v8/test/cctest/test-mark-compact.cc
erik.corry@gmail.com 5a8d1764bc Refactoring of snapshots. This simplifies and improves
the speed of deserializing code.  The current startup
time improvement for V8 is around 6%, but code deserialization
is speeded up disproportionately, and we will soon have more
code in the snapshot.
* Removed support for deserializing into large object space.
  The regular pages are 1Mbyte now and that is plenty.  This
  is a big simplification.
* Instead of reserving space for the snapshot we actually
  allocate it now.  This removes some special casing from
  the memory management and simplifies deserialization since
  we are just bumping a pointer rather than calling the
  normal allocation routines during deserialization.
* Record in the snapshot how much we need to boot up and
  allocate it instead of just assuming that allocations in
  a new VM will always be linear.
* In the snapshot we always address an object as a negative
  offset from the current allocation point.  We used to
  sometimes address from the start of the deserialized data,
  but this is less useful now that we have good support for
  roots and repetitions in the deserialization data.
* Code objects were previously deserialized (like other
  objects) by alternating raw data (deserialized with memcpy)
  and pointers (to external references, other objects, etc.).
  Now we deserialize code objects with a single memcpy,
  followed by a series of skips and pointers that partially
  overwrite the code we memcopied out of the snapshot.
  The skips are sometimes merged into the following
  instruction in the deserialization data to reduce dispatch
  time.
* Integers in the snapshot were stored in a variable length
  format that gives a compact representation for small positive
  integers.  This is still the case, but the new encoding can
  be decoded without branches or conditional instructions,
  which is faster on a modern CPU.
Review URL: https://chromiumcodereview.appspot.com/10918067

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12505 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2012-09-14 11:16:56 +00:00

557 lines
18 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#ifdef __linux__
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#endif
#include "v8.h"
#include "global-handles.h"
#include "snapshot.h"
#include "cctest.h"
using namespace v8::internal;
static v8::Persistent<v8::Context> env;
static void InitializeVM() {
if (env.IsEmpty()) env = v8::Context::New();
v8::HandleScope scope;
env->Enter();
}
TEST(MarkingDeque) {
int mem_size = 20 * kPointerSize;
byte* mem = NewArray<byte>(20*kPointerSize);
Address low = reinterpret_cast<Address>(mem);
Address high = low + mem_size;
MarkingDeque s;
s.Initialize(low, high);
Address address = NULL;
while (!s.IsFull()) {
s.PushBlack(HeapObject::FromAddress(address));
address += kPointerSize;
}
while (!s.IsEmpty()) {
Address value = s.Pop()->address();
address -= kPointerSize;
CHECK_EQ(address, value);
}
CHECK_EQ(NULL, address);
DeleteArray(mem);
}
TEST(Promotion) {
// This test requires compaction. If compaction is turned off, we
// skip the entire test.
if (FLAG_never_compact) return;
// Ensure that we get a compacting collection so that objects are promoted
// from new space.
FLAG_gc_global = true;
FLAG_always_compact = true;
HEAP->ConfigureHeap(2*256*KB, 8*MB, 8*MB);
InitializeVM();
v8::HandleScope sc;
// Allocate a fixed array in the new space.
int array_size =
(Page::kMaxNonCodeHeapObjectSize - FixedArray::kHeaderSize) /
(kPointerSize * 4);
Object* obj = HEAP->AllocateFixedArray(array_size)->ToObjectChecked();
Handle<FixedArray> array(FixedArray::cast(obj));
// Array should be in the new space.
CHECK(HEAP->InSpace(*array, NEW_SPACE));
// Call the m-c collector, so array becomes an old object.
HEAP->CollectGarbage(OLD_POINTER_SPACE);
// Array now sits in the old space
CHECK(HEAP->InSpace(*array, OLD_POINTER_SPACE));
}
TEST(NoPromotion) {
HEAP->ConfigureHeap(2*256*KB, 8*MB, 8*MB);
// Test the situation that some objects in new space are promoted to
// the old space
InitializeVM();
v8::HandleScope sc;
// Do a mark compact GC to shrink the heap.
HEAP->CollectGarbage(OLD_POINTER_SPACE);
// Allocate a big Fixed array in the new space.
int max_size =
Min(Page::kMaxNonCodeHeapObjectSize, HEAP->MaxObjectSizeInNewSpace());
int length = (max_size - FixedArray::kHeaderSize) / (2*kPointerSize);
Object* obj = i::Isolate::Current()->heap()->AllocateFixedArray(length)->
ToObjectChecked();
Handle<FixedArray> array(FixedArray::cast(obj));
// Array still stays in the new space.
CHECK(HEAP->InSpace(*array, NEW_SPACE));
// Allocate objects in the old space until out of memory.
FixedArray* host = *array;
while (true) {
Object* obj;
{ MaybeObject* maybe_obj = HEAP->AllocateFixedArray(100, TENURED);
if (!maybe_obj->ToObject(&obj)) break;
}
host->set(0, obj);
host = FixedArray::cast(obj);
}
// Call mark compact GC, and it should pass.
HEAP->CollectGarbage(OLD_POINTER_SPACE);
}
TEST(MarkCompactCollector) {
InitializeVM();
v8::HandleScope sc;
// call mark-compact when heap is empty
HEAP->CollectGarbage(OLD_POINTER_SPACE);
// keep allocating garbage in new space until it fails
const int ARRAY_SIZE = 100;
Object* array;
MaybeObject* maybe_array;
do {
maybe_array = HEAP->AllocateFixedArray(ARRAY_SIZE);
} while (maybe_array->ToObject(&array));
HEAP->CollectGarbage(NEW_SPACE);
array = HEAP->AllocateFixedArray(ARRAY_SIZE)->ToObjectChecked();
// keep allocating maps until it fails
Object* mapp;
MaybeObject* maybe_mapp;
do {
maybe_mapp = HEAP->AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
} while (maybe_mapp->ToObject(&mapp));
HEAP->CollectGarbage(MAP_SPACE);
mapp = HEAP->AllocateMap(JS_OBJECT_TYPE,
JSObject::kHeaderSize)->ToObjectChecked();
// allocate a garbage
String* func_name =
String::cast(HEAP->LookupAsciiSymbol("theFunction")->ToObjectChecked());
SharedFunctionInfo* function_share = SharedFunctionInfo::cast(
HEAP->AllocateSharedFunctionInfo(func_name)->ToObjectChecked());
JSFunction* function = JSFunction::cast(
HEAP->AllocateFunction(*Isolate::Current()->function_map(),
function_share,
HEAP->undefined_value())->ToObjectChecked());
Map* initial_map =
Map::cast(HEAP->AllocateMap(JS_OBJECT_TYPE,
JSObject::kHeaderSize)->ToObjectChecked());
function->set_initial_map(initial_map);
Isolate::Current()->context()->global_object()->SetProperty(
func_name, function, NONE, kNonStrictMode)->ToObjectChecked();
JSObject* obj = JSObject::cast(
HEAP->AllocateJSObject(function)->ToObjectChecked());
HEAP->CollectGarbage(OLD_POINTER_SPACE);
func_name =
String::cast(HEAP->LookupAsciiSymbol("theFunction")->ToObjectChecked());
CHECK(Isolate::Current()->context()->global_object()->
HasLocalProperty(func_name));
Object* func_value = Isolate::Current()->context()->global_object()->
GetProperty(func_name)->ToObjectChecked();
CHECK(func_value->IsJSFunction());
function = JSFunction::cast(func_value);
obj = JSObject::cast(HEAP->AllocateJSObject(function)->ToObjectChecked());
String* obj_name =
String::cast(HEAP->LookupAsciiSymbol("theObject")->ToObjectChecked());
Isolate::Current()->context()->global_object()->SetProperty(
obj_name, obj, NONE, kNonStrictMode)->ToObjectChecked();
String* prop_name =
String::cast(HEAP->LookupAsciiSymbol("theSlot")->ToObjectChecked());
obj->SetProperty(prop_name,
Smi::FromInt(23),
NONE,
kNonStrictMode)->ToObjectChecked();
HEAP->CollectGarbage(OLD_POINTER_SPACE);
obj_name =
String::cast(HEAP->LookupAsciiSymbol("theObject")->ToObjectChecked());
CHECK(Isolate::Current()->context()->global_object()->
HasLocalProperty(obj_name));
CHECK(Isolate::Current()->context()->global_object()->
GetProperty(obj_name)->ToObjectChecked()->IsJSObject());
obj = JSObject::cast(Isolate::Current()->context()->global_object()->
GetProperty(obj_name)->ToObjectChecked());
prop_name =
String::cast(HEAP->LookupAsciiSymbol("theSlot")->ToObjectChecked());
CHECK(obj->GetProperty(prop_name) == Smi::FromInt(23));
}
// TODO(1600): compaction of map space is temporary removed from GC.
#if 0
static Handle<Map> CreateMap() {
return FACTORY->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
}
TEST(MapCompact) {
FLAG_max_map_space_pages = 16;
InitializeVM();
{
v8::HandleScope sc;
// keep allocating maps while pointers are still encodable and thus
// mark compact is permitted.
Handle<JSObject> root = FACTORY->NewJSObjectFromMap(CreateMap());
do {
Handle<Map> map = CreateMap();
map->set_prototype(*root);
root = FACTORY->NewJSObjectFromMap(map);
} while (HEAP->map_space()->MapPointersEncodable());
}
// Now, as we don't have any handles to just allocated maps, we should
// be able to trigger map compaction.
// To give an additional chance to fail, try to force compaction which
// should be impossible right now.
HEAP->CollectAllGarbage(Heap::kForceCompactionMask);
// And now map pointers should be encodable again.
CHECK(HEAP->map_space()->MapPointersEncodable());
}
#endif
static int gc_starts = 0;
static int gc_ends = 0;
static void GCPrologueCallbackFunc() {
CHECK(gc_starts == gc_ends);
gc_starts++;
}
static void GCEpilogueCallbackFunc() {
CHECK(gc_starts == gc_ends + 1);
gc_ends++;
}
TEST(GCCallback) {
InitializeVM();
HEAP->SetGlobalGCPrologueCallback(&GCPrologueCallbackFunc);
HEAP->SetGlobalGCEpilogueCallback(&GCEpilogueCallbackFunc);
// Scavenge does not call GC callback functions.
HEAP->PerformScavenge();
CHECK_EQ(0, gc_starts);
CHECK_EQ(gc_ends, gc_starts);
HEAP->CollectGarbage(OLD_POINTER_SPACE);
CHECK_EQ(1, gc_starts);
CHECK_EQ(gc_ends, gc_starts);
}
static int NumberOfWeakCalls = 0;
static void WeakPointerCallback(v8::Persistent<v8::Value> handle, void* id) {
ASSERT(id == reinterpret_cast<void*>(1234));
NumberOfWeakCalls++;
handle.Dispose();
}
TEST(ObjectGroups) {
InitializeVM();
GlobalHandles* global_handles = Isolate::Current()->global_handles();
NumberOfWeakCalls = 0;
v8::HandleScope handle_scope;
Handle<Object> g1s1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g1s2 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g1c1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
global_handles->MakeWeak(g1s1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
global_handles->MakeWeak(g1s2.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
global_handles->MakeWeak(g1c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Handle<Object> g2s1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2s2 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
Handle<Object> g2c1 =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
global_handles->MakeWeak(g2s1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
global_handles->MakeWeak(g2s2.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
global_handles->MakeWeak(g2c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
Handle<Object> root = global_handles->Create(*g1s1); // make a root.
// Connect group 1 and 2, make a cycle.
Handle<FixedArray>::cast(g1s2)->set(0, *g2s2);
Handle<FixedArray>::cast(g2s1)->set(0, *g1s1);
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g1_children[] = { g1c1.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
Object** g2_children[] = { g2c1.location() };
global_handles->AddObjectGroup(g1_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
global_handles->AddObjectGroup(g2_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g2s2).location(), g2_children, 1);
}
// Do a full GC
HEAP->CollectGarbage(OLD_POINTER_SPACE);
// All object should be alive.
CHECK_EQ(0, NumberOfWeakCalls);
// Weaken the root.
global_handles->MakeWeak(root.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
// But make children strong roots---all the objects (except for children)
// should be collectable now.
global_handles->ClearWeakness(g1c1.location());
global_handles->ClearWeakness(g2c1.location());
// Groups are deleted, rebuild groups.
{
Object** g1_objects[] = { g1s1.location(), g1s2.location() };
Object** g1_children[] = { g1c1.location() };
Object** g2_objects[] = { g2s1.location(), g2s2.location() };
Object** g2_children[] = { g2c1.location() };
global_handles->AddObjectGroup(g1_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g1s1).location(), g1_children, 1);
global_handles->AddObjectGroup(g2_objects, 2, NULL);
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(g2s2).location(), g2_children, 1);
}
HEAP->CollectGarbage(OLD_POINTER_SPACE);
// All objects should be gone. 5 global handles in total.
CHECK_EQ(5, NumberOfWeakCalls);
// And now make children weak again and collect them.
global_handles->MakeWeak(g1c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
global_handles->MakeWeak(g2c1.location(),
reinterpret_cast<void*>(1234),
&WeakPointerCallback);
HEAP->CollectGarbage(OLD_POINTER_SPACE);
CHECK_EQ(7, NumberOfWeakCalls);
}
class TestRetainedObjectInfo : public v8::RetainedObjectInfo {
public:
TestRetainedObjectInfo() : has_been_disposed_(false) {}
bool has_been_disposed() { return has_been_disposed_; }
virtual void Dispose() {
ASSERT(!has_been_disposed_);
has_been_disposed_ = true;
}
virtual bool IsEquivalent(v8::RetainedObjectInfo* other) {
return other == this;
}
virtual intptr_t GetHash() { return 0; }
virtual const char* GetLabel() { return "whatever"; }
private:
bool has_been_disposed_;
};
TEST(EmptyObjectGroups) {
InitializeVM();
GlobalHandles* global_handles = Isolate::Current()->global_handles();
v8::HandleScope handle_scope;
Handle<Object> object =
global_handles->Create(HEAP->AllocateFixedArray(1)->ToObjectChecked());
TestRetainedObjectInfo info;
global_handles->AddObjectGroup(NULL, 0, &info);
ASSERT(info.has_been_disposed());
global_handles->AddImplicitReferences(
Handle<HeapObject>::cast(object).location(), NULL, 0);
}
// Here is a memory use test that uses /proc, and is therefore Linux-only. We
// do not care how much memory the simulator uses, since it is only there for
// debugging purposes.
#if defined(__linux__) && !defined(USE_SIMULATOR)
static uintptr_t ReadLong(char* buffer, intptr_t* position, int base) {
char* end_address = buffer + *position;
uintptr_t result = strtoul(buffer + *position, &end_address, base);
CHECK(result != ULONG_MAX || errno != ERANGE);
CHECK(end_address > buffer + *position);
*position = end_address - buffer;
return result;
}
static intptr_t MemoryInUse() {
intptr_t memory_use = 0;
int fd = open("/proc/self/maps", O_RDONLY);
if (fd < 0) return -1;
const int kBufSize = 10000;
char buffer[kBufSize];
int length = read(fd, buffer, kBufSize);
intptr_t line_start = 0;
CHECK_LT(length, kBufSize); // Make the buffer bigger.
CHECK_GT(length, 0); // We have to find some data in the file.
while (line_start < length) {
if (buffer[line_start] == '\n') {
line_start++;
continue;
}
intptr_t position = line_start;
uintptr_t start = ReadLong(buffer, &position, 16);
CHECK_EQ(buffer[position++], '-');
uintptr_t end = ReadLong(buffer, &position, 16);
CHECK_EQ(buffer[position++], ' ');
CHECK(buffer[position] == '-' || buffer[position] == 'r');
bool read_permission = (buffer[position++] == 'r');
CHECK(buffer[position] == '-' || buffer[position] == 'w');
bool write_permission = (buffer[position++] == 'w');
CHECK(buffer[position] == '-' || buffer[position] == 'x');
bool execute_permission = (buffer[position++] == 'x');
CHECK(buffer[position] == '-' || buffer[position] == 'p');
bool private_mapping = (buffer[position++] == 'p');
CHECK_EQ(buffer[position++], ' ');
uintptr_t offset = ReadLong(buffer, &position, 16);
USE(offset);
CHECK_EQ(buffer[position++], ' ');
uintptr_t major = ReadLong(buffer, &position, 16);
USE(major);
CHECK_EQ(buffer[position++], ':');
uintptr_t minor = ReadLong(buffer, &position, 16);
USE(minor);
CHECK_EQ(buffer[position++], ' ');
uintptr_t inode = ReadLong(buffer, &position, 10);
while (position < length && buffer[position] != '\n') position++;
if ((read_permission || write_permission || execute_permission) &&
private_mapping && inode == 0) {
memory_use += (end - start);
}
line_start = position;
}
close(fd);
return memory_use;
}
TEST(BootUpMemoryUse) {
intptr_t initial_memory = MemoryInUse();
// Avoid flakiness.
FLAG_crankshaft = false;
FLAG_parallel_recompilation = false;
// Only Linux has the proc filesystem and only if it is mapped. If it's not
// there we just skip the test.
if (initial_memory >= 0) {
InitializeVM();
intptr_t delta = MemoryInUse() - initial_memory;
if (sizeof(initial_memory) == 8) {
if (v8::internal::Snapshot::IsEnabled()) {
CHECK_LE(delta, 3600 * 1024); // 3396.
} else {
CHECK_LE(delta, 4000 * 1024); // 3948.
}
} else {
if (v8::internal::Snapshot::IsEnabled()) {
CHECK_LE(delta, 2500 * 1024); // 2400.
} else {
CHECK_LE(delta, 2860 * 1024); // 2760.
}
}
}
}
#endif // __linux__ and !USE_SIMULATOR