERT(can_skip_called_objects.Contains(*g1s1.location()));
ASSERT(can_skip_called_objects.Contains(*g1s2.location()));
ASSERT(can_skip_called_objects.Contains(*g2s1.location()));
ASSERT(can_skip_called_objects.Contains(*g2s2.location()));
// Nothing was visited.
ASSERT(visitor.visited.length() == 0);
ASSERT(!info1.has_been_disposed());
ASSERT(!info2.has_been_disposed());
}
// Iterate again, now only skip the second object group.
{
ResetCanSkipData();
// The first grough should still be visited, since only one object is
// skipped.
skippable_objects.Add(*g1s1.location());
skippable_objects.Add(*g2s1.location());
skippable_objects.Add(*g2s2.location());
TestObjectVisitor visitor;
global_handles->IterateObjectGroups(&visitor, &CanSkipCallback);
// CanSkipCallback was called for all objects.
ASSERT(can_skip_called_objects.length() == 3 ||
can_skip_called_objects.length() == 4);
ASSERT(can_skip_called_objects.Contains(*g1s2.location()));
ASSERT(can_skip_called_objects.Contains(*g2s1.location()));
ASSERT(can_skip_called_objects.Contains(*g2s2.location()));
// The first group was visited.
ASSERT(visitor.visited.length() == 2);
ASSERT(visitor.visited.Contains(*g1s1.location()));
ASSERT(visitor.visited.Contains(*g1s2.location()));
ASSERT(info1.has_been_disposed());
ASSERT(!info2.has_been_disposed());
}
// Iterate again, don't skip anything.
{
ResetCanSkipData();
TestObjectVisitor visitor;
global_handles->IterateObjectGroups(&visitor, &CanSkipCallback);
// CanSkipCallback was called for all objects.
ASSERT(can_skip_called_objects.length() == 1);
ASSERT(can_skip_called_objects.Contains(*g2s1.location()) ||
can_skip_called_objects.Contains(*g2s2.location()));
// The second group was visited.
ASSERT(visitor.visited.length() == 2);
ASSERT(visitor.visited.Contains(*g2s1.location()));
ASSERT(visitor.visited.Contains(*g2s2.location()));
ASSERT(info2.has_been_disposed());
}
}
TEST(ImplicitReferences) {
CcTest::InitializeVM();
GlobalHandles* global_handles = Isolate::Current()->global_handles();
v8::HandleScope handle_scope(CcTest::isolate());
Handle<Object> g1s1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g1c1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g1c2 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2s1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2s2 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2c1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
global_handles->SetObjectGroupId(g1s1.location(), UniqueId(1));
global_handles->SetObjectGroupId(g2s1.location(), UniqueId(2));
global_handles->SetObjectGroupId(g2s2.location(), UniqueId(2));
global_handles->SetReferenceFromGroup(UniqueId(1), g1c1.location());
global_handles->SetReferenceFromGroup(UniqueId(1), g1c2.location());
global_handles->SetReferenceFromGroup(UniqueId(2), g2c1.location());
List<ImplicitRefGroup*>* implicit_refs =
global_handles->implicit_ref_groups();
USE(implicit_refs);
ASSERT(implicit_refs->length() == 2);
ASSERT(implicit_refs->at(0)->parent ==
reinterpret_cast<HeapObject**>(g1s1.location()));
ASSERT(implicit_refs->at(0)->length == 2);
ASSERT(implicit_refs->at(0)->children[0] == g1c1.location());
ASSERT(implicit_refs->at(0)->children[1] == g1c2.location());
ASSERT(implicit_refs->at(1)->parent ==
reinterpret_cast<HeapObject**>(g2s1.location()));
ASSERT(implicit_refs->at(1)->length == 1);
ASSERT(implicit_refs->at(1)->children[0] == g2c1.location());
}
static const int kBlockSize = 256;
TEST(BlockCollection) {
v8::V8::Initialize();
Isolate* isolate = Isolate::Current();
GlobalHandles* global_handles = isolate->global_handles();
CHECK_EQ(0, global_handles->block_count());
CHECK_EQ(0, global_handles->global_handles_count());
Object* object = isolate->heap()->undefined_value();
const int kNumberOfBlocks = 5;
typedef Handle<Object> Block[kBlockSize];
for (int round = 0; round < 3; round++) {
Block blocks[kNumberOfBlocks];
for (int i = 0; i < kNumberOfBlocks; i++) {
for (int j = 0; j < kBlockSize; j++) {
blocks[i][j] = global_handles->Create(object);
}
}
CHECK_EQ(kNumberOfBlocks, global_handles->block_count());
for (int i = 0; i < kNumberOfBlocks; i++) {
for (int j = 0; j < kBlockSize; j++) {
global_handles->Destroy(blocks[i][j].location());
}
}
isolate->heap()->CollectAllAvailableGarbage("BlockCollection");
CHECK_EQ(0, global_handles->global_handles_count());
CHECK_EQ(1, global_handles->block_count());
}
}
class RandomMutationData {
public:
explicit RandomMutationData(Isolate* isolate)
: isolate_(isolate), weak_offset_(0) {}
void Mutate(double strong_growth_tendency,
double weak_growth_tendency = 0.05) {
for (int i = 0; i < kBlockSize * 100; i++) {
if (rng_.next(strong_growth_tendency)) {
AddStrong();
} else if (strong_nodes_.size() != 0) {
size_t to_remove = rng_.next(static_cast<int>(strong_nodes_.size()));
RemoveStrong(to_remove);
}
if (rng_.next(weak_growth_tendency)) AddWeak();
if (rng_.next(0.05)) {
#ifdef DEBUG
isolate_->global_handles()->VerifyBlockInvariants();
#endif
}
if (rng_.next(0.0001)) {
isolate_->heap()->PerformScavenge();
} else if (rng_.next(0.00003)) {
isolate_->heap()->CollectAllAvailableGarbage();
}
CheckSizes();
}
}
void RemoveAll() {
while (strong_nodes_.size() != 0) {
RemoveStrong(strong_nodes_.size() - 1);
}
isolate_->heap()->PerformScavenge();
isolate_->heap()->CollectAllAvailableGarbage();
CheckSizes();
}
private:
typedef std::vector<Object**> NodeVector;
typedef std::map<int32_t, Object**> NodeMap;
void CheckSizes() {
int stored_sizes =
static_cast<int>(strong_nodes_.size() + weak_nodes_.size());
CHECK_EQ(isolate_->global_handles()->global_handles_count(), stored_sizes);
}
void AddStrong() {
Object* object = isolate_->heap()->undefined_value();
Object** location = isolate_->global_handles()->Create(object).location();
strong_nodes_.push_back(location);
}
void RemoveStrong(size_t offset) {
isolate_->global_handles()->Destroy(strong_nodes_.at(offset));
strong_nodes_.erase(strong_nodes_.begin() + offset);
}
void AddWeak() {
v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(isolate_);
v8::HandleScope scope(isolate);
v8::Local<v8::Object> object = v8::Object::New();
int32_t offset = ++weak_offset_;
object->Set(7, v8::Integer::New(offset, isolate));
v8::Persistent<v8::Object> persistent(isolate, object);
persistent.MakeWeak(this, WeakCallback);
persistent.MarkIndependent();
Object** location = v8::Utils::OpenPersistent(persistent).location();
bool inserted =
weak_nodes_.insert(std::make_pair(offset, location)).second;
CHECK(inserted);
}
static void WeakCallback(v8::Isolate* isolate,
v8::Persistent<v8::Object>* persistent,
RandomMutationData* data) {
v8::Local<v8::Object> object =
v8::Local<v8::Object>::New(isolate, *persistent);
int32_t offset =
v8::Local<v8::Integer>::Cast(object->Get(7))->Int32Value();
Object** location = v8::Utils::OpenPersistent(persistent).location();
NodeMap& weak_nodes = data->weak_nodes_;
NodeMap::iterator it = weak_nodes.find(offset);
CHECK(it != weak_nodes.end());
CHECK(it->second == location);
weak_nodes.erase(it);
persistent->Dispose();
}
Isolate* isolate_;
RandomNumberGenerator rng_;
NodeVector strong_nodes_;
NodeMap weak_nodes_;
int32_t weak_offset_;
};
TEST(RandomMutation) {
v8::V8::Initialize();
Isolate* isolate = Isolate::Current();
CHECK_EQ(0, isolate->global_handles()->block_count());
HandleScope handle_scope(isolate);
v8::Context::Scope context_scope(
v8::Context::New(reinterpret_cast<v8::Isolate*>(isolate)));
RandomMutationData data(isolate);
// grow some
data.Mutate(0.65);
data.Mutate(0.55);
// balanced mutation
for (int i = 0; i < 3; i++) data.Mutate(0.50);
// shrink some
data.Mutate(0.45);
data.Mutate(0.35);
// clear everything
data.RemoveAll();
}
TEST(EternalHandles) {
CcTest::InitializeVM();
Isolate* isolate = Isolate::Current();
v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate);
EternalHandles* eternals = isolate->eternal_handles();
// Create a number of handles that will not be on a block boundary
const int kArrayLength = 2048-1;
int indices[kArrayLength];
CHECK_EQ(0, eternals->NumberOfHandles());
for (int i = 0; i < kArrayLength; i++) {
HandleScope scope(isolate);
v8::Handle<v8::Object> object = v8::Object::New();
object->Set(i, v8::Integer::New(i, v8_isolate));
indices[i] = eternals->Create(isolate, *v8::Utils::OpenHandle(*object));
}
isolate->heap()->CollectAllAvailableGarbage();
for (int i = 0; i < kArrayLength; i++) {
HandleScope scope(isolate);
v8::Handle<v8::Value> local =
v8::Utils::ToLocal(eternals->Get(indices[i]));
v8::Handle<v8::Object> object = v8::Handle<v8::Object>::Cast(local);
v8::Handle<v8::Value> value = object->Get(i);
CHECK(value->IsInt32());
CHECK_EQ(i, value->Int32Value());
}
CHECK_EQ(kArrayLength, eternals->NumberOfHandles());
}