v8/src/x64/builtins-x64.cc
ager@chromium.org b69591bc0f Require an isolate parameter for most external reference creation to
avoid TLS access in connection with external references.

Make the isolate accessible via the assembler.

Only for ia32 at this point. If this looks OK to you I will port it.

R=vitalyr@chromium.org

Review URL: http://codereview.chromium.org/6713074

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@7305 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2011-03-22 13:20:04 +00:00

1493 lines
51 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "codegen-inl.h"
#include "deoptimizer.h"
#include "full-codegen.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- rax : number of arguments excluding receiver
// -- rdi : called function (only guaranteed when
// extra_args requires it)
// -- rsi : context
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -- ...
// -- rsp[8 * argc] : first argument (argc == rax)
// -- rsp[8 * (argc +1)] : receiver
// -----------------------------------
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
__ pop(kScratchRegister); // Save return address.
__ push(rdi);
__ push(kScratchRegister); // Restore return address.
} else {
ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects rax to contain the number of arguments
// including the receiver and the extra arguments.
__ addq(rax, Immediate(num_extra_args + 1));
__ JumpToExternalReference(ExternalReference(id, masm->isolate()), 1);
}
void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax: number of arguments
// -- rdi: constructor function
// -----------------------------------
Label non_function_call;
// Check that function is not a smi.
__ JumpIfSmi(rdi, &non_function_call);
// Check that function is a JSFunction.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &non_function_call);
// Jump to the function-specific construct stub.
__ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kConstructStubOffset));
__ lea(rbx, FieldOperand(rbx, Code::kHeaderSize));
__ jmp(rbx);
// rdi: called object
// rax: number of arguments
__ bind(&non_function_call);
// Set expected number of arguments to zero (not changing rax).
__ movq(rbx, Immediate(0));
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
__ Jump(Handle<Code>(masm->isolate()->builtins()->builtin(
ArgumentsAdaptorTrampoline)), RelocInfo::CODE_TARGET);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool count_constructions) {
// Should never count constructions for api objects.
ASSERT(!is_api_function || !count_constructions);
// Enter a construct frame.
__ EnterConstructFrame();
// Store a smi-tagged arguments count on the stack.
__ Integer32ToSmi(rax, rax);
__ push(rax);
// Push the function to invoke on the stack.
__ push(rdi);
// Try to allocate the object without transitioning into C code. If any of the
// preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
Label undo_allocation;
#ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ movq(kScratchRegister, debug_step_in_fp);
__ cmpq(Operand(kScratchRegister, 0), Immediate(0));
__ j(not_equal, &rt_call);
#endif
// Verified that the constructor is a JSFunction.
// Load the initial map and verify that it is in fact a map.
// rdi: constructor
__ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi
ASSERT(kSmiTag == 0);
__ JumpIfSmi(rax, &rt_call);
// rdi: constructor
// rax: initial map (if proven valid below)
__ CmpObjectType(rax, MAP_TYPE, rbx);
__ j(not_equal, &rt_call);
// Check that the constructor is not constructing a JSFunction (see comments
// in Runtime_NewObject in runtime.cc). In which case the initial map's
// instance type would be JS_FUNCTION_TYPE.
// rdi: constructor
// rax: initial map
__ CmpInstanceType(rax, JS_FUNCTION_TYPE);
__ j(equal, &rt_call);
if (count_constructions) {
Label allocate;
// Decrease generous allocation count.
__ movq(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ decb(FieldOperand(rcx, SharedFunctionInfo::kConstructionCountOffset));
__ j(not_zero, &allocate);
__ push(rax);
__ push(rdi);
__ push(rdi); // constructor
// The call will replace the stub, so the countdown is only done once.
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ pop(rdi);
__ pop(rax);
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
__ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset));
__ shl(rdi, Immediate(kPointerSizeLog2));
// rdi: size of new object
__ AllocateInNewSpace(rdi,
rbx,
rdi,
no_reg,
&rt_call,
NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields.
// rax: initial map
// rbx: JSObject (not HeapObject tagged - the actual address).
// rdi: start of next object
__ movq(Operand(rbx, JSObject::kMapOffset), rax);
__ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex);
__ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx);
__ movq(Operand(rbx, JSObject::kElementsOffset), rcx);
// Set extra fields in the newly allocated object.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
{ Label loop, entry;
// To allow for truncation.
if (count_constructions) {
__ LoadRoot(rdx, Heap::kOnePointerFillerMapRootIndex);
} else {
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
}
__ lea(rcx, Operand(rbx, JSObject::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(rcx, 0), rdx);
__ addq(rcx, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(rcx, rdi);
__ j(less, &loop);
}
// Add the object tag to make the JSObject real, so that we can continue and
// jump into the continuation code at any time from now on. Any failures
// need to undo the allocation, so that the heap is in a consistent state
// and verifiable.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
__ or_(rbx, Immediate(kHeapObjectTag));
// Check if a non-empty properties array is needed.
// Allocate and initialize a FixedArray if it is.
// rax: initial map
// rbx: JSObject
// rdi: start of next object
// Calculate total properties described map.
__ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset));
__ movzxbq(rcx, FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset));
__ addq(rdx, rcx);
// Calculate unused properties past the end of the in-object properties.
__ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset));
__ subq(rdx, rcx);
// Done if no extra properties are to be allocated.
__ j(zero, &allocated);
__ Assert(positive, "Property allocation count failed.");
// Scale the number of elements by pointer size and add the header for
// FixedArrays to the start of the next object calculation from above.
// rbx: JSObject
// rdi: start of next object (will be start of FixedArray)
// rdx: number of elements in properties array
__ AllocateInNewSpace(FixedArray::kHeaderSize,
times_pointer_size,
rdx,
rdi,
rax,
no_reg,
&undo_allocation,
RESULT_CONTAINS_TOP);
// Initialize the FixedArray.
// rbx: JSObject
// rdi: FixedArray
// rdx: number of elements
// rax: start of next object
__ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex);
__ movq(Operand(rdi, HeapObject::kMapOffset), rcx); // setup the map
__ Integer32ToSmi(rdx, rdx);
__ movq(Operand(rdi, FixedArray::kLengthOffset), rdx); // and length
// Initialize the fields to undefined.
// rbx: JSObject
// rdi: FixedArray
// rax: start of next object
// rdx: number of elements
{ Label loop, entry;
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ lea(rcx, Operand(rdi, FixedArray::kHeaderSize));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(rcx, 0), rdx);
__ addq(rcx, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(rcx, rax);
__ j(below, &loop);
}
// Store the initialized FixedArray into the properties field of
// the JSObject
// rbx: JSObject
// rdi: FixedArray
__ or_(rdi, Immediate(kHeapObjectTag)); // add the heap tag
__ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi);
// Continue with JSObject being successfully allocated
// rbx: JSObject
__ jmp(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
// rbx: JSObject (previous new top)
__ bind(&undo_allocation);
__ UndoAllocationInNewSpace(rbx);
}
// Allocate the new receiver object using the runtime call.
// rdi: function (constructor)
__ bind(&rt_call);
// Must restore rdi (constructor) before calling runtime.
__ movq(rdi, Operand(rsp, 0));
__ push(rdi);
__ CallRuntime(Runtime::kNewObject, 1);
__ movq(rbx, rax); // store result in rbx
// New object allocated.
// rbx: newly allocated object
__ bind(&allocated);
// Retrieve the function from the stack.
__ pop(rdi);
// Retrieve smi-tagged arguments count from the stack.
__ movq(rax, Operand(rsp, 0));
__ SmiToInteger32(rax, rax);
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ push(rbx);
__ push(rbx);
// Setup pointer to last argument.
__ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ movq(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(rbx, rcx, times_pointer_size, 0));
__ bind(&entry);
__ decq(rcx);
__ j(greater_equal, &loop);
// Call the function.
if (is_api_function) {
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
Handle<Code> code = Handle<Code>(masm->isolate()->builtins()->builtin(
Builtins::HandleApiCallConstruct));
ParameterCount expected(0);
__ InvokeCode(code, expected, expected,
RelocInfo::CODE_TARGET, CALL_FUNCTION);
} else {
ParameterCount actual(rax);
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
}
// Restore context from the frame.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(rax, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(above_equal, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ movq(rax, Operand(rsp, 0));
// Restore the arguments count and leave the construct frame.
__ bind(&exit);
__ movq(rbx, Operand(rsp, kPointerSize)); // get arguments count
__ LeaveConstructFrame();
// Remove caller arguments from the stack and return.
__ pop(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ push(rcx);
__ IncrementCounter(COUNTERS->constructed_objects(), 1);
__ ret(0);
}
void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Expects five C++ function parameters.
// - Address entry (ignored)
// - JSFunction* function (
// - Object* receiver
// - int argc
// - Object*** argv
// (see Handle::Invoke in execution.cc).
// Platform specific argument handling. After this, the stack contains
// an internal frame and the pushed function and receiver, and
// register rax and rbx holds the argument count and argument array,
// while rdi holds the function pointer and rsi the context.
#ifdef _WIN64
// MSVC parameters in:
// rcx : entry (ignored)
// rdx : function
// r8 : receiver
// r9 : argc
// [rsp+0x20] : argv
// Clear the context before we push it when entering the JS frame.
__ Set(rsi, 0);
__ EnterInternalFrame();
// Load the function context into rsi.
__ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack.
__ push(rdx);
__ push(r8);
// Load the number of arguments and setup pointer to the arguments.
__ movq(rax, r9);
// Load the previous frame pointer to access C argument on stack
__ movq(kScratchRegister, Operand(rbp, 0));
__ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
// Load the function pointer into rdi.
__ movq(rdi, rdx);
#else // _WIN64
// GCC parameters in:
// rdi : entry (ignored)
// rsi : function
// rdx : receiver
// rcx : argc
// r8 : argv
__ movq(rdi, rsi);
// rdi : function
// Clear the context before we push it when entering the JS frame.
__ Set(rsi, 0);
// Enter an internal frame.
__ EnterInternalFrame();
// Push the function and receiver and setup the context.
__ push(rdi);
__ push(rdx);
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Load the number of arguments and setup pointer to the arguments.
__ movq(rax, rcx);
__ movq(rbx, r8);
#endif // _WIN64
// Current stack contents:
// [rsp + 2 * kPointerSize ... ]: Internal frame
// [rsp + kPointerSize] : function
// [rsp] : receiver
// Current register contents:
// rax : argc
// rbx : argv
// rsi : context
// rdi : function
// Copy arguments to the stack in a loop.
// Register rbx points to array of pointers to handle locations.
// Push the values of these handles.
Label loop, entry;
__ Set(rcx, 0); // Set loop variable to 0.
__ jmp(&entry);
__ bind(&loop);
__ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0));
__ push(Operand(kScratchRegister, 0)); // dereference handle
__ addq(rcx, Immediate(1));
__ bind(&entry);
__ cmpq(rcx, rax);
__ j(not_equal, &loop);
// Invoke the code.
if (is_construct) {
// Expects rdi to hold function pointer.
__ Call(Handle<Code>(masm->isolate()->builtins()->builtin(
Builtins::JSConstructCall)), RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(rax);
// Function must be in rdi.
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
}
// Exit the JS frame. Notice that this also removes the empty
// context and the function left on the stack by the code
// invocation.
__ LeaveInternalFrame();
// TODO(X64): Is argument correct? Is there a receiver to remove?
__ ret(1 * kPointerSize); // remove receiver
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
// Enter an internal frame.
__ EnterInternalFrame();
// Push a copy of the function onto the stack.
__ push(rdi);
__ push(rdi); // Function is also the parameter to the runtime call.
__ CallRuntime(Runtime::kLazyCompile, 1);
__ pop(rdi);
// Tear down temporary frame.
__ LeaveInternalFrame();
// Do a tail-call of the compiled function.
__ lea(rcx, FieldOperand(rax, Code::kHeaderSize));
__ jmp(rcx);
}
void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
// Enter an internal frame.
__ EnterInternalFrame();
// Push a copy of the function onto the stack.
__ push(rdi);
__ push(rdi); // Function is also the parameter to the runtime call.
__ CallRuntime(Runtime::kLazyRecompile, 1);
// Restore function and tear down temporary frame.
__ pop(rdi);
__ LeaveInternalFrame();
// Do a tail-call of the compiled function.
__ lea(rcx, FieldOperand(rax, Code::kHeaderSize));
__ jmp(rcx);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
// Enter an internal frame.
__ EnterInternalFrame();
// Pass the deoptimization type to the runtime system.
__ Push(Smi::FromInt(static_cast<int>(type)));
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
// Tear down temporary frame.
__ LeaveInternalFrame();
// Get the full codegen state from the stack and untag it.
__ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize));
// Switch on the state.
NearLabel not_no_registers, not_tos_rax;
__ cmpq(rcx, Immediate(FullCodeGenerator::NO_REGISTERS));
__ j(not_equal, &not_no_registers);
__ ret(1 * kPointerSize); // Remove state.
__ bind(&not_no_registers);
__ movq(rax, Operand(rsp, 2 * kPointerSize));
__ cmpq(rcx, Immediate(FullCodeGenerator::TOS_REG));
__ j(not_equal, &not_tos_rax);
__ ret(2 * kPointerSize); // Remove state, rax.
__ bind(&not_tos_rax);
__ Abort("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
// For now, we are relying on the fact that Runtime::NotifyOSR
// doesn't do any garbage collection which allows us to save/restore
// the registers without worrying about which of them contain
// pointers. This seems a bit fragile.
__ Pushad();
__ EnterInternalFrame();
__ CallRuntime(Runtime::kNotifyOSR, 0);
__ LeaveInternalFrame();
__ Popad();
__ ret(0);
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// Stack Layout:
// rsp[0]: Return address
// rsp[1]: Argument n
// rsp[2]: Argument n-1
// ...
// rsp[n]: Argument 1
// rsp[n+1]: Receiver (function to call)
//
// rax contains the number of arguments, n, not counting the receiver.
//
// 1. Make sure we have at least one argument.
{ Label done;
__ testq(rax, rax);
__ j(not_zero, &done);
__ pop(rbx);
__ Push(FACTORY->undefined_value());
__ push(rbx);
__ incq(rax);
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check
// if it is a function.
Label non_function;
// The function to call is at position n+1 on the stack.
__ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
__ JumpIfSmi(rdi, &non_function);
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &non_function);
// 3a. Patch the first argument if necessary when calling a function.
Label shift_arguments;
{ Label convert_to_object, use_global_receiver, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
__ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testb(FieldOperand(rbx, SharedFunctionInfo::kStrictModeByteOffset),
Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ j(not_equal, &shift_arguments);
// Compute the receiver in non-strict mode.
__ movq(rbx, Operand(rsp, rax, times_pointer_size, 0));
__ JumpIfSmi(rbx, &convert_to_object);
__ CompareRoot(rbx, Heap::kNullValueRootIndex);
__ j(equal, &use_global_receiver);
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(equal, &use_global_receiver);
__ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &convert_to_object);
__ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE);
__ j(below_equal, &shift_arguments);
__ bind(&convert_to_object);
__ EnterInternalFrame(); // In order to preserve argument count.
__ Integer32ToSmi(rax, rax);
__ push(rax);
__ push(rbx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ movq(rbx, rax);
__ pop(rax);
__ SmiToInteger32(rax, rax);
__ LeaveInternalFrame();
// Restore the function to rdi.
__ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
__ jmp(&patch_receiver);
// Use the global receiver object from the called function as the
// receiver.
__ bind(&use_global_receiver);
const int kGlobalIndex =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ movq(rbx, FieldOperand(rsi, kGlobalIndex));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset));
__ movq(rbx, FieldOperand(rbx, kGlobalIndex));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
__ bind(&patch_receiver);
__ movq(Operand(rsp, rax, times_pointer_size, 0), rbx);
__ jmp(&shift_arguments);
}
// 3b. Patch the first argument when calling a non-function. The
// CALL_NON_FUNCTION builtin expects the non-function callee as
// receiver, so overwrite the first argument which will ultimately
// become the receiver.
__ bind(&non_function);
__ movq(Operand(rsp, rax, times_pointer_size, 0), rdi);
__ Set(rdi, 0);
// 4. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
__ bind(&shift_arguments);
{ Label loop;
__ movq(rcx, rax);
__ bind(&loop);
__ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0));
__ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx);
__ decq(rcx);
__ j(not_sign, &loop); // While non-negative (to copy return address).
__ pop(rbx); // Discard copy of return address.
__ decq(rax); // One fewer argument (first argument is new receiver).
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
{ Label function;
__ testq(rdi, rdi);
__ j(not_zero, &function);
__ Set(rbx, 0);
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
__ Jump(Handle<Code>(masm->isolate()->builtins()->builtin(
ArgumentsAdaptorTrampoline)), RelocInfo::CODE_TARGET);
__ bind(&function);
}
// 5b. Get the code to call from the function and check that the number of
// expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
__ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movsxlq(rbx,
FieldOperand(rdx,
SharedFunctionInfo::kFormalParameterCountOffset));
__ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset));
__ cmpq(rax, rbx);
__ j(not_equal,
Handle<Code>(masm->isolate()->builtins()->builtin(
ArgumentsAdaptorTrampoline)), RelocInfo::CODE_TARGET);
ParameterCount expected(0);
__ InvokeCode(rdx, expected, expected, JUMP_FUNCTION);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
// Stack at entry:
// rsp: return address
// rsp+8: arguments
// rsp+16: receiver ("this")
// rsp+24: function
__ EnterInternalFrame();
// Stack frame:
// rbp: Old base pointer
// rbp[1]: return address
// rbp[2]: function arguments
// rbp[3]: receiver
// rbp[4]: function
static const int kArgumentsOffset = 2 * kPointerSize;
static const int kReceiverOffset = 3 * kPointerSize;
static const int kFunctionOffset = 4 * kPointerSize;
__ push(Operand(rbp, kFunctionOffset));
__ push(Operand(rbp, kArgumentsOffset));
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
// Check the stack for overflow. We are not trying need to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex);
__ movq(rcx, rsp);
// Make rcx the space we have left. The stack might already be overflowed
// here which will cause rcx to become negative.
__ subq(rcx, kScratchRegister);
// Make rdx the space we need for the array when it is unrolled onto the
// stack.
__ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2);
// Check if the arguments will overflow the stack.
__ cmpq(rcx, rdx);
__ j(greater, &okay); // Signed comparison.
// Out of stack space.
__ push(Operand(rbp, kFunctionOffset));
__ push(rax);
__ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
__ bind(&okay);
// End of stack check.
// Push current index and limit.
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
__ push(rax); // limit
__ push(Immediate(0)); // index
// Change context eagerly to get the right global object if
// necessary.
__ movq(rdi, Operand(rbp, kFunctionOffset));
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
// Compute the receiver.
Label call_to_object, use_global_receiver, push_receiver;
__ movq(rbx, Operand(rbp, kReceiverOffset));
// Do not transform the receiver for strict mode functions.
__ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ testb(FieldOperand(rdx, SharedFunctionInfo::kStrictModeByteOffset),
Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ j(not_equal, &push_receiver);
// Compute the receiver in non-strict mode.
__ JumpIfSmi(rbx, &call_to_object);
__ CompareRoot(rbx, Heap::kNullValueRootIndex);
__ j(equal, &use_global_receiver);
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(equal, &use_global_receiver);
// If given receiver is already a JavaScript object then there's no
// reason for converting it.
__ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &call_to_object);
__ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE);
__ j(below_equal, &push_receiver);
// Convert the receiver to an object.
__ bind(&call_to_object);
__ push(rbx);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ movq(rbx, rax);
__ jmp(&push_receiver);
// Use the current global receiver object as the receiver.
__ bind(&use_global_receiver);
const int kGlobalOffset =
Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
__ movq(rbx, FieldOperand(rsi, kGlobalOffset));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset));
__ movq(rbx, FieldOperand(rbx, kGlobalOffset));
__ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset));
// Push the receiver.
__ bind(&push_receiver);
__ push(rbx);
// Copy all arguments from the array to the stack.
Label entry, loop;
__ movq(rax, Operand(rbp, kIndexOffset));
__ jmp(&entry);
__ bind(&loop);
__ movq(rdx, Operand(rbp, kArgumentsOffset)); // load arguments
// Use inline caching to speed up access to arguments.
Handle<Code> ic(masm->isolate()->builtins()->builtin(
Builtins::KeyedLoadIC_Initialize));
__ Call(ic, RelocInfo::CODE_TARGET);
// It is important that we do not have a test instruction after the
// call. A test instruction after the call is used to indicate that
// we have generated an inline version of the keyed load. In this
// case, we know that we are not generating a test instruction next.
// Push the nth argument.
__ push(rax);
// Update the index on the stack and in register rax.
__ movq(rax, Operand(rbp, kIndexOffset));
__ SmiAddConstant(rax, rax, Smi::FromInt(1));
__ movq(Operand(rbp, kIndexOffset), rax);
__ bind(&entry);
__ cmpq(rax, Operand(rbp, kLimitOffset));
__ j(not_equal, &loop);
// Invoke the function.
ParameterCount actual(rax);
__ SmiToInteger32(rax, rax);
__ movq(rdi, Operand(rbp, kFunctionOffset));
__ InvokeFunction(rdi, actual, CALL_FUNCTION);
__ LeaveInternalFrame();
__ ret(3 * kPointerSize); // remove function, receiver, and arguments
}
// Number of empty elements to allocate for an empty array.
static const int kPreallocatedArrayElements = 4;
// Allocate an empty JSArray. The allocated array is put into the result
// register. If the parameter initial_capacity is larger than zero an elements
// backing store is allocated with this size and filled with the hole values.
// Otherwise the elements backing store is set to the empty FixedArray.
static void AllocateEmptyJSArray(MacroAssembler* masm,
Register array_function,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
int initial_capacity,
Label* gc_required) {
ASSERT(initial_capacity >= 0);
// Load the initial map from the array function.
__ movq(scratch1, FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
// Allocate the JSArray object together with space for a fixed array with the
// requested elements.
int size = JSArray::kSize;
if (initial_capacity > 0) {
size += FixedArray::SizeFor(initial_capacity);
}
__ AllocateInNewSpace(size,
result,
scratch2,
scratch3,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// scratch1: initial map
// scratch2: start of next object
__ movq(FieldOperand(result, JSObject::kMapOffset), scratch1);
__ Move(FieldOperand(result, JSArray::kPropertiesOffset),
FACTORY->empty_fixed_array());
// Field JSArray::kElementsOffset is initialized later.
__ Move(FieldOperand(result, JSArray::kLengthOffset), Smi::FromInt(0));
// If no storage is requested for the elements array just set the empty
// fixed array.
if (initial_capacity == 0) {
__ Move(FieldOperand(result, JSArray::kElementsOffset),
FACTORY->empty_fixed_array());
return;
}
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// scratch2: start of next object
__ lea(scratch1, Operand(result, JSArray::kSize));
__ movq(FieldOperand(result, JSArray::kElementsOffset), scratch1);
// Initialize the FixedArray and fill it with holes. FixedArray length is
// stored as a smi.
// result: JSObject
// scratch1: elements array
// scratch2: start of next object
__ Move(FieldOperand(scratch1, HeapObject::kMapOffset),
FACTORY->fixed_array_map());
__ Move(FieldOperand(scratch1, FixedArray::kLengthOffset),
Smi::FromInt(initial_capacity));
// Fill the FixedArray with the hole value. Inline the code if short.
// Reconsider loop unfolding if kPreallocatedArrayElements gets changed.
static const int kLoopUnfoldLimit = 4;
ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit);
__ Move(scratch3, FACTORY->the_hole_value());
if (initial_capacity <= kLoopUnfoldLimit) {
// Use a scratch register here to have only one reloc info when unfolding
// the loop.
for (int i = 0; i < initial_capacity; i++) {
__ movq(FieldOperand(scratch1,
FixedArray::kHeaderSize + i * kPointerSize),
scratch3);
}
} else {
Label loop, entry;
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(scratch1, 0), scratch3);
__ addq(scratch1, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(scratch1, scratch2);
__ j(below, &loop);
}
}
// Allocate a JSArray with the number of elements stored in a register. The
// register array_function holds the built-in Array function and the register
// array_size holds the size of the array as a smi. The allocated array is put
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array and elements_array_end (see
// below for when that is not the case). If the parameter fill_with_holes is
// true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array is scratched.
static void AllocateJSArray(MacroAssembler* masm,
Register array_function, // Array function.
Register array_size, // As a smi.
Register result,
Register elements_array,
Register elements_array_end,
Register scratch,
bool fill_with_hole,
Label* gc_required) {
Label not_empty, allocated;
// Load the initial map from the array function.
__ movq(elements_array,
FieldOperand(array_function,
JSFunction::kPrototypeOrInitialMapOffset));
// Check whether an empty sized array is requested.
__ testq(array_size, array_size);
__ j(not_zero, &not_empty);
// If an empty array is requested allocate a small elements array anyway. This
// keeps the code below free of special casing for the empty array.
int size = JSArray::kSize + FixedArray::SizeFor(kPreallocatedArrayElements);
__ AllocateInNewSpace(size,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
__ jmp(&allocated);
// Allocate the JSArray object together with space for a FixedArray with the
// requested elements.
__ bind(&not_empty);
SmiIndex index =
masm->SmiToIndex(kScratchRegister, array_size, kPointerSizeLog2);
__ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
index.scale,
index.reg,
result,
elements_array_end,
scratch,
gc_required,
TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// elements_array: initial map
// elements_array_end: start of next object
// array_size: size of array (smi)
__ bind(&allocated);
__ movq(FieldOperand(result, JSObject::kMapOffset), elements_array);
__ Move(elements_array, FACTORY->empty_fixed_array());
__ movq(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
// Field JSArray::kElementsOffset is initialized later.
__ movq(FieldOperand(result, JSArray::kLengthOffset), array_size);
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// elements_array_end: start of next object
// array_size: size of array (smi)
__ lea(elements_array, Operand(result, JSArray::kSize));
__ movq(FieldOperand(result, JSArray::kElementsOffset), elements_array);
// Initialize the fixed array. FixedArray length is stored as a smi.
// result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
// array_size: size of array (smi)
__ Move(FieldOperand(elements_array, JSObject::kMapOffset),
FACTORY->fixed_array_map());
Label not_empty_2, fill_array;
__ SmiTest(array_size);
__ j(not_zero, &not_empty_2);
// Length of the FixedArray is the number of pre-allocated elements even
// though the actual JSArray has length 0.
__ Move(FieldOperand(elements_array, FixedArray::kLengthOffset),
Smi::FromInt(kPreallocatedArrayElements));
__ jmp(&fill_array);
__ bind(&not_empty_2);
// For non-empty JSArrays the length of the FixedArray and the JSArray is the
// same.
__ movq(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size);
// Fill the allocated FixedArray with the hole value if requested.
// result: JSObject
// elements_array: elements array
// elements_array_end: start of next object
__ bind(&fill_array);
if (fill_with_hole) {
Label loop, entry;
__ Move(scratch, FACTORY->the_hole_value());
__ lea(elements_array, Operand(elements_array,
FixedArray::kHeaderSize - kHeapObjectTag));
__ jmp(&entry);
__ bind(&loop);
__ movq(Operand(elements_array, 0), scratch);
__ addq(elements_array, Immediate(kPointerSize));
__ bind(&entry);
__ cmpq(elements_array, elements_array_end);
__ j(below, &loop);
}
}
// Create a new array for the built-in Array function. This function allocates
// the JSArray object and the FixedArray elements array and initializes these.
// If the Array cannot be constructed in native code the runtime is called. This
// function assumes the following state:
// rdi: constructor (built-in Array function)
// rax: argc
// rsp[0]: return address
// rsp[8]: last argument
// This function is used for both construct and normal calls of Array. The only
// difference between handling a construct call and a normal call is that for a
// construct call the constructor function in rdi needs to be preserved for
// entering the generic code. In both cases argc in rax needs to be preserved.
// Both registers are preserved by this code so no need to differentiate between
// a construct call and a normal call.
static void ArrayNativeCode(MacroAssembler* masm,
Label *call_generic_code) {
Label argc_one_or_more, argc_two_or_more;
// Check for array construction with zero arguments.
__ testq(rax, rax);
__ j(not_zero, &argc_one_or_more);
// Handle construction of an empty array.
AllocateEmptyJSArray(masm,
rdi,
rbx,
rcx,
rdx,
r8,
kPreallocatedArrayElements,
call_generic_code);
__ IncrementCounter(COUNTERS->array_function_native(), 1);
__ movq(rax, rbx);
__ ret(kPointerSize);
// Check for one argument. Bail out if argument is not smi or if it is
// negative.
__ bind(&argc_one_or_more);
__ cmpq(rax, Immediate(1));
__ j(not_equal, &argc_two_or_more);
__ movq(rdx, Operand(rsp, kPointerSize)); // Get the argument from the stack.
__ JumpUnlessNonNegativeSmi(rdx, call_generic_code);
// Handle construction of an empty array of a certain size. Bail out if size
// is to large to actually allocate an elements array.
__ SmiCompare(rdx, Smi::FromInt(JSObject::kInitialMaxFastElementArray));
__ j(greater_equal, call_generic_code);
// rax: argc
// rdx: array_size (smi)
// rdi: constructor
// esp[0]: return address
// esp[8]: argument
AllocateJSArray(masm,
rdi,
rdx,
rbx,
rcx,
r8,
r9,
true,
call_generic_code);
__ IncrementCounter(COUNTERS->array_function_native(), 1);
__ movq(rax, rbx);
__ ret(2 * kPointerSize);
// Handle construction of an array from a list of arguments.
__ bind(&argc_two_or_more);
__ movq(rdx, rax);
__ Integer32ToSmi(rdx, rdx); // Convet argc to a smi.
// rax: argc
// rdx: array_size (smi)
// rdi: constructor
// esp[0] : return address
// esp[8] : last argument
AllocateJSArray(masm,
rdi,
rdx,
rbx,
rcx,
r8,
r9,
false,
call_generic_code);
__ IncrementCounter(COUNTERS->array_function_native(), 1);
// rax: argc
// rbx: JSArray
// rcx: elements_array
// r8: elements_array_end (untagged)
// esp[0]: return address
// esp[8]: last argument
// Location of the last argument
__ lea(r9, Operand(rsp, kPointerSize));
// Location of the first array element (Parameter fill_with_holes to
// AllocateJSArrayis false, so the FixedArray is returned in rcx).
__ lea(rdx, Operand(rcx, FixedArray::kHeaderSize - kHeapObjectTag));
// rax: argc
// rbx: JSArray
// rdx: location of the first array element
// r9: location of the last argument
// esp[0]: return address
// esp[8]: last argument
Label loop, entry;
__ movq(rcx, rax);
__ jmp(&entry);
__ bind(&loop);
__ movq(kScratchRegister, Operand(r9, rcx, times_pointer_size, 0));
__ movq(Operand(rdx, 0), kScratchRegister);
__ addq(rdx, Immediate(kPointerSize));
__ bind(&entry);
__ decq(rcx);
__ j(greater_equal, &loop);
// Remove caller arguments from the stack and return.
// rax: argc
// rbx: JSArray
// esp[0]: return address
// esp[8]: last argument
__ pop(rcx);
__ lea(rsp, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize));
__ push(rcx);
__ movq(rax, rbx);
__ ret(0);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, rdi);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, "Unexpected initial map for Array function");
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as a normal function.
ArrayNativeCode(masm, &generic_array_code);
// Jump to the generic array code in case the specialized code cannot handle
// the construction.
__ bind(&generic_array_code);
Code* code =
masm->isolate()->builtins()->builtin(Builtins::ArrayCodeGeneric);
Handle<Code> array_code(code);
__ Jump(array_code, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rdi : constructor
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
Label generic_constructor;
if (FLAG_debug_code) {
// The array construct code is only set for the builtin and internal
// Array functions which always have a map.
// Initial map for the builtin Array function should be a map.
__ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rbx));
__ Check(not_smi, "Unexpected initial map for Array function");
__ CmpObjectType(rbx, MAP_TYPE, rcx);
__ Check(equal, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as constructor.
ArrayNativeCode(masm, &generic_constructor);
// Jump to the generic construct code in case the specialized code cannot
// handle the construction.
__ bind(&generic_constructor);
Code* code =
masm->isolate()->builtins()->builtin(Builtins::JSConstructStubGeneric);
Handle<Code> generic_construct_stub(code);
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
// TODO(849): implement custom construct stub.
// Generate a copy of the generic stub for now.
Generate_JSConstructStubGeneric(masm);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ push(rbp);
__ movq(rbp, rsp);
// Store the arguments adaptor context sentinel.
__ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
// Push the function on the stack.
__ push(rdi);
// Preserve the number of arguments on the stack. Must preserve both
// rax and rbx because these registers are used when copying the
// arguments and the receiver.
__ Integer32ToSmi(rcx, rax);
__ push(rcx);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack. Number is a Smi.
__ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ movq(rsp, rbp);
__ pop(rbp);
// Remove caller arguments from the stack.
__ pop(rcx);
SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2);
__ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize));
__ push(rcx);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : actual number of arguments
// -- rbx : expected number of arguments
// -- rdx : code entry to call
// -----------------------------------
Label invoke, dont_adapt_arguments;
__ IncrementCounter(COUNTERS->arguments_adaptors(), 1);
Label enough, too_few;
__ cmpq(rax, rbx);
__ j(less, &too_few);
__ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(rax, Operand(rbp, rax, times_pointer_size, offset));
__ movq(rcx, Immediate(-1)); // account for receiver
Label copy;
__ bind(&copy);
__ incq(rcx);
__ push(Operand(rax, 0));
__ subq(rax, Immediate(kPointerSize));
__ cmpq(rcx, rbx);
__ j(less, &copy);
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(rdi, Operand(rbp, rax, times_pointer_size, offset));
__ movq(rcx, Immediate(-1)); // account for receiver
Label copy;
__ bind(&copy);
__ incq(rcx);
__ push(Operand(rdi, 0));
__ subq(rdi, Immediate(kPointerSize));
__ cmpq(rcx, rax);
__ j(less, &copy);
// Fill remaining expected arguments with undefined values.
Label fill;
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ bind(&fill);
__ incq(rcx);
__ push(kScratchRegister);
__ cmpq(rcx, rbx);
__ j(less, &fill);
// Restore function pointer.
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
// Call the entry point.
__ bind(&invoke);
__ call(rdx);
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ jmp(rdx);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Get the loop depth of the stack guard check. This is recorded in
// a test(rax, depth) instruction right after the call.
Label stack_check;
__ movq(rbx, Operand(rsp, 0)); // return address
__ movzxbq(rbx, Operand(rbx, 1)); // depth
// Get the loop nesting level at which we allow OSR from the
// unoptimized code and check if we want to do OSR yet. If not we
// should perform a stack guard check so we can get interrupts while
// waiting for on-stack replacement.
__ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rcx, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset));
__ movq(rcx, FieldOperand(rcx, SharedFunctionInfo::kCodeOffset));
__ cmpb(rbx, FieldOperand(rcx, Code::kAllowOSRAtLoopNestingLevelOffset));
__ j(greater, &stack_check);
// Pass the function to optimize as the argument to the on-stack
// replacement runtime function.
__ EnterInternalFrame();
__ push(rax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
__ LeaveInternalFrame();
// If the result was -1 it means that we couldn't optimize the
// function. Just return and continue in the unoptimized version.
NearLabel skip;
__ SmiCompare(rax, Smi::FromInt(-1));
__ j(not_equal, &skip);
__ ret(0);
// If we decide not to perform on-stack replacement we perform a
// stack guard check to enable interrupts.
__ bind(&stack_check);
NearLabel ok;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &ok);
StackCheckStub stub;
__ TailCallStub(&stub);
__ Abort("Unreachable code: returned from tail call.");
__ bind(&ok);
__ ret(0);
__ bind(&skip);
// Untag the AST id and push it on the stack.
__ SmiToInteger32(rax, rax);
__ push(rax);
// Generate the code for doing the frame-to-frame translation using
// the deoptimizer infrastructure.
Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
generator.Generate();
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64