69fe1ff281
R=svenpanne@chromium.org Review URL: https://codereview.chromium.org/20283002 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15876 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
770 lines
22 KiB
C++
770 lines
22 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Platform specific code for Linux goes here. For the POSIX comaptible parts
|
|
// the implementation is in platform-posix.cc.
|
|
|
|
#include <pthread.h>
|
|
#include <semaphore.h>
|
|
#include <signal.h>
|
|
#include <sys/prctl.h>
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/types.h>
|
|
#include <stdlib.h>
|
|
|
|
#if defined(__GLIBC__) && !defined(__UCLIBC__)
|
|
#include <execinfo.h>
|
|
#include <cxxabi.h>
|
|
#endif
|
|
|
|
// Ubuntu Dapper requires memory pages to be marked as
|
|
// executable. Otherwise, OS raises an exception when executing code
|
|
// in that page.
|
|
#include <sys/types.h> // mmap & munmap
|
|
#include <sys/mman.h> // mmap & munmap
|
|
#include <sys/stat.h> // open
|
|
#include <fcntl.h> // open
|
|
#include <unistd.h> // sysconf
|
|
#include <strings.h> // index
|
|
#include <errno.h>
|
|
#include <stdarg.h>
|
|
|
|
// GLibc on ARM defines mcontext_t has a typedef for 'struct sigcontext'.
|
|
// Old versions of the C library <signal.h> didn't define the type.
|
|
#if defined(__ANDROID__) && !defined(__BIONIC_HAVE_UCONTEXT_T) && \
|
|
defined(__arm__) && !defined(__BIONIC_HAVE_STRUCT_SIGCONTEXT)
|
|
#include <asm/sigcontext.h>
|
|
#endif
|
|
|
|
#undef MAP_TYPE
|
|
|
|
#include "v8.h"
|
|
|
|
#include "platform-posix.h"
|
|
#include "platform.h"
|
|
#include "v8threads.h"
|
|
#include "vm-state-inl.h"
|
|
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
static Mutex* limit_mutex = NULL;
|
|
|
|
|
|
#ifdef __arm__
|
|
static bool CPUInfoContainsString(const char * search_string) {
|
|
const char* file_name = "/proc/cpuinfo";
|
|
// This is written as a straight shot one pass parser
|
|
// and not using STL string and ifstream because,
|
|
// on Linux, it's reading from a (non-mmap-able)
|
|
// character special device.
|
|
FILE* f = NULL;
|
|
const char* what = search_string;
|
|
|
|
if (NULL == (f = fopen(file_name, "r"))) {
|
|
OS::PrintError("Failed to open /proc/cpuinfo\n");
|
|
return false;
|
|
}
|
|
|
|
int k;
|
|
while (EOF != (k = fgetc(f))) {
|
|
if (k == *what) {
|
|
++what;
|
|
while ((*what != '\0') && (*what == fgetc(f))) {
|
|
++what;
|
|
}
|
|
if (*what == '\0') {
|
|
fclose(f);
|
|
return true;
|
|
} else {
|
|
what = search_string;
|
|
}
|
|
}
|
|
}
|
|
fclose(f);
|
|
|
|
// Did not find string in the proc file.
|
|
return false;
|
|
}
|
|
|
|
|
|
bool OS::ArmCpuHasFeature(CpuFeature feature) {
|
|
const char* search_string = NULL;
|
|
// Simple detection of VFP at runtime for Linux.
|
|
// It is based on /proc/cpuinfo, which reveals hardware configuration
|
|
// to user-space applications. According to ARM (mid 2009), no similar
|
|
// facility is universally available on the ARM architectures,
|
|
// so it's up to individual OSes to provide such.
|
|
switch (feature) {
|
|
case VFP3:
|
|
search_string = "vfpv3";
|
|
break;
|
|
case NEON:
|
|
search_string = "neon";
|
|
break;
|
|
case ARMv7:
|
|
search_string = "ARMv7";
|
|
break;
|
|
case SUDIV:
|
|
search_string = "idiva";
|
|
break;
|
|
case VFP32DREGS:
|
|
// This case is handled specially below.
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
if (feature == VFP32DREGS) {
|
|
return ArmCpuHasFeature(VFP3) && !CPUInfoContainsString("d16");
|
|
}
|
|
|
|
if (CPUInfoContainsString(search_string)) {
|
|
return true;
|
|
}
|
|
|
|
if (feature == VFP3) {
|
|
// Some old kernels will report vfp not vfpv3. Here we make a last attempt
|
|
// to detect vfpv3 by checking for vfp *and* neon, since neon is only
|
|
// available on architectures with vfpv3.
|
|
// Checking neon on its own is not enough as it is possible to have neon
|
|
// without vfp.
|
|
if (CPUInfoContainsString("vfp") && CPUInfoContainsString("neon")) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
CpuImplementer OS::GetCpuImplementer() {
|
|
static bool use_cached_value = false;
|
|
static CpuImplementer cached_value = UNKNOWN_IMPLEMENTER;
|
|
if (use_cached_value) {
|
|
return cached_value;
|
|
}
|
|
if (CPUInfoContainsString("CPU implementer\t: 0x41")) {
|
|
cached_value = ARM_IMPLEMENTER;
|
|
} else if (CPUInfoContainsString("CPU implementer\t: 0x51")) {
|
|
cached_value = QUALCOMM_IMPLEMENTER;
|
|
} else {
|
|
cached_value = UNKNOWN_IMPLEMENTER;
|
|
}
|
|
use_cached_value = true;
|
|
return cached_value;
|
|
}
|
|
|
|
|
|
CpuPart OS::GetCpuPart(CpuImplementer implementer) {
|
|
static bool use_cached_value = false;
|
|
static CpuPart cached_value = CPU_UNKNOWN;
|
|
if (use_cached_value) {
|
|
return cached_value;
|
|
}
|
|
if (implementer == ARM_IMPLEMENTER) {
|
|
if (CPUInfoContainsString("CPU part\t: 0xc0f")) {
|
|
cached_value = CORTEX_A15;
|
|
} else if (CPUInfoContainsString("CPU part\t: 0xc0c")) {
|
|
cached_value = CORTEX_A12;
|
|
} else if (CPUInfoContainsString("CPU part\t: 0xc09")) {
|
|
cached_value = CORTEX_A9;
|
|
} else if (CPUInfoContainsString("CPU part\t: 0xc08")) {
|
|
cached_value = CORTEX_A8;
|
|
} else if (CPUInfoContainsString("CPU part\t: 0xc07")) {
|
|
cached_value = CORTEX_A7;
|
|
} else if (CPUInfoContainsString("CPU part\t: 0xc05")) {
|
|
cached_value = CORTEX_A5;
|
|
} else {
|
|
cached_value = CPU_UNKNOWN;
|
|
}
|
|
} else {
|
|
cached_value = CPU_UNKNOWN;
|
|
}
|
|
use_cached_value = true;
|
|
return cached_value;
|
|
}
|
|
|
|
|
|
bool OS::ArmUsingHardFloat() {
|
|
// GCC versions 4.6 and above define __ARM_PCS or __ARM_PCS_VFP to specify
|
|
// the Floating Point ABI used (PCS stands for Procedure Call Standard).
|
|
// We use these as well as a couple of other defines to statically determine
|
|
// what FP ABI used.
|
|
// GCC versions 4.4 and below don't support hard-fp.
|
|
// GCC versions 4.5 may support hard-fp without defining __ARM_PCS or
|
|
// __ARM_PCS_VFP.
|
|
|
|
#define GCC_VERSION (__GNUC__ * 10000 \
|
|
+ __GNUC_MINOR__ * 100 \
|
|
+ __GNUC_PATCHLEVEL__)
|
|
#if GCC_VERSION >= 40600
|
|
#if defined(__ARM_PCS_VFP)
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
|
|
#elif GCC_VERSION < 40500
|
|
return false;
|
|
|
|
#else
|
|
#if defined(__ARM_PCS_VFP)
|
|
return true;
|
|
#elif defined(__ARM_PCS) || defined(__SOFTFP) || !defined(__VFP_FP__)
|
|
return false;
|
|
#else
|
|
#error "Your version of GCC does not report the FP ABI compiled for." \
|
|
"Please report it on this issue" \
|
|
"http://code.google.com/p/v8/issues/detail?id=2140"
|
|
|
|
#endif
|
|
#endif
|
|
#undef GCC_VERSION
|
|
}
|
|
|
|
#endif // def __arm__
|
|
|
|
|
|
#ifdef __mips__
|
|
bool OS::MipsCpuHasFeature(CpuFeature feature) {
|
|
const char* search_string = NULL;
|
|
const char* file_name = "/proc/cpuinfo";
|
|
// Simple detection of FPU at runtime for Linux.
|
|
// It is based on /proc/cpuinfo, which reveals hardware configuration
|
|
// to user-space applications. According to MIPS (early 2010), no similar
|
|
// facility is universally available on the MIPS architectures,
|
|
// so it's up to individual OSes to provide such.
|
|
//
|
|
// This is written as a straight shot one pass parser
|
|
// and not using STL string and ifstream because,
|
|
// on Linux, it's reading from a (non-mmap-able)
|
|
// character special device.
|
|
|
|
switch (feature) {
|
|
case FPU:
|
|
search_string = "FPU";
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
|
|
FILE* f = NULL;
|
|
const char* what = search_string;
|
|
|
|
if (NULL == (f = fopen(file_name, "r"))) {
|
|
OS::PrintError("Failed to open /proc/cpuinfo\n");
|
|
return false;
|
|
}
|
|
|
|
int k;
|
|
while (EOF != (k = fgetc(f))) {
|
|
if (k == *what) {
|
|
++what;
|
|
while ((*what != '\0') && (*what == fgetc(f))) {
|
|
++what;
|
|
}
|
|
if (*what == '\0') {
|
|
fclose(f);
|
|
return true;
|
|
} else {
|
|
what = search_string;
|
|
}
|
|
}
|
|
}
|
|
fclose(f);
|
|
|
|
// Did not find string in the proc file.
|
|
return false;
|
|
}
|
|
#endif // def __mips__
|
|
|
|
|
|
const char* OS::LocalTimezone(double time) {
|
|
if (std::isnan(time)) return "";
|
|
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
|
|
struct tm* t = localtime(&tv);
|
|
if (NULL == t) return "";
|
|
return t->tm_zone;
|
|
}
|
|
|
|
|
|
double OS::LocalTimeOffset() {
|
|
time_t tv = time(NULL);
|
|
struct tm* t = localtime(&tv);
|
|
// tm_gmtoff includes any daylight savings offset, so subtract it.
|
|
return static_cast<double>(t->tm_gmtoff * msPerSecond -
|
|
(t->tm_isdst > 0 ? 3600 * msPerSecond : 0));
|
|
}
|
|
|
|
|
|
// We keep the lowest and highest addresses mapped as a quick way of
|
|
// determining that pointers are outside the heap (used mostly in assertions
|
|
// and verification). The estimate is conservative, i.e., not all addresses in
|
|
// 'allocated' space are actually allocated to our heap. The range is
|
|
// [lowest, highest), inclusive on the low and and exclusive on the high end.
|
|
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
|
|
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
|
|
|
|
|
|
static void UpdateAllocatedSpaceLimits(void* address, int size) {
|
|
ASSERT(limit_mutex != NULL);
|
|
ScopedLock lock(limit_mutex);
|
|
|
|
lowest_ever_allocated = Min(lowest_ever_allocated, address);
|
|
highest_ever_allocated =
|
|
Max(highest_ever_allocated,
|
|
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
|
|
}
|
|
|
|
|
|
bool OS::IsOutsideAllocatedSpace(void* address) {
|
|
return address < lowest_ever_allocated || address >= highest_ever_allocated;
|
|
}
|
|
|
|
|
|
void* OS::Allocate(const size_t requested,
|
|
size_t* allocated,
|
|
bool is_executable) {
|
|
const size_t msize = RoundUp(requested, AllocateAlignment());
|
|
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
|
|
void* addr = OS::GetRandomMmapAddr();
|
|
void* mbase = mmap(addr, msize, prot, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (mbase == MAP_FAILED) {
|
|
LOG(i::Isolate::Current(),
|
|
StringEvent("OS::Allocate", "mmap failed"));
|
|
return NULL;
|
|
}
|
|
*allocated = msize;
|
|
UpdateAllocatedSpaceLimits(mbase, msize);
|
|
return mbase;
|
|
}
|
|
|
|
|
|
void OS::DumpBacktrace() {
|
|
// backtrace is a glibc extension.
|
|
#if defined(__GLIBC__) && !defined(__UCLIBC__)
|
|
POSIXBacktraceHelper<backtrace, backtrace_symbols>::DumpBacktrace();
|
|
#endif
|
|
}
|
|
|
|
|
|
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
|
|
public:
|
|
PosixMemoryMappedFile(FILE* file, void* memory, int size)
|
|
: file_(file), memory_(memory), size_(size) { }
|
|
virtual ~PosixMemoryMappedFile();
|
|
virtual void* memory() { return memory_; }
|
|
virtual int size() { return size_; }
|
|
private:
|
|
FILE* file_;
|
|
void* memory_;
|
|
int size_;
|
|
};
|
|
|
|
|
|
OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
|
|
FILE* file = fopen(name, "r+");
|
|
if (file == NULL) return NULL;
|
|
|
|
fseek(file, 0, SEEK_END);
|
|
int size = ftell(file);
|
|
|
|
void* memory =
|
|
mmap(OS::GetRandomMmapAddr(),
|
|
size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_SHARED,
|
|
fileno(file),
|
|
0);
|
|
return new PosixMemoryMappedFile(file, memory, size);
|
|
}
|
|
|
|
|
|
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
|
|
void* initial) {
|
|
FILE* file = fopen(name, "w+");
|
|
if (file == NULL) return NULL;
|
|
int result = fwrite(initial, size, 1, file);
|
|
if (result < 1) {
|
|
fclose(file);
|
|
return NULL;
|
|
}
|
|
void* memory =
|
|
mmap(OS::GetRandomMmapAddr(),
|
|
size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_SHARED,
|
|
fileno(file),
|
|
0);
|
|
return new PosixMemoryMappedFile(file, memory, size);
|
|
}
|
|
|
|
|
|
PosixMemoryMappedFile::~PosixMemoryMappedFile() {
|
|
if (memory_) OS::Free(memory_, size_);
|
|
fclose(file_);
|
|
}
|
|
|
|
|
|
void OS::LogSharedLibraryAddresses() {
|
|
// This function assumes that the layout of the file is as follows:
|
|
// hex_start_addr-hex_end_addr rwxp <unused data> [binary_file_name]
|
|
// If we encounter an unexpected situation we abort scanning further entries.
|
|
FILE* fp = fopen("/proc/self/maps", "r");
|
|
if (fp == NULL) return;
|
|
|
|
// Allocate enough room to be able to store a full file name.
|
|
const int kLibNameLen = FILENAME_MAX + 1;
|
|
char* lib_name = reinterpret_cast<char*>(malloc(kLibNameLen));
|
|
|
|
i::Isolate* isolate = ISOLATE;
|
|
// This loop will terminate once the scanning hits an EOF.
|
|
while (true) {
|
|
uintptr_t start, end;
|
|
char attr_r, attr_w, attr_x, attr_p;
|
|
// Parse the addresses and permission bits at the beginning of the line.
|
|
if (fscanf(fp, "%" V8PRIxPTR "-%" V8PRIxPTR, &start, &end) != 2) break;
|
|
if (fscanf(fp, " %c%c%c%c", &attr_r, &attr_w, &attr_x, &attr_p) != 4) break;
|
|
|
|
int c;
|
|
if (attr_r == 'r' && attr_w != 'w' && attr_x == 'x') {
|
|
// Found a read-only executable entry. Skip characters until we reach
|
|
// the beginning of the filename or the end of the line.
|
|
do {
|
|
c = getc(fp);
|
|
} while ((c != EOF) && (c != '\n') && (c != '/') && (c != '['));
|
|
if (c == EOF) break; // EOF: Was unexpected, just exit.
|
|
|
|
// Process the filename if found.
|
|
if ((c == '/') || (c == '[')) {
|
|
// Push the '/' or '[' back into the stream to be read below.
|
|
ungetc(c, fp);
|
|
|
|
// Read to the end of the line. Exit if the read fails.
|
|
if (fgets(lib_name, kLibNameLen, fp) == NULL) break;
|
|
|
|
// Drop the newline character read by fgets. We do not need to check
|
|
// for a zero-length string because we know that we at least read the
|
|
// '/' or '[' character.
|
|
lib_name[strlen(lib_name) - 1] = '\0';
|
|
} else {
|
|
// No library name found, just record the raw address range.
|
|
snprintf(lib_name, kLibNameLen,
|
|
"%08" V8PRIxPTR "-%08" V8PRIxPTR, start, end);
|
|
}
|
|
LOG(isolate, SharedLibraryEvent(lib_name, start, end));
|
|
} else {
|
|
// Entry not describing executable data. Skip to end of line to set up
|
|
// reading the next entry.
|
|
do {
|
|
c = getc(fp);
|
|
} while ((c != EOF) && (c != '\n'));
|
|
if (c == EOF) break;
|
|
}
|
|
}
|
|
free(lib_name);
|
|
fclose(fp);
|
|
}
|
|
|
|
|
|
void OS::SignalCodeMovingGC() {
|
|
// Support for ll_prof.py.
|
|
//
|
|
// The Linux profiler built into the kernel logs all mmap's with
|
|
// PROT_EXEC so that analysis tools can properly attribute ticks. We
|
|
// do a mmap with a name known by ll_prof.py and immediately munmap
|
|
// it. This injects a GC marker into the stream of events generated
|
|
// by the kernel and allows us to synchronize V8 code log and the
|
|
// kernel log.
|
|
int size = sysconf(_SC_PAGESIZE);
|
|
FILE* f = fopen(FLAG_gc_fake_mmap, "w+");
|
|
if (f == NULL) {
|
|
OS::PrintError("Failed to open %s\n", FLAG_gc_fake_mmap);
|
|
OS::Abort();
|
|
}
|
|
void* addr = mmap(OS::GetRandomMmapAddr(),
|
|
size,
|
|
#if defined(__native_client__)
|
|
// The Native Client port of V8 uses an interpreter,
|
|
// so code pages don't need PROT_EXEC.
|
|
PROT_READ,
|
|
#else
|
|
PROT_READ | PROT_EXEC,
|
|
#endif
|
|
MAP_PRIVATE,
|
|
fileno(f),
|
|
0);
|
|
ASSERT(addr != MAP_FAILED);
|
|
OS::Free(addr, size);
|
|
fclose(f);
|
|
}
|
|
|
|
|
|
int OS::StackWalk(Vector<OS::StackFrame> frames) {
|
|
// backtrace is a glibc extension.
|
|
#if defined(__GLIBC__) && !defined(__UCLIBC__)
|
|
return POSIXBacktraceHelper<backtrace, backtrace_symbols>::StackWalk(frames);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
// Constants used for mmap.
|
|
static const int kMmapFd = -1;
|
|
static const int kMmapFdOffset = 0;
|
|
|
|
|
|
VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
|
|
|
|
|
|
VirtualMemory::VirtualMemory(size_t size)
|
|
: address_(ReserveRegion(size)), size_(size) { }
|
|
|
|
|
|
VirtualMemory::VirtualMemory(size_t size, size_t alignment)
|
|
: address_(NULL), size_(0) {
|
|
ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
|
|
size_t request_size = RoundUp(size + alignment,
|
|
static_cast<intptr_t>(OS::AllocateAlignment()));
|
|
void* reservation = mmap(OS::GetRandomMmapAddr(),
|
|
request_size,
|
|
PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
|
|
kMmapFd,
|
|
kMmapFdOffset);
|
|
if (reservation == MAP_FAILED) return;
|
|
|
|
Address base = static_cast<Address>(reservation);
|
|
Address aligned_base = RoundUp(base, alignment);
|
|
ASSERT_LE(base, aligned_base);
|
|
|
|
// Unmap extra memory reserved before and after the desired block.
|
|
if (aligned_base != base) {
|
|
size_t prefix_size = static_cast<size_t>(aligned_base - base);
|
|
OS::Free(base, prefix_size);
|
|
request_size -= prefix_size;
|
|
}
|
|
|
|
size_t aligned_size = RoundUp(size, OS::AllocateAlignment());
|
|
ASSERT_LE(aligned_size, request_size);
|
|
|
|
if (aligned_size != request_size) {
|
|
size_t suffix_size = request_size - aligned_size;
|
|
OS::Free(aligned_base + aligned_size, suffix_size);
|
|
request_size -= suffix_size;
|
|
}
|
|
|
|
ASSERT(aligned_size == request_size);
|
|
|
|
address_ = static_cast<void*>(aligned_base);
|
|
size_ = aligned_size;
|
|
}
|
|
|
|
|
|
VirtualMemory::~VirtualMemory() {
|
|
if (IsReserved()) {
|
|
bool result = ReleaseRegion(address(), size());
|
|
ASSERT(result);
|
|
USE(result);
|
|
}
|
|
}
|
|
|
|
|
|
bool VirtualMemory::IsReserved() {
|
|
return address_ != NULL;
|
|
}
|
|
|
|
|
|
void VirtualMemory::Reset() {
|
|
address_ = NULL;
|
|
size_ = 0;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
|
|
return CommitRegion(address, size, is_executable);
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Uncommit(void* address, size_t size) {
|
|
return UncommitRegion(address, size);
|
|
}
|
|
|
|
|
|
bool VirtualMemory::Guard(void* address) {
|
|
OS::Guard(address, OS::CommitPageSize());
|
|
return true;
|
|
}
|
|
|
|
|
|
void* VirtualMemory::ReserveRegion(size_t size) {
|
|
void* result = mmap(OS::GetRandomMmapAddr(),
|
|
size,
|
|
PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
|
|
kMmapFd,
|
|
kMmapFdOffset);
|
|
|
|
if (result == MAP_FAILED) return NULL;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
|
|
#if defined(__native_client__)
|
|
// The Native Client port of V8 uses an interpreter,
|
|
// so code pages don't need PROT_EXEC.
|
|
int prot = PROT_READ | PROT_WRITE;
|
|
#else
|
|
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
|
|
#endif
|
|
if (MAP_FAILED == mmap(base,
|
|
size,
|
|
prot,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
|
|
kMmapFd,
|
|
kMmapFdOffset)) {
|
|
return false;
|
|
}
|
|
|
|
UpdateAllocatedSpaceLimits(base, size);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::UncommitRegion(void* base, size_t size) {
|
|
return mmap(base,
|
|
size,
|
|
PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
|
|
kMmapFd,
|
|
kMmapFdOffset) != MAP_FAILED;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
|
|
return munmap(base, size) == 0;
|
|
}
|
|
|
|
|
|
bool VirtualMemory::HasLazyCommits() {
|
|
return true;
|
|
}
|
|
|
|
|
|
class LinuxSemaphore : public Semaphore {
|
|
public:
|
|
explicit LinuxSemaphore(int count) { sem_init(&sem_, 0, count); }
|
|
virtual ~LinuxSemaphore() { sem_destroy(&sem_); }
|
|
|
|
virtual void Wait();
|
|
virtual bool Wait(int timeout);
|
|
virtual void Signal() { sem_post(&sem_); }
|
|
private:
|
|
sem_t sem_;
|
|
};
|
|
|
|
|
|
void LinuxSemaphore::Wait() {
|
|
while (true) {
|
|
int result = sem_wait(&sem_);
|
|
if (result == 0) return; // Successfully got semaphore.
|
|
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef TIMEVAL_TO_TIMESPEC
|
|
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
|
|
(ts)->tv_sec = (tv)->tv_sec; \
|
|
(ts)->tv_nsec = (tv)->tv_usec * 1000; \
|
|
} while (false)
|
|
#endif
|
|
|
|
|
|
bool LinuxSemaphore::Wait(int timeout) {
|
|
const long kOneSecondMicros = 1000000; // NOLINT
|
|
|
|
// Split timeout into second and nanosecond parts.
|
|
struct timeval delta;
|
|
delta.tv_usec = timeout % kOneSecondMicros;
|
|
delta.tv_sec = timeout / kOneSecondMicros;
|
|
|
|
struct timeval current_time;
|
|
// Get the current time.
|
|
if (gettimeofday(¤t_time, NULL) == -1) {
|
|
return false;
|
|
}
|
|
|
|
// Calculate time for end of timeout.
|
|
struct timeval end_time;
|
|
timeradd(¤t_time, &delta, &end_time);
|
|
|
|
struct timespec ts;
|
|
TIMEVAL_TO_TIMESPEC(&end_time, &ts);
|
|
// Wait for semaphore signalled or timeout.
|
|
while (true) {
|
|
int result = sem_timedwait(&sem_, &ts);
|
|
if (result == 0) return true; // Successfully got semaphore.
|
|
if (result > 0) {
|
|
// For glibc prior to 2.3.4 sem_timedwait returns the error instead of -1.
|
|
errno = result;
|
|
result = -1;
|
|
}
|
|
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
|
|
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
|
|
}
|
|
}
|
|
|
|
|
|
Semaphore* OS::CreateSemaphore(int count) {
|
|
return new LinuxSemaphore(count);
|
|
}
|
|
|
|
|
|
void OS::SetUp() {
|
|
// Seed the random number generator. We preserve microsecond resolution.
|
|
uint64_t seed = Ticks() ^ (getpid() << 16);
|
|
srandom(static_cast<unsigned int>(seed));
|
|
limit_mutex = CreateMutex();
|
|
}
|
|
|
|
|
|
void OS::TearDown() {
|
|
delete limit_mutex;
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|