v8/src/elements.cc
fschneider@chromium.org 3f8ed7c30d Add a missing check for a failure result.
Function calls that may return a failure must use the result. Enforce
this by adding missing MUST_USE_RESULT to their declarations.
Review URL: https://chromiumcodereview.appspot.com/9421032

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@10748 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-02-20 10:17:25 +00:00

922 lines
35 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "objects.h"
#include "elements.h"
#include "utils.h"
// Each concrete ElementsAccessor can handle exactly one ElementsKind,
// several abstract ElementsAccessor classes are used to allow sharing
// common code.
//
// Inheritance hierarchy:
// - ElementsAccessorBase (abstract)
// - FastElementsAccessor (abstract)
// - FastObjectElementsAccessor
// - FastDoubleElementsAccessor
// - ExternalElementsAccessor (abstract)
// - ExternalByteElementsAccessor
// - ExternalUnsignedByteElementsAccessor
// - ExternalShortElementsAccessor
// - ExternalUnsignedShortElementsAccessor
// - ExternalIntElementsAccessor
// - ExternalUnsignedIntElementsAccessor
// - ExternalFloatElementsAccessor
// - ExternalDoubleElementsAccessor
// - PixelElementsAccessor
// - DictionaryElementsAccessor
// - NonStrictArgumentsElementsAccessor
namespace v8 {
namespace internal {
ElementsAccessor** ElementsAccessor::elements_accessors_;
static bool HasKey(FixedArray* array, Object* key) {
int len0 = array->length();
for (int i = 0; i < len0; i++) {
Object* element = array->get(i);
if (element->IsSmi() && element == key) return true;
if (element->IsString() &&
key->IsString() && String::cast(element)->Equals(String::cast(key))) {
return true;
}
}
return false;
}
static Failure* ThrowArrayLengthRangeError(Heap* heap) {
HandleScope scope(heap->isolate());
return heap->isolate()->Throw(
*heap->isolate()->factory()->NewRangeError("invalid_array_length",
HandleVector<Object>(NULL, 0)));
}
// Base class for element handler implementations. Contains the
// the common logic for objects with different ElementsKinds.
// Subclasses must specialize method for which the element
// implementation differs from the base class implementation.
//
// This class is intended to be used in the following way:
//
// class SomeElementsAccessor :
// public ElementsAccessorBase<SomeElementsAccessor,
// BackingStoreClass> {
// ...
// }
//
// This is an example of the Curiously Recurring Template Pattern (see
// http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern). We use
// CRTP to guarantee aggressive compile time optimizations (i.e. inlining and
// specialization of SomeElementsAccessor methods).
template <typename ElementsAccessorSubclass, typename BackingStoreClass>
class ElementsAccessorBase : public ElementsAccessor {
protected:
ElementsAccessorBase() { }
virtual MaybeObject* Get(FixedArrayBase* backing_store,
uint32_t key,
JSObject* obj,
Object* receiver) {
return ElementsAccessorSubclass::GetImpl(
BackingStoreClass::cast(backing_store), key, obj, receiver);
}
static MaybeObject* GetImpl(BackingStoreClass* backing_store,
uint32_t key,
JSObject* obj,
Object* receiver) {
return (key < ElementsAccessorSubclass::GetCapacityImpl(backing_store))
? backing_store->get(key)
: backing_store->GetHeap()->the_hole_value();
}
virtual MaybeObject* SetLength(JSObject* obj,
Object* length) {
ASSERT(obj->IsJSArray());
return ElementsAccessorSubclass::SetLengthImpl(
BackingStoreClass::cast(obj->elements()), obj, length);
}
static MaybeObject* SetLengthImpl(BackingStoreClass* backing_store,
JSObject* obj,
Object* length);
virtual MaybeObject* SetCapacityAndLength(JSArray* array,
int capacity,
int length) {
return ElementsAccessorSubclass::SetFastElementsCapacityAndLength(
array,
capacity,
length);
}
static MaybeObject* SetFastElementsCapacityAndLength(JSObject* obj,
int capacity,
int length) {
UNIMPLEMENTED();
return obj;
}
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) = 0;
virtual MaybeObject* AddElementsToFixedArray(FixedArrayBase* from,
FixedArray* to,
JSObject* holder,
Object* receiver) {
int len0 = to->length();
#ifdef DEBUG
if (FLAG_enable_slow_asserts) {
for (int i = 0; i < len0; i++) {
ASSERT(!to->get(i)->IsTheHole());
}
}
#endif
BackingStoreClass* backing_store = BackingStoreClass::cast(from);
uint32_t len1 = ElementsAccessorSubclass::GetCapacityImpl(backing_store);
// Optimize if 'other' is empty.
// We cannot optimize if 'this' is empty, as other may have holes.
if (len1 == 0) return to;
// Compute how many elements are not in other.
int extra = 0;
for (uint32_t y = 0; y < len1; y++) {
if (ElementsAccessorSubclass::HasElementAtIndexImpl(
backing_store, y, holder, receiver)) {
uint32_t key =
ElementsAccessorSubclass::GetKeyForIndexImpl(backing_store, y);
MaybeObject* maybe_value =
ElementsAccessorSubclass::GetImpl(backing_store, key,
holder, receiver);
Object* value;
if (!maybe_value->ToObject(&value)) return maybe_value;
ASSERT(!value->IsTheHole());
if (!HasKey(to, value)) {
extra++;
}
}
}
if (extra == 0) return to;
// Allocate the result
FixedArray* result;
MaybeObject* maybe_obj =
backing_store->GetHeap()->AllocateFixedArray(len0 + extra);
if (!maybe_obj->To<FixedArray>(&result)) return maybe_obj;
// Fill in the content
{
AssertNoAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
for (int i = 0; i < len0; i++) {
Object* e = to->get(i);
ASSERT(e->IsString() || e->IsNumber());
result->set(i, e, mode);
}
}
// Fill in the extra values.
int index = 0;
for (uint32_t y = 0; y < len1; y++) {
if (ElementsAccessorSubclass::HasElementAtIndexImpl(
backing_store, y, holder, receiver)) {
uint32_t key =
ElementsAccessorSubclass::GetKeyForIndexImpl(backing_store, y);
MaybeObject* maybe_value =
ElementsAccessorSubclass::GetImpl(backing_store, key,
holder, receiver);
Object* value;
if (!maybe_value->ToObject(&value)) return maybe_value;
if (!value->IsTheHole() && !HasKey(to, value)) {
result->set(len0 + index, value);
index++;
}
}
}
ASSERT(extra == index);
return result;
}
protected:
static uint32_t GetCapacityImpl(BackingStoreClass* backing_store) {
return backing_store->length();
}
virtual uint32_t GetCapacity(FixedArrayBase* backing_store) {
return ElementsAccessorSubclass::GetCapacityImpl(
BackingStoreClass::cast(backing_store));
}
static bool HasElementAtIndexImpl(BackingStoreClass* backing_store,
uint32_t index,
JSObject* holder,
Object* receiver) {
uint32_t key =
ElementsAccessorSubclass::GetKeyForIndexImpl(backing_store, index);
MaybeObject* element =
ElementsAccessorSubclass::GetImpl(backing_store, key, holder, receiver);
return !element->IsTheHole();
}
virtual bool HasElementAtIndex(FixedArrayBase* backing_store,
uint32_t index,
JSObject* holder,
Object* receiver) {
return ElementsAccessorSubclass::HasElementAtIndexImpl(
BackingStoreClass::cast(backing_store), index, holder, receiver);
}
static uint32_t GetKeyForIndexImpl(BackingStoreClass* backing_store,
uint32_t index) {
return index;
}
virtual uint32_t GetKeyForIndex(FixedArrayBase* backing_store,
uint32_t index) {
return ElementsAccessorSubclass::GetKeyForIndexImpl(
BackingStoreClass::cast(backing_store), index);
}
private:
DISALLOW_COPY_AND_ASSIGN(ElementsAccessorBase);
};
// Super class for all fast element arrays.
template<typename FastElementsAccessorSubclass,
typename BackingStore,
int ElementSize>
class FastElementsAccessor
: public ElementsAccessorBase<FastElementsAccessorSubclass, BackingStore> {
protected:
friend class ElementsAccessorBase<FastElementsAccessorSubclass, BackingStore>;
// Adjusts the length of the fast backing store or returns the new length or
// undefined in case conversion to a slow backing store should be performed.
static MaybeObject* SetLengthWithoutNormalize(BackingStore* backing_store,
JSArray* array,
Object* length_object,
uint32_t length) {
uint32_t old_capacity = backing_store->length();
// Check whether the backing store should be shrunk.
if (length <= old_capacity) {
if (array->HasFastTypeElements()) {
MaybeObject* maybe_obj = array->EnsureWritableFastElements();
if (!maybe_obj->To(&backing_store)) return maybe_obj;
}
if (2 * length <= old_capacity) {
// If more than half the elements won't be used, trim the array.
if (length == 0) {
array->initialize_elements();
} else {
backing_store->set_length(length);
Address filler_start = backing_store->address() +
BackingStore::OffsetOfElementAt(length);
int filler_size = (old_capacity - length) * ElementSize;
array->GetHeap()->CreateFillerObjectAt(filler_start, filler_size);
}
} else {
// Otherwise, fill the unused tail with holes.
int old_length = FastD2I(array->length()->Number());
for (int i = length; i < old_length; i++) {
backing_store->set_the_hole(i);
}
}
return length_object;
}
// Check whether the backing store should be expanded.
uint32_t min = JSObject::NewElementsCapacity(old_capacity);
uint32_t new_capacity = length > min ? length : min;
if (!array->ShouldConvertToSlowElements(new_capacity)) {
MaybeObject* result = FastElementsAccessorSubclass::
SetFastElementsCapacityAndLength(array, new_capacity, length);
if (result->IsFailure()) return result;
return length_object;
}
// Request conversion to slow elements.
return array->GetHeap()->undefined_value();
}
};
class FastObjectElementsAccessor
: public FastElementsAccessor<FastObjectElementsAccessor,
FixedArray,
kPointerSize> {
public:
static MaybeObject* DeleteCommon(JSObject* obj,
uint32_t key) {
ASSERT(obj->HasFastElements() ||
obj->HasFastSmiOnlyElements() ||
obj->HasFastArgumentsElements());
Heap* heap = obj->GetHeap();
FixedArray* backing_store = FixedArray::cast(obj->elements());
if (backing_store->map() == heap->non_strict_arguments_elements_map()) {
backing_store = FixedArray::cast(backing_store->get(1));
} else {
Object* writable;
MaybeObject* maybe = obj->EnsureWritableFastElements();
if (!maybe->ToObject(&writable)) return maybe;
backing_store = FixedArray::cast(writable);
}
uint32_t length = static_cast<uint32_t>(
obj->IsJSArray()
? Smi::cast(JSArray::cast(obj)->length())->value()
: backing_store->length());
if (key < length) {
backing_store->set_the_hole(key);
// If an old space backing store is larger than a certain size and
// has too few used values, normalize it.
// To avoid doing the check on every delete we require at least
// one adjacent hole to the value being deleted.
Object* hole = heap->the_hole_value();
const int kMinLengthForSparsenessCheck = 64;
if (backing_store->length() >= kMinLengthForSparsenessCheck &&
!heap->InNewSpace(backing_store) &&
((key > 0 && backing_store->get(key - 1) == hole) ||
(key + 1 < length && backing_store->get(key + 1) == hole))) {
int num_used = 0;
for (int i = 0; i < backing_store->length(); ++i) {
if (backing_store->get(i) != hole) ++num_used;
// Bail out early if more than 1/4 is used.
if (4 * num_used > backing_store->length()) break;
}
if (4 * num_used <= backing_store->length()) {
MaybeObject* result = obj->NormalizeElements();
if (result->IsFailure()) return result;
}
}
}
return heap->true_value();
}
static MaybeObject* SetFastElementsCapacityAndLength(JSObject* obj,
uint32_t capacity,
uint32_t length) {
JSObject::SetFastElementsCapacityMode set_capacity_mode =
obj->HasFastSmiOnlyElements()
? JSObject::kAllowSmiOnlyElements
: JSObject::kDontAllowSmiOnlyElements;
return obj->SetFastElementsCapacityAndLength(capacity,
length,
set_capacity_mode);
}
protected:
friend class FastElementsAccessor<FastObjectElementsAccessor,
FixedArray,
kPointerSize>;
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
return DeleteCommon(obj, key);
}
};
class FastDoubleElementsAccessor
: public FastElementsAccessor<FastDoubleElementsAccessor,
FixedDoubleArray,
kDoubleSize> {
static MaybeObject* SetFastElementsCapacityAndLength(JSObject* obj,
uint32_t capacity,
uint32_t length) {
return obj->SetFastDoubleElementsCapacityAndLength(capacity, length);
}
protected:
friend class ElementsAccessorBase<FastDoubleElementsAccessor,
FixedDoubleArray>;
friend class FastElementsAccessor<FastDoubleElementsAccessor,
FixedDoubleArray,
kDoubleSize>;
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
int length = obj->IsJSArray()
? Smi::cast(JSArray::cast(obj)->length())->value()
: FixedDoubleArray::cast(obj->elements())->length();
if (key < static_cast<uint32_t>(length)) {
FixedDoubleArray::cast(obj->elements())->set_the_hole(key);
}
return obj->GetHeap()->true_value();
}
static bool HasElementAtIndexImpl(FixedDoubleArray* backing_store,
uint32_t index,
JSObject* holder,
Object* receiver) {
return !backing_store->is_the_hole(index);
}
};
// Super class for all external element arrays.
template<typename ExternalElementsAccessorSubclass,
typename ExternalArray>
class ExternalElementsAccessor
: public ElementsAccessorBase<ExternalElementsAccessorSubclass,
ExternalArray> {
protected:
friend class ElementsAccessorBase<ExternalElementsAccessorSubclass,
ExternalArray>;
static MaybeObject* GetImpl(ExternalArray* backing_store,
uint32_t key,
JSObject* obj,
Object* receiver) {
return
key < ExternalElementsAccessorSubclass::GetCapacityImpl(backing_store)
? backing_store->get(key)
: backing_store->GetHeap()->undefined_value();
}
static MaybeObject* SetLengthImpl(ExternalArray* backing_store,
JSObject* obj,
Object* length) {
// External arrays do not support changing their length.
UNREACHABLE();
return obj;
}
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
// External arrays always ignore deletes.
return obj->GetHeap()->true_value();
}
};
class ExternalByteElementsAccessor
: public ExternalElementsAccessor<ExternalByteElementsAccessor,
ExternalByteArray> {
};
class ExternalUnsignedByteElementsAccessor
: public ExternalElementsAccessor<ExternalUnsignedByteElementsAccessor,
ExternalUnsignedByteArray> {
};
class ExternalShortElementsAccessor
: public ExternalElementsAccessor<ExternalShortElementsAccessor,
ExternalShortArray> {
};
class ExternalUnsignedShortElementsAccessor
: public ExternalElementsAccessor<ExternalUnsignedShortElementsAccessor,
ExternalUnsignedShortArray> {
};
class ExternalIntElementsAccessor
: public ExternalElementsAccessor<ExternalIntElementsAccessor,
ExternalIntArray> {
};
class ExternalUnsignedIntElementsAccessor
: public ExternalElementsAccessor<ExternalUnsignedIntElementsAccessor,
ExternalUnsignedIntArray> {
};
class ExternalFloatElementsAccessor
: public ExternalElementsAccessor<ExternalFloatElementsAccessor,
ExternalFloatArray> {
};
class ExternalDoubleElementsAccessor
: public ExternalElementsAccessor<ExternalDoubleElementsAccessor,
ExternalDoubleArray> {
};
class PixelElementsAccessor
: public ExternalElementsAccessor<PixelElementsAccessor,
ExternalPixelArray> {
};
class DictionaryElementsAccessor
: public ElementsAccessorBase<DictionaryElementsAccessor,
SeededNumberDictionary> {
public:
// Adjusts the length of the dictionary backing store and returns the new
// length according to ES5 section 15.4.5.2 behavior.
static MaybeObject* SetLengthWithoutNormalize(SeededNumberDictionary* dict,
JSArray* array,
Object* length_object,
uint32_t length) {
if (length == 0) {
// If the length of a slow array is reset to zero, we clear
// the array and flush backing storage. This has the added
// benefit that the array returns to fast mode.
Object* obj;
MaybeObject* maybe_obj = array->ResetElements();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
} else {
uint32_t new_length = length;
uint32_t old_length = static_cast<uint32_t>(array->length()->Number());
if (new_length < old_length) {
// Find last non-deletable element in range of elements to be
// deleted and adjust range accordingly.
Heap* heap = array->GetHeap();
int capacity = dict->Capacity();
for (int i = 0; i < capacity; i++) {
Object* key = dict->KeyAt(i);
if (key->IsNumber()) {
uint32_t number = static_cast<uint32_t>(key->Number());
if (new_length <= number && number < old_length) {
PropertyDetails details = dict->DetailsAt(i);
if (details.IsDontDelete()) new_length = number + 1;
}
}
}
if (new_length != length) {
MaybeObject* maybe_object = heap->NumberFromUint32(new_length);
if (!maybe_object->To(&length_object)) return maybe_object;
}
// Remove elements that should be deleted.
int removed_entries = 0;
Object* the_hole_value = heap->the_hole_value();
for (int i = 0; i < capacity; i++) {
Object* key = dict->KeyAt(i);
if (key->IsNumber()) {
uint32_t number = static_cast<uint32_t>(key->Number());
if (new_length <= number && number < old_length) {
dict->SetEntry(i, the_hole_value, the_hole_value);
removed_entries++;
}
}
}
// Update the number of elements.
dict->ElementsRemoved(removed_entries);
}
}
return length_object;
}
static MaybeObject* DeleteCommon(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
Isolate* isolate = obj->GetIsolate();
Heap* heap = isolate->heap();
FixedArray* backing_store = FixedArray::cast(obj->elements());
bool is_arguments =
(obj->GetElementsKind() == NON_STRICT_ARGUMENTS_ELEMENTS);
if (is_arguments) {
backing_store = FixedArray::cast(backing_store->get(1));
}
SeededNumberDictionary* dictionary =
SeededNumberDictionary::cast(backing_store);
int entry = dictionary->FindEntry(key);
if (entry != SeededNumberDictionary::kNotFound) {
Object* result = dictionary->DeleteProperty(entry, mode);
if (result == heap->true_value()) {
MaybeObject* maybe_elements = dictionary->Shrink(key);
FixedArray* new_elements = NULL;
if (!maybe_elements->To(&new_elements)) {
return maybe_elements;
}
if (is_arguments) {
FixedArray::cast(obj->elements())->set(1, new_elements);
} else {
obj->set_elements(new_elements);
}
}
if (mode == JSObject::STRICT_DELETION &&
result == heap->false_value()) {
// In strict mode, attempting to delete a non-configurable property
// throws an exception.
HandleScope scope(isolate);
Handle<Object> holder(obj);
Handle<Object> name = isolate->factory()->NewNumberFromUint(key);
Handle<Object> args[2] = { name, holder };
Handle<Object> error =
isolate->factory()->NewTypeError("strict_delete_property",
HandleVector(args, 2));
return isolate->Throw(*error);
}
}
return heap->true_value();
}
protected:
friend class ElementsAccessorBase<DictionaryElementsAccessor,
SeededNumberDictionary>;
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
return DeleteCommon(obj, key, mode);
}
static MaybeObject* GetImpl(SeededNumberDictionary* backing_store,
uint32_t key,
JSObject* obj,
Object* receiver) {
int entry = backing_store->FindEntry(key);
if (entry != SeededNumberDictionary::kNotFound) {
Object* element = backing_store->ValueAt(entry);
PropertyDetails details = backing_store->DetailsAt(entry);
if (details.type() == CALLBACKS) {
return obj->GetElementWithCallback(receiver,
element,
key,
obj);
} else {
return element;
}
}
return obj->GetHeap()->the_hole_value();
}
static uint32_t GetKeyForIndexImpl(SeededNumberDictionary* dict,
uint32_t index) {
Object* key = dict->KeyAt(index);
return Smi::cast(key)->value();
}
};
class NonStrictArgumentsElementsAccessor
: public ElementsAccessorBase<NonStrictArgumentsElementsAccessor,
FixedArray> {
protected:
friend class ElementsAccessorBase<NonStrictArgumentsElementsAccessor,
FixedArray>;
static MaybeObject* GetImpl(FixedArray* parameter_map,
uint32_t key,
JSObject* obj,
Object* receiver) {
Object* probe = GetParameterMapArg(parameter_map, key);
if (!probe->IsTheHole()) {
Context* context = Context::cast(parameter_map->get(0));
int context_index = Smi::cast(probe)->value();
ASSERT(!context->get(context_index)->IsTheHole());
return context->get(context_index);
} else {
// Object is not mapped, defer to the arguments.
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
return ElementsAccessor::ForArray(arguments)->Get(arguments,
key,
obj,
receiver);
}
}
static MaybeObject* SetLengthImpl(FixedArray* parameter_map,
JSObject* obj,
Object* length) {
// TODO(mstarzinger): This was never implemented but will be used once we
// correctly implement [[DefineOwnProperty]] on arrays.
UNIMPLEMENTED();
return obj;
}
virtual MaybeObject* Delete(JSObject* obj,
uint32_t key,
JSReceiver::DeleteMode mode) {
FixedArray* parameter_map = FixedArray::cast(obj->elements());
Object* probe = GetParameterMapArg(parameter_map, key);
if (!probe->IsTheHole()) {
// TODO(kmillikin): We could check if this was the last aliased
// parameter, and revert to normal elements in that case. That
// would enable GC of the context.
parameter_map->set_the_hole(key + 2);
} else {
FixedArray* arguments = FixedArray::cast(parameter_map->get(1));
if (arguments->IsDictionary()) {
return DictionaryElementsAccessor::DeleteCommon(obj, key, mode);
} else {
return FastObjectElementsAccessor::DeleteCommon(obj, key);
}
}
return obj->GetHeap()->true_value();
}
static uint32_t GetCapacityImpl(FixedArray* parameter_map) {
FixedArrayBase* arguments = FixedArrayBase::cast(parameter_map->get(1));
return Max(static_cast<uint32_t>(parameter_map->length() - 2),
ForArray(arguments)->GetCapacity(arguments));
}
static uint32_t GetKeyForIndexImpl(FixedArray* dict,
uint32_t index) {
return index;
}
static bool HasElementAtIndexImpl(FixedArray* parameter_map,
uint32_t index,
JSObject* holder,
Object* receiver) {
Object* probe = GetParameterMapArg(parameter_map, index);
if (!probe->IsTheHole()) {
return true;
} else {
FixedArrayBase* arguments = FixedArrayBase::cast(parameter_map->get(1));
ElementsAccessor* accessor = ElementsAccessor::ForArray(arguments);
return !accessor->Get(arguments, index, holder, receiver)->IsTheHole();
}
}
private:
static Object* GetParameterMapArg(FixedArray* parameter_map,
uint32_t key) {
uint32_t length = parameter_map->length();
return key < (length - 2 )
? parameter_map->get(key + 2)
: parameter_map->GetHeap()->the_hole_value();
}
};
ElementsAccessor* ElementsAccessor::ForArray(FixedArrayBase* array) {
switch (array->map()->instance_type()) {
case FIXED_ARRAY_TYPE:
if (array->IsDictionary()) {
return elements_accessors_[DICTIONARY_ELEMENTS];
} else {
return elements_accessors_[FAST_ELEMENTS];
}
case EXTERNAL_BYTE_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_BYTE_ELEMENTS];
case EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_UNSIGNED_BYTE_ELEMENTS];
case EXTERNAL_SHORT_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_SHORT_ELEMENTS];
case EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_UNSIGNED_SHORT_ELEMENTS];
case EXTERNAL_INT_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_INT_ELEMENTS];
case EXTERNAL_UNSIGNED_INT_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_UNSIGNED_INT_ELEMENTS];
case EXTERNAL_FLOAT_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_FLOAT_ELEMENTS];
case EXTERNAL_DOUBLE_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_DOUBLE_ELEMENTS];
case EXTERNAL_PIXEL_ARRAY_TYPE:
return elements_accessors_[EXTERNAL_PIXEL_ELEMENTS];
default:
UNREACHABLE();
return NULL;
}
}
void ElementsAccessor::InitializeOncePerProcess() {
// First argument in list is the accessor class, the second argument is can
// be any arbitrary unique identifier, in this case chosen to be the
// corresponding enum. Use the fast element handler for smi-only arrays.
// The implementation is currently identical. Note that the order must match
// that of the ElementsKind enum for the |accessor_array[]| below to work.
#define ELEMENTS_LIST(V) \
V(FastObjectElementsAccessor, FAST_SMI_ONLY_ELEMENTS) \
V(FastObjectElementsAccessor, FAST_ELEMENTS) \
V(FastDoubleElementsAccessor, FAST_DOUBLE_ELEMENTS) \
V(DictionaryElementsAccessor, DICTIONARY_ELEMENTS) \
V(NonStrictArgumentsElementsAccessor, NON_STRICT_ARGUMENTS_ELEMENTS) \
V(ExternalByteElementsAccessor, EXTERNAL_BYTE_ELEMENTS) \
V(ExternalUnsignedByteElementsAccessor, EXTERNAL_UNSIGNED_BYTE_ELEMENTS) \
V(ExternalShortElementsAccessor, EXTERNAL_SHORT_ELEMENTS) \
V(ExternalUnsignedShortElementsAccessor, EXTERNAL_UNSIGNED_SHORT_ELEMENTS) \
V(ExternalIntElementsAccessor, EXTERNAL_INT_ELEMENTS) \
V(ExternalUnsignedIntElementsAccessor, EXTERNAL_UNSIGNED_INT_ELEMENTS) \
V(ExternalFloatElementsAccessor, EXTERNAL_FLOAT_ELEMENTS) \
V(ExternalDoubleElementsAccessor, EXTERNAL_DOUBLE_ELEMENTS) \
V(PixelElementsAccessor, EXTERNAL_PIXEL_ELEMENTS)
static struct ConcreteElementsAccessors {
#define ACCESSOR_STRUCT(Class, Name) Class* Name##_handler;
ELEMENTS_LIST(ACCESSOR_STRUCT)
#undef ACCESSOR_STRUCT
} element_accessors = {
#define ACCESSOR_INIT(Class, Name) new Class(),
ELEMENTS_LIST(ACCESSOR_INIT)
#undef ACCESSOR_INIT
};
static ElementsAccessor* accessor_array[] = {
#define ACCESSOR_ARRAY(Class, Name) element_accessors.Name##_handler,
ELEMENTS_LIST(ACCESSOR_ARRAY)
#undef ACCESSOR_ARRAY
};
#undef ELEMENTS_LIST
STATIC_ASSERT((sizeof(accessor_array) / sizeof(*accessor_array)) ==
kElementsKindCount);
elements_accessors_ = accessor_array;
}
template <typename ElementsAccessorSubclass, typename BackingStoreClass>
MaybeObject* ElementsAccessorBase<ElementsAccessorSubclass, BackingStoreClass>::
SetLengthImpl(BackingStoreClass* backing_store,
JSObject* obj,
Object* length) {
JSArray* array = JSArray::cast(obj);
// Fast case: The new length fits into a Smi.
MaybeObject* maybe_smi_length = length->ToSmi();
Object* smi_length = Smi::FromInt(0);
if (maybe_smi_length->ToObject(&smi_length) && smi_length->IsSmi()) {
const int value = Smi::cast(smi_length)->value();
if (value >= 0) {
Object* new_length;
MaybeObject* result = ElementsAccessorSubclass::
SetLengthWithoutNormalize(backing_store, array, smi_length, value);
if (!result->ToObject(&new_length)) return result;
ASSERT(new_length->IsSmi() || new_length->IsUndefined());
if (new_length->IsSmi()) {
array->set_length(Smi::cast(new_length));
return array;
}
} else {
return ThrowArrayLengthRangeError(array->GetHeap());
}
}
// Slow case: The new length does not fit into a Smi or conversion
// to slow elements is needed for other reasons.
if (length->IsNumber()) {
uint32_t value;
if (length->ToArrayIndex(&value)) {
SeededNumberDictionary* dictionary;
MaybeObject* maybe_object = array->NormalizeElements();
if (!maybe_object->To(&dictionary)) return maybe_object;
Object* new_length;
MaybeObject* result = DictionaryElementsAccessor::
SetLengthWithoutNormalize(dictionary, array, length, value);
if (!result->ToObject(&new_length)) return result;
ASSERT(new_length->IsNumber());
array->set_length(new_length);
return array;
} else {
return ThrowArrayLengthRangeError(array->GetHeap());
}
}
// Fall-back case: The new length is not a number so make the array
// size one and set only element to length.
FixedArray* new_backing_store;
MaybeObject* maybe_obj = array->GetHeap()->AllocateFixedArray(1);
if (!maybe_obj->To(&new_backing_store)) return maybe_obj;
new_backing_store->set(0, length);
{ MaybeObject* result = array->SetContent(new_backing_store);
if (result->IsFailure()) return result;
}
return array;
}
} } // namespace v8::internal