v8/include/cppgc/internal/write-barrier.h
Anton Bikineev 3f5c2dda67 cppgc: young-gen: Implement GenerationalBarrier for source objects
The generational barrier for source objects records the entire source
object to be processed later during remembered set visitation. It's
planned to be used for Blink backing stores when an inlined object (or a
range thereof) is added (HeapAllocator::NotifyNewObject(s)).

An alternative approach would be to eagerly process the inlined objects
using a custom callback. However, this requires changing Visitors to
bring slots into the context. This approach should better work for
scenarios where small ranges or single elements are added, to avoid
processing potentially large backing stores. The followup CL implements
this idea.

Bug: chromium:1029379
Change-Id: Iacb59e4b10a66354526ed293d7f43f14d8761a8f
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3460402
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Commit-Queue: Anton Bikineev <bikineev@chromium.org>
Cr-Commit-Position: refs/heads/main@{#79073}
2022-02-14 13:58:07 +00:00

434 lines
17 KiB
C++

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDE_CPPGC_INTERNAL_WRITE_BARRIER_H_
#define INCLUDE_CPPGC_INTERNAL_WRITE_BARRIER_H_
#include <cstddef>
#include <cstdint>
#include "cppgc/heap-state.h"
#include "cppgc/internal/api-constants.h"
#include "cppgc/internal/atomic-entry-flag.h"
#include "cppgc/platform.h"
#include "cppgc/sentinel-pointer.h"
#include "cppgc/trace-trait.h"
#include "v8config.h" // NOLINT(build/include_directory)
#if defined(CPPGC_CAGED_HEAP)
#include "cppgc/internal/caged-heap-local-data.h"
#endif
namespace cppgc {
class HeapHandle;
namespace internal {
#if defined(CPPGC_CAGED_HEAP)
class WriteBarrierTypeForCagedHeapPolicy;
#else // !CPPGC_CAGED_HEAP
class WriteBarrierTypeForNonCagedHeapPolicy;
#endif // !CPPGC_CAGED_HEAP
class V8_EXPORT WriteBarrier final {
public:
enum class Type : uint8_t {
kNone,
kMarking,
kGenerational,
};
struct Params {
HeapHandle* heap = nullptr;
#if V8_ENABLE_CHECKS
Type type = Type::kNone;
#endif // !V8_ENABLE_CHECKS
#if defined(CPPGC_CAGED_HEAP)
uintptr_t start = 0;
CagedHeapLocalData& caged_heap() const {
return *reinterpret_cast<CagedHeapLocalData*>(start);
}
uintptr_t slot_offset = 0;
uintptr_t value_offset = 0;
#endif // CPPGC_CAGED_HEAP
};
enum class ValueMode {
kValuePresent,
kNoValuePresent,
};
// Returns the required write barrier for a given `slot` and `value`.
static V8_INLINE Type GetWriteBarrierType(const void* slot, const void* value,
Params& params);
// Returns the required write barrier for a given `slot`.
template <typename HeapHandleCallback>
static V8_INLINE Type GetWriteBarrierType(const void* slot, Params& params,
HeapHandleCallback callback);
// Returns the required write barrier for a given `value`.
static V8_INLINE Type GetWriteBarrierType(const void* value, Params& params);
static V8_INLINE void DijkstraMarkingBarrier(const Params& params,
const void* object);
static V8_INLINE void DijkstraMarkingBarrierRange(
const Params& params, const void* first_element, size_t element_size,
size_t number_of_elements, TraceCallback trace_callback);
static V8_INLINE void SteeleMarkingBarrier(const Params& params,
const void* object);
#if defined(CPPGC_YOUNG_GENERATION)
static V8_INLINE void GenerationalBarrier(const Params& params,
const void* slot);
static V8_INLINE void GenerationalBarrierForSourceObject(
const Params& params, const void* inner_pointer);
#else // !CPPGC_YOUNG_GENERATION
static V8_INLINE void GenerationalBarrier(const Params& params,
const void* slot) {}
static V8_INLINE void GenerationalBarrierForSourceObject(
const Params& params, const void* inner_pointer) {}
#endif // CPPGC_YOUNG_GENERATION
#if V8_ENABLE_CHECKS
static void CheckParams(Type expected_type, const Params& params);
#else // !V8_ENABLE_CHECKS
static void CheckParams(Type expected_type, const Params& params) {}
#endif // !V8_ENABLE_CHECKS
// The IncrementalOrConcurrentUpdater class allows cppgc internal to update
// |incremental_or_concurrent_marking_flag_|.
class IncrementalOrConcurrentMarkingFlagUpdater;
static bool IsAnyIncrementalOrConcurrentMarking() {
return incremental_or_concurrent_marking_flag_.MightBeEntered();
}
private:
WriteBarrier() = delete;
#if defined(CPPGC_CAGED_HEAP)
using WriteBarrierTypePolicy = WriteBarrierTypeForCagedHeapPolicy;
#else // !CPPGC_CAGED_HEAP
using WriteBarrierTypePolicy = WriteBarrierTypeForNonCagedHeapPolicy;
#endif // !CPPGC_CAGED_HEAP
static void DijkstraMarkingBarrierSlow(const void* value);
static void DijkstraMarkingBarrierSlowWithSentinelCheck(const void* value);
static void DijkstraMarkingBarrierRangeSlow(HeapHandle& heap_handle,
const void* first_element,
size_t element_size,
size_t number_of_elements,
TraceCallback trace_callback);
static void SteeleMarkingBarrierSlow(const void* value);
static void SteeleMarkingBarrierSlowWithSentinelCheck(const void* value);
#if defined(CPPGC_YOUNG_GENERATION)
static CagedHeapLocalData& GetLocalData(HeapHandle&);
static void GenerationalBarrierSlow(const CagedHeapLocalData& local_data,
const AgeTable& age_table,
const void* slot, uintptr_t value_offset);
static void GenerationalBarrierForSourceObjectSlow(
const CagedHeapLocalData& local_data, const void* object);
#endif // CPPGC_YOUNG_GENERATION
static AtomicEntryFlag incremental_or_concurrent_marking_flag_;
};
template <WriteBarrier::Type type>
V8_INLINE WriteBarrier::Type SetAndReturnType(WriteBarrier::Params& params) {
if (type == WriteBarrier::Type::kNone) return WriteBarrier::Type::kNone;
#if V8_ENABLE_CHECKS
params.type = type;
#endif // !V8_ENABLE_CHECKS
return type;
}
#if defined(CPPGC_CAGED_HEAP)
class V8_EXPORT WriteBarrierTypeForCagedHeapPolicy final {
public:
template <WriteBarrier::ValueMode value_mode, typename HeapHandleCallback>
static V8_INLINE WriteBarrier::Type Get(const void* slot, const void* value,
WriteBarrier::Params& params,
HeapHandleCallback callback) {
return ValueModeDispatch<value_mode>::Get(slot, value, params, callback);
}
template <WriteBarrier::ValueMode value_mode, typename HeapHandleCallback>
static V8_INLINE WriteBarrier::Type Get(const void* value,
WriteBarrier::Params& params,
HeapHandleCallback callback) {
return GetNoSlot(value, params, callback);
}
private:
WriteBarrierTypeForCagedHeapPolicy() = delete;
template <typename HeapHandleCallback>
static V8_INLINE WriteBarrier::Type GetNoSlot(const void* value,
WriteBarrier::Params& params,
HeapHandleCallback) {
if (!TryGetCagedHeap(value, value, params)) {
return WriteBarrier::Type::kNone;
}
if (V8_UNLIKELY(params.caged_heap().is_incremental_marking_in_progress)) {
return SetAndReturnType<WriteBarrier::Type::kMarking>(params);
}
return SetAndReturnType<WriteBarrier::Type::kNone>(params);
}
template <WriteBarrier::ValueMode value_mode>
struct ValueModeDispatch;
static V8_INLINE bool TryGetCagedHeap(const void* slot, const void* value,
WriteBarrier::Params& params) {
// TODO(chromium:1056170): Check if the null check can be folded in with
// the rest of the write barrier.
if (!value) return false;
params.start = reinterpret_cast<uintptr_t>(value) &
~(api_constants::kCagedHeapReservationAlignment - 1);
const uintptr_t slot_offset =
reinterpret_cast<uintptr_t>(slot) - params.start;
if (slot_offset > api_constants::kCagedHeapReservationSize) {
// Check if slot is on stack or value is sentinel or nullptr. This relies
// on the fact that kSentinelPointer is encoded as 0x1.
return false;
}
return true;
}
// Returns whether marking is in progress. If marking is not in progress
// sets the start of the cage accordingly.
//
// TODO(chromium:1056170): Create fast path on API.
static bool IsMarking(const HeapHandle&, WriteBarrier::Params&);
};
template <>
struct WriteBarrierTypeForCagedHeapPolicy::ValueModeDispatch<
WriteBarrier::ValueMode::kValuePresent> {
template <typename HeapHandleCallback>
static V8_INLINE WriteBarrier::Type Get(const void* slot, const void* value,
WriteBarrier::Params& params,
HeapHandleCallback) {
#if !defined(CPPGC_YOUNG_GENERATION)
if (V8_LIKELY(!WriteBarrier::IsAnyIncrementalOrConcurrentMarking())) {
return SetAndReturnType<WriteBarrier::Type::kNone>(params);
}
#endif // !CPPGC_YOUNG_GENERATION
bool within_cage = TryGetCagedHeap(slot, value, params);
if (!within_cage) {
return WriteBarrier::Type::kNone;
}
if (V8_LIKELY(!params.caged_heap().is_incremental_marking_in_progress)) {
#if defined(CPPGC_YOUNG_GENERATION)
params.heap = reinterpret_cast<HeapHandle*>(params.start);
params.slot_offset = reinterpret_cast<uintptr_t>(slot) - params.start;
params.value_offset = reinterpret_cast<uintptr_t>(value) - params.start;
return SetAndReturnType<WriteBarrier::Type::kGenerational>(params);
#else // !CPPGC_YOUNG_GENERATION
return SetAndReturnType<WriteBarrier::Type::kNone>(params);
#endif // !CPPGC_YOUNG_GENERATION
}
params.heap = reinterpret_cast<HeapHandle*>(params.start);
return SetAndReturnType<WriteBarrier::Type::kMarking>(params);
}
};
template <>
struct WriteBarrierTypeForCagedHeapPolicy::ValueModeDispatch<
WriteBarrier::ValueMode::kNoValuePresent> {
template <typename HeapHandleCallback>
static V8_INLINE WriteBarrier::Type Get(const void* slot, const void*,
WriteBarrier::Params& params,
HeapHandleCallback callback) {
#if defined(CPPGC_YOUNG_GENERATION)
HeapHandle& handle = callback();
if (V8_LIKELY(!IsMarking(handle, params))) {
// params.start is populated by IsMarking().
params.heap = &handle;
params.slot_offset = reinterpret_cast<uintptr_t>(slot) - params.start;
// params.value_offset stays 0.
if (params.slot_offset > api_constants::kCagedHeapReservationSize) {
// Check if slot is on stack.
return SetAndReturnType<WriteBarrier::Type::kNone>(params);
}
return SetAndReturnType<WriteBarrier::Type::kGenerational>(params);
}
#else // !CPPGC_YOUNG_GENERATION
if (V8_LIKELY(!WriteBarrier::IsAnyIncrementalOrConcurrentMarking())) {
return SetAndReturnType<WriteBarrier::Type::kNone>(params);
}
HeapHandle& handle = callback();
if (V8_UNLIKELY(!subtle::HeapState::IsMarking(handle))) {
return SetAndReturnType<WriteBarrier::Type::kNone>(params);
}
#endif // !CPPGC_YOUNG_GENERATION
params.heap = &handle;
return SetAndReturnType<WriteBarrier::Type::kMarking>(params);
}
};
#endif // CPPGC_CAGED_HEAP
class V8_EXPORT WriteBarrierTypeForNonCagedHeapPolicy final {
public:
template <WriteBarrier::ValueMode value_mode, typename HeapHandleCallback>
static V8_INLINE WriteBarrier::Type Get(const void* slot, const void* value,
WriteBarrier::Params& params,
HeapHandleCallback callback) {
return ValueModeDispatch<value_mode>::Get(slot, value, params, callback);
}
template <WriteBarrier::ValueMode value_mode, typename HeapHandleCallback>
static V8_INLINE WriteBarrier::Type Get(const void* value,
WriteBarrier::Params& params,
HeapHandleCallback callback) {
// The slot will never be used in `Get()` below.
return Get<WriteBarrier::ValueMode::kValuePresent>(nullptr, value, params,
callback);
}
private:
template <WriteBarrier::ValueMode value_mode>
struct ValueModeDispatch;
// TODO(chromium:1056170): Create fast path on API.
static bool IsMarking(const void*, HeapHandle**);
// TODO(chromium:1056170): Create fast path on API.
static bool IsMarking(HeapHandle&);
WriteBarrierTypeForNonCagedHeapPolicy() = delete;
};
template <>
struct WriteBarrierTypeForNonCagedHeapPolicy::ValueModeDispatch<
WriteBarrier::ValueMode::kValuePresent> {
template <typename HeapHandleCallback>
static V8_INLINE WriteBarrier::Type Get(const void*, const void* object,
WriteBarrier::Params& params,
HeapHandleCallback callback) {
// The following check covers nullptr as well as sentinel pointer.
if (object <= static_cast<void*>(kSentinelPointer)) {
return SetAndReturnType<WriteBarrier::Type::kNone>(params);
}
if (V8_LIKELY(!WriteBarrier::IsAnyIncrementalOrConcurrentMarking())) {
return SetAndReturnType<WriteBarrier::Type::kNone>(params);
}
if (IsMarking(object, &params.heap)) {
return SetAndReturnType<WriteBarrier::Type::kMarking>(params);
}
return SetAndReturnType<WriteBarrier::Type::kNone>(params);
}
};
template <>
struct WriteBarrierTypeForNonCagedHeapPolicy::ValueModeDispatch<
WriteBarrier::ValueMode::kNoValuePresent> {
template <typename HeapHandleCallback>
static V8_INLINE WriteBarrier::Type Get(const void*, const void*,
WriteBarrier::Params& params,
HeapHandleCallback callback) {
if (V8_UNLIKELY(WriteBarrier::IsAnyIncrementalOrConcurrentMarking())) {
HeapHandle& handle = callback();
if (IsMarking(handle)) {
params.heap = &handle;
return SetAndReturnType<WriteBarrier::Type::kMarking>(params);
}
}
return WriteBarrier::Type::kNone;
}
};
// static
WriteBarrier::Type WriteBarrier::GetWriteBarrierType(
const void* slot, const void* value, WriteBarrier::Params& params) {
return WriteBarrierTypePolicy::Get<ValueMode::kValuePresent>(slot, value,
params, []() {});
}
// static
template <typename HeapHandleCallback>
WriteBarrier::Type WriteBarrier::GetWriteBarrierType(
const void* slot, WriteBarrier::Params& params,
HeapHandleCallback callback) {
return WriteBarrierTypePolicy::Get<ValueMode::kNoValuePresent>(
slot, nullptr, params, callback);
}
// static
WriteBarrier::Type WriteBarrier::GetWriteBarrierType(
const void* value, WriteBarrier::Params& params) {
return WriteBarrierTypePolicy::Get<ValueMode::kValuePresent>(value, params,
[]() {});
}
// static
void WriteBarrier::DijkstraMarkingBarrier(const Params& params,
const void* object) {
CheckParams(Type::kMarking, params);
#if defined(CPPGC_CAGED_HEAP)
// Caged heap already filters out sentinels.
DijkstraMarkingBarrierSlow(object);
#else // !CPPGC_CAGED_HEAP
DijkstraMarkingBarrierSlowWithSentinelCheck(object);
#endif // !CPPGC_CAGED_HEAP
}
// static
void WriteBarrier::DijkstraMarkingBarrierRange(const Params& params,
const void* first_element,
size_t element_size,
size_t number_of_elements,
TraceCallback trace_callback) {
CheckParams(Type::kMarking, params);
DijkstraMarkingBarrierRangeSlow(*params.heap, first_element, element_size,
number_of_elements, trace_callback);
}
// static
void WriteBarrier::SteeleMarkingBarrier(const Params& params,
const void* object) {
CheckParams(Type::kMarking, params);
#if defined(CPPGC_CAGED_HEAP)
// Caged heap already filters out sentinels.
SteeleMarkingBarrierSlow(object);
#else // !CPPGC_CAGED_HEAP
SteeleMarkingBarrierSlowWithSentinelCheck(object);
#endif // !CPPGC_CAGED_HEAP
}
#if defined(CPPGC_YOUNG_GENERATION)
// static
void WriteBarrier::GenerationalBarrier(const Params& params, const void* slot) {
CheckParams(Type::kGenerational, params);
const CagedHeapLocalData& local_data = params.caged_heap();
const AgeTable& age_table = local_data.age_table;
// Bail out if the slot is in young generation.
if (V8_LIKELY(age_table[params.slot_offset] == AgeTable::Age::kYoung)) return;
GenerationalBarrierSlow(local_data, age_table, slot, params.value_offset);
}
// static
void WriteBarrier::GenerationalBarrierForSourceObject(
const Params& params, const void* inner_pointer) {
CheckParams(Type::kGenerational, params);
const CagedHeapLocalData& local_data = params.caged_heap();
const AgeTable& age_table = local_data.age_table;
// Assume that if the first element is in young generation, the whole range is
// in young generation.
if (V8_LIKELY(age_table[params.slot_offset] == AgeTable::Age::kYoung)) return;
GenerationalBarrierForSourceObjectSlow(local_data, inner_pointer);
}
#endif // !CPPGC_YOUNG_GENERATION
} // namespace internal
} // namespace cppgc
#endif // INCLUDE_CPPGC_INTERNAL_WRITE_BARRIER_H_