v8/test/cctest/test-macro-assembler-loong64.cc
Zhao Jiazhong 017c12b3c5 [loong64] Optimize GenerateSwitchTable
We should use pc relative branch instruction rather than loading
target address from memory for better performance.

Besides, just like arm64, currently we assume that none of our
relocation types are pc relative pointing outside the code buffer
nor pc absolute pointing inside the code buffer.

Change-Id: I9cce2e79c0afb00af967638405469f65df1deda2
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3147314
Reviewed-by: Liu yu <liuyu@loongson.cn>
Commit-Queue: Liu yu <liuyu@loongson.cn>
Cr-Commit-Position: refs/heads/main@{#76721}
2021-09-08 10:41:51 +00:00

2917 lines
99 KiB
C++

// Copyright 2021 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <stdlib.h>
#include <iostream>
#include "src/base/utils/random-number-generator.h"
#include "src/codegen/assembler-inl.h"
#include "src/codegen/macro-assembler.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/simulator.h"
#include "src/init/v8.h"
#include "src/objects/objects-inl.h"
#include "src/utils/ostreams.h"
#include "test/cctest/cctest.h"
#include "test/common/assembler-tester.h"
namespace v8 {
namespace internal {
// TODO(LOONG64): Refine these signatures per test case.
using FV = void*(int64_t x, int64_t y, int p2, int p3, int p4);
using F1 = void*(int x, int p1, int p2, int p3, int p4);
using F2 = void*(int x, int y, int p2, int p3, int p4);
using F3 = void*(void* p, int p1, int p2, int p3, int p4);
using F4 = void*(void* p0, void* p1, int p2, int p3, int p4);
#define __ masm->
TEST(BYTESWAP) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
struct T {
uint64_t s8;
uint64_t s4;
uint64_t s2;
uint64_t u4;
uint64_t u2;
};
T t;
// clang-format off
uint64_t test_values[] = {0x5612FFCD9D327ACC,
0x781A15C3,
0xFCDE,
0x9F,
0xC81A15C3,
0x8000000000000000,
0xFFFFFFFFFFFFFFFF,
0x0000000080000000,
0x0000000000008000};
// clang-format on
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ Ld_d(a4, MemOperand(a0, offsetof(T, s8)));
__ ByteSwapSigned(a4, a4, 8);
__ St_d(a4, MemOperand(a0, offsetof(T, s8)));
__ Ld_d(a4, MemOperand(a0, offsetof(T, s4)));
__ ByteSwapSigned(a4, a4, 4);
__ St_d(a4, MemOperand(a0, offsetof(T, s4)));
__ Ld_d(a4, MemOperand(a0, offsetof(T, s2)));
__ ByteSwapSigned(a4, a4, 2);
__ St_d(a4, MemOperand(a0, offsetof(T, s2)));
__ Ld_d(a4, MemOperand(a0, offsetof(T, u4)));
__ ByteSwapSigned(a4, a4, 4);
__ St_d(a4, MemOperand(a0, offsetof(T, u4)));
__ Ld_d(a4, MemOperand(a0, offsetof(T, u2)));
__ ByteSwapSigned(a4, a4, 2);
__ St_d(a4, MemOperand(a0, offsetof(T, u2)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
for (size_t i = 0; i < arraysize(test_values); i++) {
int32_t in_s4 = static_cast<int32_t>(test_values[i]);
int16_t in_s2 = static_cast<int16_t>(test_values[i]);
uint32_t in_u4 = static_cast<uint32_t>(test_values[i]);
uint16_t in_u2 = static_cast<uint16_t>(test_values[i]);
t.s8 = test_values[i];
t.s4 = static_cast<uint64_t>(in_s4);
t.s2 = static_cast<uint64_t>(in_s2);
t.u4 = static_cast<uint64_t>(in_u4);
t.u2 = static_cast<uint64_t>(in_u2);
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(ByteReverse<uint64_t>(test_values[i]), t.s8);
CHECK_EQ(ByteReverse<int32_t>(in_s4), static_cast<int32_t>(t.s4));
CHECK_EQ(ByteReverse<int16_t>(in_s2), static_cast<int16_t>(t.s2));
CHECK_EQ(ByteReverse<uint32_t>(in_u4), static_cast<uint32_t>(t.u4));
CHECK_EQ(ByteReverse<uint16_t>(in_u2), static_cast<uint16_t>(t.u2));
}
}
TEST(LoadConstants) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
int64_t refConstants[64];
int64_t result[64];
int64_t mask = 1;
for (int i = 0; i < 64; i++) {
refConstants[i] = ~(mask << i);
}
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ or_(a4, a0, zero_reg);
for (int i = 0; i < 64; i++) {
// Load constant.
__ li(a5, Operand(refConstants[i]));
__ St_d(a5, MemOperand(a4, zero_reg));
__ Add_d(a4, a4, Operand(kPointerSize));
}
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<FV>::FromCode(*code);
(void)f.Call(reinterpret_cast<int64_t>(result), 0, 0, 0, 0);
// Check results.
for (int i = 0; i < 64; i++) {
CHECK(refConstants[i] == result[i]);
}
}
TEST(jump_tables4) {
// Similar to test-assembler-loong64 jump_tables1, with extra test for branch
// trampoline required before emission of the dd table (where trampolines are
// blocked), and proper transition to long-branch mode.
// Regression test for v8:4294.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
Label near_start, end, done;
__ Push(ra);
__ xor_(a2, a2, a2);
__ Branch(&end);
__ bind(&near_start);
for (int i = 0; i < 32768 - 256; ++i) {
__ Add_d(a2, a2, 1);
}
__ GenerateSwitchTable(a0, kNumCases,
[&labels](size_t i) { return labels + i; });
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ li(a2, values[i]);
__ Branch(&done);
}
__ bind(&done);
__ Pop(ra);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
__ bind(&end);
__ Branch(&near_start);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F1>::FromCode(*code);
for (int i = 0; i < kNumCases; ++i) {
int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0));
::printf("f(%d) = %" PRId64 "\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(jump_tables6) {
// Similar to test-assembler-loong64 jump_tables1, with extra test for branch
// trampoline required after emission of the dd table (where trampolines are
// blocked). This test checks if number of really generated instructions is
// greater than number of counted instructions from code, as we are expecting
// generation of trampoline in this case
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
const int kSwitchTableCases = 80;
const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize;
const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize;
const int kMaxOffsetForTrampolineStart =
kMaxBranchOffset - 16 * kTrampolineSlotsSize;
const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) -
(kSwitchTablePrologueSize + kSwitchTableCases) - 20;
int values[kSwitchTableCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kSwitchTableCases];
Label near_start, end, done;
__ Push(ra);
__ xor_(a2, a2, a2);
int offs1 = masm->pc_offset();
int gen_insn = 0;
__ Branch(&end);
gen_insn += 1;
__ bind(&near_start);
for (int i = 0; i < kFillInstr; ++i) {
__ Add_d(a2, a2, 1);
}
gen_insn += kFillInstr;
__ GenerateSwitchTable(a0, kSwitchTableCases,
[&labels](size_t i) { return labels + i; });
gen_insn += (kSwitchTablePrologueSize + kSwitchTableCases);
for (int i = 0; i < kSwitchTableCases; ++i) {
__ bind(&labels[i]);
__ li(a2, values[i]);
__ Branch(&done);
}
gen_insn += 3 * kSwitchTableCases;
// If offset from here to first branch instr is greater than max allowed
// offset for trampoline ...
CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1);
// ... number of generated instructions must be greater then "gen_insn",
// as we are expecting trampoline generation
CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize);
__ bind(&done);
__ Pop(ra);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
__ bind(&end);
__ Branch(&near_start);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F1>::FromCode(*code);
for (int i = 0; i < kSwitchTableCases; ++i) {
int64_t res = reinterpret_cast<int64_t>(f.Call(i, 0, 0, 0, 0));
::printf("f(%d) = %" PRId64 "\n", i, res);
CHECK_EQ(values[i], res);
}
}
static uint64_t run_alsl_w(uint32_t rj, uint32_t rk, int8_t sa) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ Alsl_w(a2, a0, a1, sa);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
assembler.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F1>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(rj, rk, 0, 0, 0));
return res;
}
TEST(ALSL_W) {
CcTest::InitializeVM();
struct TestCaseAlsl {
int32_t rj;
int32_t rk;
uint8_t sa;
uint64_t expected_res;
};
// clang-format off
struct TestCaseAlsl tc[] = {// rj, rk, sa, expected_res
{0x1, 0x4, 1, 0x6},
{0x1, 0x4, 2, 0x8},
{0x1, 0x4, 3, 0xC},
{0x1, 0x4, 4, 0x14},
{0x1, 0x4, 5, 0x24},
{0x1, 0x0, 1, 0x2},
{0x1, 0x0, 2, 0x4},
{0x1, 0x0, 3, 0x8},
{0x1, 0x0, 4, 0x10},
{0x1, 0x0, 5, 0x20},
{0x0, 0x4, 1, 0x4},
{0x0, 0x4, 2, 0x4},
{0x0, 0x4, 3, 0x4},
{0x0, 0x4, 4, 0x4},
{0x0, 0x4, 5, 0x4},
// Shift overflow.
{INT32_MAX, 0x4, 1, 0x2},
{INT32_MAX >> 1, 0x4, 2, 0x0},
{INT32_MAX >> 2, 0x4, 3, 0xFFFFFFFFFFFFFFFC},
{INT32_MAX >> 3, 0x4, 4, 0xFFFFFFFFFFFFFFF4},
{INT32_MAX >> 4, 0x4, 5, 0xFFFFFFFFFFFFFFE4},
// Signed addition overflow.
{0x1, INT32_MAX - 1, 1, 0xFFFFFFFF80000000},
{0x1, INT32_MAX - 3, 2, 0xFFFFFFFF80000000},
{0x1, INT32_MAX - 7, 3, 0xFFFFFFFF80000000},
{0x1, INT32_MAX - 15, 4, 0xFFFFFFFF80000000},
{0x1, INT32_MAX - 31, 5, 0xFFFFFFFF80000000},
// Addition overflow.
{0x1, -2, 1, 0x0},
{0x1, -4, 2, 0x0},
{0x1, -8, 3, 0x0},
{0x1, -16, 4, 0x0},
{0x1, -32, 5, 0x0}};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlsl);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_alsl_w(tc[i].rj, tc[i].rk, tc[i].sa);
PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Alsl_w(a0, %x, %x, %hhu)\n",
tc[i].expected_res, res, tc[i].rj, tc[i].rk, tc[i].sa);
CHECK_EQ(tc[i].expected_res, res);
}
}
static uint64_t run_alsl_d(uint64_t rj, uint64_t rk, int8_t sa) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ Alsl_d(a2, a0, a1, sa);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
assembler.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<FV>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(rj, rk, 0, 0, 0));
return res;
}
TEST(ALSL_D) {
CcTest::InitializeVM();
struct TestCaseAlsl {
int64_t rj;
int64_t rk;
uint8_t sa;
uint64_t expected_res;
};
// clang-format off
struct TestCaseAlsl tc[] = {// rj, rk, sa, expected_res
{0x1, 0x4, 1, 0x6},
{0x1, 0x4, 2, 0x8},
{0x1, 0x4, 3, 0xC},
{0x1, 0x4, 4, 0x14},
{0x1, 0x4, 5, 0x24},
{0x1, 0x0, 1, 0x2},
{0x1, 0x0, 2, 0x4},
{0x1, 0x0, 3, 0x8},
{0x1, 0x0, 4, 0x10},
{0x1, 0x0, 5, 0x20},
{0x0, 0x4, 1, 0x4},
{0x0, 0x4, 2, 0x4},
{0x0, 0x4, 3, 0x4},
{0x0, 0x4, 4, 0x4},
{0x0, 0x4, 5, 0x4},
// Shift overflow.
{INT64_MAX, 0x4, 1, 0x2},
{INT64_MAX >> 1, 0x4, 2, 0x0},
{INT64_MAX >> 2, 0x4, 3, 0xFFFFFFFFFFFFFFFC},
{INT64_MAX >> 3, 0x4, 4, 0xFFFFFFFFFFFFFFF4},
{INT64_MAX >> 4, 0x4, 5, 0xFFFFFFFFFFFFFFE4},
// Signed addition overflow.
{0x1, INT64_MAX - 1, 1, 0x8000000000000000},
{0x1, INT64_MAX - 3, 2, 0x8000000000000000},
{0x1, INT64_MAX - 7, 3, 0x8000000000000000},
{0x1, INT64_MAX - 15, 4, 0x8000000000000000},
{0x1, INT64_MAX - 31, 5, 0x8000000000000000},
// Addition overflow.
{0x1, -2, 1, 0x0},
{0x1, -4, 2, 0x0},
{0x1, -8, 3, 0x0},
{0x1, -16, 4, 0x0},
{0x1, -32, 5, 0x0}};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlsl);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t res = run_alsl_d(tc[i].rj, tc[i].rk, tc[i].sa);
PrintF("0x%" PRIx64 " =? 0x%" PRIx64 " == Dlsa(v0, %" PRIx64 ", %" PRIx64
", %hhu)\n",
tc[i].expected_res, res, tc[i].rj, tc[i].rk, tc[i].sa);
CHECK_EQ(tc[i].expected_res, res);
}
}
// clang-format off
static const std::vector<uint32_t> ffint_ftintrz_uint32_test_values() {
static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00FFFF00,
0x7FFFFFFF, 0x80000000, 0x80000001,
0x80FFFF00, 0x8FFFFFFF, 0xFFFFFFFF};
return std::vector<uint32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> ffint_ftintrz_int32_test_values() {
static const int32_t kValues[] = {
static_cast<int32_t>(0x00000000), static_cast<int32_t>(0x00000001),
static_cast<int32_t>(0x00FFFF00), static_cast<int32_t>(0x7FFFFFFF),
static_cast<int32_t>(0x80000000), static_cast<int32_t>(0x80000001),
static_cast<int32_t>(0x80FFFF00), static_cast<int32_t>(0x8FFFFFFF),
static_cast<int32_t>(0xFFFFFFFF)};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<uint64_t> ffint_ftintrz_uint64_test_values() {
static const uint64_t kValues[] = {
0x0000000000000000, 0x0000000000000001, 0x0000FFFFFFFF0000,
0x7FFFFFFFFFFFFFFF, 0x8000000000000000, 0x8000000000000001,
0x8000FFFFFFFF0000, 0x8FFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF};
return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int64_t> ffint_ftintrz_int64_test_values() {
static const int64_t kValues[] = {static_cast<int64_t>(0x0000000000000000),
static_cast<int64_t>(0x0000000000000001),
static_cast<int64_t>(0x0000FFFFFFFF0000),
static_cast<int64_t>(0x7FFFFFFFFFFFFFFF),
static_cast<int64_t>(0x8000000000000000),
static_cast<int64_t>(0x8000000000000001),
static_cast<int64_t>(0x8000FFFFFFFF0000),
static_cast<int64_t>(0x8FFFFFFFFFFFFFFF),
static_cast<int64_t>(0xFFFFFFFFFFFFFFFF)};
return std::vector<int64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
// clang-off on
// Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... }
#define FOR_INPUTS(ctype, itype, var, test_vector) \
std::vector<ctype> var##_vec = test_vector(); \
for (std::vector<ctype>::iterator var = var##_vec.begin(); \
var != var##_vec.end(); ++var)
#define FOR_INPUTS2(ctype, itype, var, var2, test_vector) \
std::vector<ctype> var##_vec = test_vector(); \
std::vector<ctype>::iterator var; \
std::vector<ctype>::reverse_iterator var2; \
for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \
var != var##_vec.end(); ++var, ++var2)
#define FOR_ENUM_INPUTS(var, type, test_vector) \
FOR_INPUTS(enum type, type, var, test_vector)
#define FOR_STRUCT_INPUTS(var, type, test_vector) \
FOR_INPUTS(struct type, type, var, test_vector)
#define FOR_INT32_INPUTS(var, test_vector) \
FOR_INPUTS(int32_t, int32, var, test_vector)
#define FOR_INT32_INPUTS2(var, var2, test_vector) \
FOR_INPUTS2(int32_t, int32, var, var2, test_vector)
#define FOR_INT64_INPUTS(var, test_vector) \
FOR_INPUTS(int64_t, int64, var, test_vector)
#define FOR_UINT32_INPUTS(var, test_vector) \
FOR_INPUTS(uint32_t, uint32, var, test_vector)
#define FOR_UINT64_INPUTS(var, test_vector) \
FOR_INPUTS(uint64_t, uint64, var, test_vector)
template <typename RET_TYPE, typename IN_TYPE, typename Func>
RET_TYPE run_CVT(IN_TYPE x, Func GenerateConvertInstructionFunc) {
using F_CVT = RET_TYPE(IN_TYPE x0, int x1, int x2, int x3, int x4);
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assm;
GenerateConvertInstructionFunc(masm);
__ movfr2gr_d(a2, f9);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code = Factory::CodeBuilder(isolate, desc,
CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F_CVT>::FromCode(*code);
return reinterpret_cast<RET_TYPE>(f.Call(x, 0, 0, 0, 0));
}
TEST(Ffint_s_uw_Ftintrz_uw_s) {
CcTest::InitializeVM();
FOR_UINT32_INPUTS(i, ffint_ftintrz_uint32_test_values) {
uint32_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ Ffint_s_uw(f8, a0);
__ movgr2frh_w(f9, zero_reg);
__ Ftintrz_uw_s(f9, f8, f10);
};
CHECK_EQ(static_cast<float>(input), run_CVT<uint32_t>(input, fn));
}
}
TEST(Ffint_s_ul_Ftintrz_ul_s) {
CcTest::InitializeVM();
FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) {
uint64_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ Ffint_s_ul(f8, a0);
__ Ftintrz_ul_s(f9, f8, f10, a2);
};
CHECK_EQ(static_cast<float>(input), run_CVT<uint64_t>(input, fn));
}
}
TEST(Ffint_d_uw_Ftintrz_uw_d) {
CcTest::InitializeVM();
FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) {
uint32_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ Ffint_d_uw(f8, a0);
__ movgr2frh_w(f9, zero_reg);
__ Ftintrz_uw_d(f9, f8, f10);
};
CHECK_EQ(static_cast<double>(input), run_CVT<uint32_t>(input, fn));
}
}
TEST(Ffint_d_ul_Ftintrz_ul_d) {
CcTest::InitializeVM();
FOR_UINT64_INPUTS(i, ffint_ftintrz_uint64_test_values) {
uint64_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ Ffint_d_ul(f8, a0);
__ Ftintrz_ul_d(f9, f8, f10, a2);
};
CHECK_EQ(static_cast<double>(input), run_CVT<uint64_t>(input, fn));
}
}
TEST(Ffint_d_l_Ftintrz_l_ud) {
CcTest::InitializeVM();
FOR_INT64_INPUTS(i, ffint_ftintrz_int64_test_values) {
int64_t input = *i;
uint64_t abs_input = (input < 0) ? -input : input;
auto fn = [](MacroAssembler* masm) {
__ movgr2fr_d(f8, a0);
__ ffint_d_l(f10, f8);
__ Ftintrz_l_ud(f9, f10, f11);
};
CHECK_EQ(static_cast<double>(abs_input), run_CVT<uint64_t>(input, fn));
}
}
TEST(ffint_d_l_Ftint_l_d) {
CcTest::InitializeVM();
FOR_INT64_INPUTS(i, ffint_ftintrz_int64_test_values) {
int64_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ movgr2fr_d(f8, a0);
__ ffint_d_l(f10, f8);
__ Ftintrz_l_d(f9, f10);
};
CHECK_EQ(static_cast<double>(input), run_CVT<int64_t>(input, fn));
}
}
TEST(ffint_d_w_Ftint_w_d) {
CcTest::InitializeVM();
FOR_INT32_INPUTS(i, ffint_ftintrz_int32_test_values) {
int32_t input = *i;
auto fn = [](MacroAssembler* masm) {
__ movgr2fr_w(f8, a0);
__ ffint_d_w(f10, f8);
__ Ftintrz_w_d(f9, f10);
__ movfr2gr_s(a4, f9);
__ movgr2fr_d(f9, a4);
};
CHECK_EQ(static_cast<double>(input), run_CVT<int64_t>(input, fn));
}
}
static const std::vector<int64_t> overflow_int64_test_values() {
// clang-format off
static const int64_t kValues[] = {static_cast<int64_t>(0xF000000000000000),
static_cast<int64_t>(0x0000000000000001),
static_cast<int64_t>(0xFF00000000000000),
static_cast<int64_t>(0x0000F00111111110),
static_cast<int64_t>(0x0F00001000000000),
static_cast<int64_t>(0x991234AB12A96731),
static_cast<int64_t>(0xB0FFFF0F0F0F0F01),
static_cast<int64_t>(0x00006FFFFFFFFFFF),
static_cast<int64_t>(0xFFFFFFFFFFFFFFFF)};
// clang-format on
return std::vector<int64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
TEST(OverflowInstructions) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
struct T {
int64_t lhs;
int64_t rhs;
int64_t output_add1;
int64_t output_add2;
int64_t output_sub1;
int64_t output_sub2;
int64_t output_mul1;
int64_t output_mul2;
int64_t overflow_add1;
int64_t overflow_add2;
int64_t overflow_sub1;
int64_t overflow_sub2;
int64_t overflow_mul1;
int64_t overflow_mul2;
};
T t;
FOR_INT64_INPUTS(i, overflow_int64_test_values) {
FOR_INT64_INPUTS(j, overflow_int64_test_values) {
int64_t ii = *i;
int64_t jj = *j;
int64_t expected_add, expected_sub;
int32_t ii32 = static_cast<int32_t>(ii);
int32_t jj32 = static_cast<int32_t>(jj);
int32_t expected_mul;
int64_t expected_add_ovf, expected_sub_ovf, expected_mul_ovf;
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ ld_d(t0, a0, offsetof(T, lhs));
__ ld_d(t1, a0, offsetof(T, rhs));
__ AddOverflow_d(t2, t0, Operand(t1), t3);
__ st_d(t2, a0, offsetof(T, output_add1));
__ st_d(t3, a0, offsetof(T, overflow_add1));
__ or_(t3, zero_reg, zero_reg);
__ AddOverflow_d(t0, t0, Operand(t1), t3);
__ st_d(t0, a0, offsetof(T, output_add2));
__ st_d(t3, a0, offsetof(T, overflow_add2));
__ ld_d(t0, a0, offsetof(T, lhs));
__ ld_d(t1, a0, offsetof(T, rhs));
__ SubOverflow_d(t2, t0, Operand(t1), t3);
__ st_d(t2, a0, offsetof(T, output_sub1));
__ st_d(t3, a0, offsetof(T, overflow_sub1));
__ or_(t3, zero_reg, zero_reg);
__ SubOverflow_d(t0, t0, Operand(t1), t3);
__ st_d(t0, a0, offsetof(T, output_sub2));
__ st_d(t3, a0, offsetof(T, overflow_sub2));
__ ld_d(t0, a0, offsetof(T, lhs));
__ ld_d(t1, a0, offsetof(T, rhs));
__ slli_w(t0, t0, 0);
__ slli_w(t1, t1, 0);
__ MulOverflow_w(t2, t0, Operand(t1), t3);
__ st_d(t2, a0, offsetof(T, output_mul1));
__ st_d(t3, a0, offsetof(T, overflow_mul1));
__ or_(t3, zero_reg, zero_reg);
__ MulOverflow_w(t0, t0, Operand(t1), t3);
__ st_d(t0, a0, offsetof(T, output_mul2));
__ st_d(t3, a0, offsetof(T, overflow_mul2));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
t.lhs = ii;
t.rhs = jj;
f.Call(&t, 0, 0, 0, 0);
expected_add_ovf = base::bits::SignedAddOverflow64(ii, jj, &expected_add);
expected_sub_ovf = base::bits::SignedSubOverflow64(ii, jj, &expected_sub);
expected_mul_ovf =
base::bits::SignedMulOverflow32(ii32, jj32, &expected_mul);
CHECK_EQ(expected_add_ovf, t.overflow_add1 < 0);
CHECK_EQ(expected_sub_ovf, t.overflow_sub1 < 0);
CHECK_EQ(expected_mul_ovf, t.overflow_mul1 != 0);
CHECK_EQ(t.overflow_add1, t.overflow_add2);
CHECK_EQ(t.overflow_sub1, t.overflow_sub2);
CHECK_EQ(t.overflow_mul1, t.overflow_mul2);
CHECK_EQ(expected_add, t.output_add1);
CHECK_EQ(expected_add, t.output_add2);
CHECK_EQ(expected_sub, t.output_sub1);
CHECK_EQ(expected_sub, t.output_sub2);
if (!expected_mul_ovf) {
CHECK_EQ(expected_mul, t.output_mul1);
CHECK_EQ(expected_mul, t.output_mul2);
}
}
}
}
TEST(min_max_nan) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct TestFloat {
double a;
double b;
double c;
double d;
float e;
float f;
float g;
float h;
};
TestFloat test;
const double dnan = std::numeric_limits<double>::quiet_NaN();
const double dinf = std::numeric_limits<double>::infinity();
const double dminf = -std::numeric_limits<double>::infinity();
const float fnan = std::numeric_limits<float>::quiet_NaN();
const float finf = std::numeric_limits<float>::infinity();
const float fminf = -std::numeric_limits<float>::infinity();
const int kTableLength = 13;
// clang-format off
double inputsa[kTableLength] = {dnan, 3.0, -0.0, 0.0, 42.0, dinf, dminf,
dinf, dnan, 3.0, dinf, dnan, dnan};
double inputsb[kTableLength] = {dnan, 2.0, 0.0, -0.0, dinf, 42.0, dinf,
dminf, 3.0, dnan, dnan, dinf, dnan};
double outputsdmin[kTableLength] = {dnan, 2.0, -0.0, -0.0, 42.0,
42.0, dminf, dminf, dnan, dnan,
dnan, dnan, dnan};
double outputsdmax[kTableLength] = {dnan, 3.0, 0.0, 0.0, dinf, dinf, dinf,
dinf, dnan, dnan, dnan, dnan, dnan};
float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, finf, fminf,
finf, fnan, 3.0, finf, fnan, fnan};
float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, finf, 42.0, finf,
fminf, 3.0, fnan, fnan, finf, fnan};
float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, fminf,
fminf, fnan, fnan, fnan, fnan, fnan};
float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, finf, finf, finf,
finf, fnan, fnan, fnan, fnan, fnan};
// clang-format on
auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) {
__ bind(nan);
__ LoadRoot(t8, RootIndex::kNanValue);
__ Fld_d(dst, FieldMemOperand(t8, HeapNumber::kValueOffset));
__ Branch(back);
};
auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) {
__ bind(nan);
__ Move(dst, fnan);
__ Branch(back);
};
Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan;
Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan;
__ Push(s6);
__ InitializeRootRegister();
__ Fld_d(f8, MemOperand(a0, offsetof(TestFloat, a)));
__ Fld_d(f9, MemOperand(a0, offsetof(TestFloat, b)));
__ Fld_s(f10, MemOperand(a0, offsetof(TestFloat, e)));
__ Fld_s(f11, MemOperand(a0, offsetof(TestFloat, f)));
__ Float64Min(f12, f8, f9, &handle_mind_nan);
__ bind(&back_mind_nan);
__ Float64Max(f13, f8, f9, &handle_maxd_nan);
__ bind(&back_maxd_nan);
__ Float32Min(f14, f10, f11, &handle_mins_nan);
__ bind(&back_mins_nan);
__ Float32Max(f15, f10, f11, &handle_maxs_nan);
__ bind(&back_maxs_nan);
__ Fst_d(f12, MemOperand(a0, offsetof(TestFloat, c)));
__ Fst_d(f13, MemOperand(a0, offsetof(TestFloat, d)));
__ Fst_s(f14, MemOperand(a0, offsetof(TestFloat, g)));
__ Fst_s(f15, MemOperand(a0, offsetof(TestFloat, h)));
__ Pop(s6);
__ jirl(zero_reg, ra, 0);
handle_dnan(f12, &handle_mind_nan, &back_mind_nan);
handle_dnan(f13, &handle_maxd_nan, &back_maxd_nan);
handle_snan(f14, &handle_mins_nan, &back_mins_nan);
handle_snan(f15, &handle_maxs_nan, &back_maxs_nan);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 0; i < kTableLength; i++) {
test.a = inputsa[i];
test.b = inputsb[i];
test.e = inputse[i];
test.f = inputsf[i];
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c)));
CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d)));
CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g)));
CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h)));
}
}
template <typename IN_TYPE, typename Func>
bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset,
IN_TYPE value, Func GenerateUnalignedInstructionFunc) {
using F_CVT = int32_t(char* x0, int x1, int x2, int x3, int x4);
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assm;
IN_TYPE res;
GenerateUnalignedInstructionFunc(masm, in_offset, out_offset);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F_CVT>::FromCode(*code);
MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE));
f.Call(memory_buffer, 0, 0, 0, 0);
MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE));
return res == value;
}
static const std::vector<uint64_t> unsigned_test_values() {
// clang-format off
static const uint64_t kValues[] = {
0x2180F18A06384414, 0x000A714532102277, 0xBC1ACCCF180649F0,
0x8000000080008000, 0x0000000000000001, 0xFFFFFFFFFFFFFFFF,
};
// clang-format on
return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> unsigned_test_offset() {
static const int32_t kValues[] = {// value, offset
-132 * KB, -21 * KB, 0, 19 * KB, 135 * KB};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
static const std::vector<int32_t> unsigned_test_offset_increment() {
static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5};
return std::vector<int32_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
TEST(Ld_b) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_b(a2, MemOperand(a0, in_offset));
__ St_b(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint8_t>(buffer_middle, in_offset,
out_offset, value, fn_1));
auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_b(a0, MemOperand(a0, in_offset));
__ St_b(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint8_t>(buffer_middle, in_offset,
out_offset, value, fn_2));
auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_bu(a0, MemOperand(a0, in_offset));
__ St_b(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint8_t>(buffer_middle, in_offset,
out_offset, value, fn_3));
auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_bu(a2, MemOperand(a0, in_offset));
__ St_b(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint8_t>(buffer_middle, in_offset,
out_offset, value, fn_4));
}
}
}
}
TEST(Ld_b_bitextension) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
Label success, fail, end, different;
__ Ld_b(t0, MemOperand(a0, in_offset));
__ Ld_bu(t1, MemOperand(a0, in_offset));
__ Branch(&different, ne, t0, Operand(t1));
// If signed and unsigned values are same, check
// the upper bits to see if they are zero
__ srai_w(t0, t0, 7);
__ Branch(&success, eq, t0, Operand(zero_reg));
__ Branch(&fail);
// If signed and unsigned values are different,
// check that the upper bits are complementary
__ bind(&different);
__ srai_w(t1, t1, 7);
__ Branch(&fail, ne, t1, Operand(1));
__ srai_w(t0, t0, 7);
__ addi_d(t0, t0, 1);
__ Branch(&fail, ne, t0, Operand(zero_reg));
// Fall through to success
__ bind(&success);
__ Ld_b(t0, MemOperand(a0, in_offset));
__ St_b(t0, MemOperand(a0, out_offset));
__ Branch(&end);
__ bind(&fail);
__ St_b(zero_reg, MemOperand(a0, out_offset));
__ bind(&end);
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint8_t>(buffer_middle, in_offset,
out_offset, value, fn));
}
}
}
}
TEST(Ld_h) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_h(a2, MemOperand(a0, in_offset));
__ St_h(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
out_offset, value, fn_1));
auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_h(a0, MemOperand(a0, in_offset));
__ St_h(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
out_offset, value, fn_2));
auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_hu(a0, MemOperand(a0, in_offset));
__ St_h(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
out_offset, value, fn_3));
auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_hu(a2, MemOperand(a0, in_offset));
__ St_h(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
out_offset, value, fn_4));
}
}
}
}
TEST(Ld_h_bitextension) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint16_t value = static_cast<uint64_t>(*i & 0xFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
Label success, fail, end, different;
__ Ld_h(t0, MemOperand(a0, in_offset));
__ Ld_hu(t1, MemOperand(a0, in_offset));
__ Branch(&different, ne, t0, Operand(t1));
// If signed and unsigned values are same, check
// the upper bits to see if they are zero
__ srai_w(t0, t0, 15);
__ Branch(&success, eq, t0, Operand(zero_reg));
__ Branch(&fail);
// If signed and unsigned values are different,
// check that the upper bits are complementary
__ bind(&different);
__ srai_w(t1, t1, 15);
__ Branch(&fail, ne, t1, Operand(1));
__ srai_w(t0, t0, 15);
__ addi_d(t0, t0, 1);
__ Branch(&fail, ne, t0, Operand(zero_reg));
// Fall through to success
__ bind(&success);
__ Ld_h(t0, MemOperand(a0, in_offset));
__ St_h(t0, MemOperand(a0, out_offset));
__ Branch(&end);
__ bind(&fail);
__ St_h(zero_reg, MemOperand(a0, out_offset));
__ bind(&end);
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint16_t>(buffer_middle, in_offset,
out_offset, value, fn));
}
}
}
}
TEST(Ld_w) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_w(a2, MemOperand(a0, in_offset));
__ St_w(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
out_offset, value, fn_1));
auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_w(a0, MemOperand(a0, in_offset));
__ St_w(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true,
run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
(uint32_t)value, fn_2));
auto fn_3 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_wu(a2, MemOperand(a0, in_offset));
__ St_w(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
out_offset, value, fn_3));
auto fn_4 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_wu(a0, MemOperand(a0, in_offset));
__ St_w(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true,
run_Unaligned<uint32_t>(buffer_middle, in_offset, out_offset,
(uint32_t)value, fn_4));
}
}
}
}
TEST(Ld_w_extension) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint32_t value = static_cast<uint32_t>(*i & 0xFFFFFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
Label success, fail, end, different;
__ Ld_w(t0, MemOperand(a0, in_offset));
__ Ld_wu(t1, MemOperand(a0, in_offset));
__ Branch(&different, ne, t0, Operand(t1));
// If signed and unsigned values are same, check
// the upper bits to see if they are zero
__ srai_d(t0, t0, 31);
__ Branch(&success, eq, t0, Operand(zero_reg));
__ Branch(&fail);
// If signed and unsigned values are different,
// check that the upper bits are complementary
__ bind(&different);
__ srai_d(t1, t1, 31);
__ Branch(&fail, ne, t1, Operand(1));
__ srai_d(t0, t0, 31);
__ addi_d(t0, t0, 1);
__ Branch(&fail, ne, t0, Operand(zero_reg));
// Fall through to success
__ bind(&success);
__ Ld_w(t0, MemOperand(a0, in_offset));
__ St_w(t0, MemOperand(a0, out_offset));
__ Branch(&end);
__ bind(&fail);
__ St_w(zero_reg, MemOperand(a0, out_offset));
__ bind(&end);
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint32_t>(buffer_middle, in_offset,
out_offset, value, fn));
}
}
}
}
TEST(Ld_d) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
uint64_t value = *i;
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn_1 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Ld_d(a2, MemOperand(a0, in_offset));
__ St_d(a2, MemOperand(a0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true, run_Unaligned<uint64_t>(buffer_middle, in_offset,
out_offset, value, fn_1));
auto fn_2 = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ mov(t0, a0);
__ Ld_d(a0, MemOperand(a0, in_offset));
__ St_d(a0, MemOperand(t0, out_offset));
__ or_(a0, a2, zero_reg);
};
CHECK_EQ(true,
run_Unaligned<uint64_t>(buffer_middle, in_offset, out_offset,
(uint32_t)value, fn_2));
}
}
}
}
TEST(Fld_s) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
float value = static_cast<float>(*i & 0xFFFFFFFF);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Fld_s(f0, MemOperand(a0, in_offset));
__ Fst_s(f0, MemOperand(a0, out_offset));
};
CHECK_EQ(true, run_Unaligned<float>(buffer_middle, in_offset,
out_offset, value, fn));
}
}
}
}
TEST(Fld_d) {
CcTest::InitializeVM();
static const int kBufferSize = 300 * KB;
char memory_buffer[kBufferSize];
char* buffer_middle = memory_buffer + (kBufferSize / 2);
FOR_UINT64_INPUTS(i, unsigned_test_values) {
FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) {
FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) {
double value = static_cast<double>(*i);
int32_t in_offset = *j1 + *k1;
int32_t out_offset = *j2 + *k2;
auto fn = [](MacroAssembler* masm, int32_t in_offset,
int32_t out_offset) {
__ Fld_d(f0, MemOperand(a0, in_offset));
__ Fst_d(f0, MemOperand(a0, out_offset));
};
CHECK_EQ(true, run_Unaligned<double>(buffer_middle, in_offset,
out_offset, value, fn));
}
}
}
}
static const std::vector<uint64_t> sltu_test_values() {
// clang-format off
static const uint64_t kValues[] = {
0,
1,
0x7FE,
0x7FF,
0x800,
0x801,
0xFFE,
0xFFF,
0xFFFFFFFFFFFFF7FE,
0xFFFFFFFFFFFFF7FF,
0xFFFFFFFFFFFFF800,
0xFFFFFFFFFFFFF801,
0xFFFFFFFFFFFFFFFE,
0xFFFFFFFFFFFFFFFF,
};
// clang-format on
return std::vector<uint64_t>(&kValues[0], &kValues[arraysize(kValues)]);
}
template <typename Func>
bool run_Sltu(uint64_t rj, uint64_t rk, Func GenerateSltuInstructionFunc) {
using F_CVT = int64_t(uint64_t x0, uint64_t x1, int x2, int x3, int x4);
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assm;
GenerateSltuInstructionFunc(masm, rk);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
assm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F_CVT>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(rj, rk, 0, 0, 0));
return res == 1;
}
TEST(Sltu) {
CcTest::InitializeVM();
FOR_UINT64_INPUTS(i, sltu_test_values) {
FOR_UINT64_INPUTS(j, sltu_test_values) {
uint64_t rj = *i;
uint64_t rk = *j;
auto fn_1 = [](MacroAssembler* masm, uint64_t imm) {
__ Sltu(a2, a0, Operand(imm));
};
CHECK_EQ(rj < rk, run_Sltu(rj, rk, fn_1));
auto fn_2 = [](MacroAssembler* masm, uint64_t imm) {
__ Sltu(a2, a0, a1);
};
CHECK_EQ(rj < rk, run_Sltu(rj, rk, fn_2));
}
}
}
template <typename T, typename Inputs, typename Results>
static GeneratedCode<F4> GenerateMacroFloat32MinMax(MacroAssembler* masm) {
T a = T::from_code(8); // f8
T b = T::from_code(9); // f9
T c = T::from_code(10); // f10
Label ool_min_abc, ool_min_aab, ool_min_aba;
Label ool_max_abc, ool_max_aab, ool_max_aba;
Label done_min_abc, done_min_aab, done_min_aba;
Label done_max_abc, done_max_aab, done_max_aba;
#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
__ Fld_s(x, MemOperand(a0, offsetof(Inputs, src1_))); \
__ Fld_s(y, MemOperand(a0, offsetof(Inputs, src2_))); \
__ fminmax(res, x, y, &ool); \
__ bind(&done); \
__ Fst_s(a, MemOperand(a1, offsetof(Results, res_field)))
// a = min(b, c);
FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
// a = min(a, b);
FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
// a = min(b, a);
FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);
// a = max(b, c);
FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
// a = max(a, b);
FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
// a = max(b, a);
FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);
#undef FLOAT_MIN_MAX
__ jirl(zero_reg, ra, 0);
// Generate out-of-line cases.
__ bind(&ool_min_abc);
__ Float32MinOutOfLine(a, b, c);
__ Branch(&done_min_abc);
__ bind(&ool_min_aab);
__ Float32MinOutOfLine(a, a, b);
__ Branch(&done_min_aab);
__ bind(&ool_min_aba);
__ Float32MinOutOfLine(a, b, a);
__ Branch(&done_min_aba);
__ bind(&ool_max_abc);
__ Float32MaxOutOfLine(a, b, c);
__ Branch(&done_max_abc);
__ bind(&ool_max_aab);
__ Float32MaxOutOfLine(a, a, b);
__ Branch(&done_max_aab);
__ bind(&ool_max_aba);
__ Float32MaxOutOfLine(a, b, a);
__ Branch(&done_max_aba);
CodeDesc desc;
masm->GetCode(masm->isolate(), &desc);
Handle<Code> code =
Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING)
.Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
return GeneratedCode<F4>::FromCode(*code);
}
TEST(macro_float_minmax_f32) {
// Test the Float32Min and Float32Max macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct Inputs {
float src1_;
float src2_;
};
struct Results {
// Check all register aliasing possibilities in order to exercise all
// code-paths in the macro assembler.
float min_abc_;
float min_aab_;
float min_aba_;
float max_abc_;
float max_aab_;
float max_aba_;
};
GeneratedCode<F4> f =
GenerateMacroFloat32MinMax<FPURegister, Inputs, Results>(masm);
#define CHECK_MINMAX(src1, src2, min, max) \
do { \
Inputs inputs = {src1, src2}; \
Results results; \
f.Call(&inputs, &results, 0, 0, 0); \
CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_abc_)); \
CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aab_)); \
CHECK_EQ(bit_cast<uint32_t>(min), bit_cast<uint32_t>(results.min_aba_)); \
CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_abc_)); \
CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aab_)); \
CHECK_EQ(bit_cast<uint32_t>(max), bit_cast<uint32_t>(results.max_aba_)); \
/* Use a bit_cast to correctly identify -0.0 and NaNs. */ \
} while (0)
float nan_a = std::numeric_limits<float>::quiet_NaN();
float nan_b = std::numeric_limits<float>::quiet_NaN();
CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f);
CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f);
CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f);
CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f);
CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f);
CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f);
CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f);
CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f);
CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f);
CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f);
CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f);
CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f);
CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a);
CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a);
CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);
#undef CHECK_MINMAX
}
template <typename T, typename Inputs, typename Results>
static GeneratedCode<F4> GenerateMacroFloat64MinMax(MacroAssembler* masm) {
T a = T::from_code(8); // f8
T b = T::from_code(9); // f9
T c = T::from_code(10); // f10
Label ool_min_abc, ool_min_aab, ool_min_aba;
Label ool_max_abc, ool_max_aab, ool_max_aba;
Label done_min_abc, done_min_aab, done_min_aba;
Label done_max_abc, done_max_aab, done_max_aba;
#define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \
__ Fld_d(x, MemOperand(a0, offsetof(Inputs, src1_))); \
__ Fld_d(y, MemOperand(a0, offsetof(Inputs, src2_))); \
__ fminmax(res, x, y, &ool); \
__ bind(&done); \
__ Fst_d(a, MemOperand(a1, offsetof(Results, res_field)))
// a = min(b, c);
FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_);
// a = min(a, b);
FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_);
// a = min(b, a);
FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_);
// a = max(b, c);
FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_);
// a = max(a, b);
FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_);
// a = max(b, a);
FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_);
#undef FLOAT_MIN_MAX
__ jirl(zero_reg, ra, 0);
// Generate out-of-line cases.
__ bind(&ool_min_abc);
__ Float64MinOutOfLine(a, b, c);
__ Branch(&done_min_abc);
__ bind(&ool_min_aab);
__ Float64MinOutOfLine(a, a, b);
__ Branch(&done_min_aab);
__ bind(&ool_min_aba);
__ Float64MinOutOfLine(a, b, a);
__ Branch(&done_min_aba);
__ bind(&ool_max_abc);
__ Float64MaxOutOfLine(a, b, c);
__ Branch(&done_max_abc);
__ bind(&ool_max_aab);
__ Float64MaxOutOfLine(a, a, b);
__ Branch(&done_max_aab);
__ bind(&ool_max_aba);
__ Float64MaxOutOfLine(a, b, a);
__ Branch(&done_max_aba);
CodeDesc desc;
masm->GetCode(masm->isolate(), &desc);
Handle<Code> code =
Factory::CodeBuilder(masm->isolate(), desc, CodeKind::FOR_TESTING)
.Build();
#ifdef DEBUG
StdoutStream os;
code->Print(os);
#endif
return GeneratedCode<F4>::FromCode(*code);
}
TEST(macro_float_minmax_f64) {
// Test the Float64Min and Float64Max macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct Inputs {
double src1_;
double src2_;
};
struct Results {
// Check all register aliasing possibilities in order to exercise all
// code-paths in the macro assembler.
double min_abc_;
double min_aab_;
double min_aba_;
double max_abc_;
double max_aab_;
double max_aba_;
};
GeneratedCode<F4> f =
GenerateMacroFloat64MinMax<DoubleRegister, Inputs, Results>(masm);
#define CHECK_MINMAX(src1, src2, min, max) \
do { \
Inputs inputs = {src1, src2}; \
Results results; \
f.Call(&inputs, &results, 0, 0, 0); \
CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_abc_)); \
CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aab_)); \
CHECK_EQ(bit_cast<uint64_t>(min), bit_cast<uint64_t>(results.min_aba_)); \
CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_abc_)); \
CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aab_)); \
CHECK_EQ(bit_cast<uint64_t>(max), bit_cast<uint64_t>(results.max_aba_)); \
/* Use a bit_cast to correctly identify -0.0 and NaNs. */ \
} while (0)
double nan_a = std::numeric_limits<double>::quiet_NaN();
double nan_b = std::numeric_limits<double>::quiet_NaN();
CHECK_MINMAX(1.0, -1.0, -1.0, 1.0);
CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0);
CHECK_MINMAX(0.0, -1.0, -1.0, 0.0);
CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0);
CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0);
CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0);
CHECK_MINMAX(0.0, 1.0, 0.0, 1.0);
CHECK_MINMAX(1.0, 0.0, 0.0, 1.0);
CHECK_MINMAX(0.0, 0.0, 0.0, 0.0);
CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0);
CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0);
CHECK_MINMAX(0.0, -0.0, -0.0, 0.0);
CHECK_MINMAX(0.0, nan_a, nan_a, nan_a);
CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a);
CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a);
CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b);
#undef CHECK_MINMAX
}
uint64_t run_Sub_w(uint64_t imm, int32_t num_instr) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
Label code_start;
__ bind(&code_start);
__ Sub_w(a2, zero_reg, Operand(imm));
CHECK_EQ(masm->InstructionsGeneratedSince(&code_start), num_instr);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F2>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(0, 0, 0, 0, 0));
return res;
}
TEST(SUB_W) {
CcTest::InitializeVM();
// Test Subu macro-instruction for min_int12 and max_int12 border cases.
// For subtracting int16 immediate values we use addiu.
struct TestCaseSub {
uint64_t imm;
uint64_t expected_res;
int32_t num_instr;
};
// We call Sub_w(v0, zero_reg, imm) to test cases listed below.
// 0 - imm = expected_res
// clang-format off
struct TestCaseSub tc[] = {
// imm, expected_res, num_instr
{0xFFFFFFFFFFFFF800, 0x800, 2}, // min_int12
// The test case above generates ori + add_w instruction sequence.
// We can't have just addi_ because -min_int12 > max_int12 so use
// register. We can load min_int12 to at register with addi_w and then
// subtract at with sub_w, but now we use ori + add_w because -min_int12
// can be loaded using ori.
{0x800, 0xFFFFFFFFFFFFF800, 1}, // max_int12 + 1
// Generates addi_w
// max_int12 + 1 is not int12 but -(max_int12 + 1) is, just use addi_w.
{0xFFFFFFFFFFFFF7FF, 0x801, 2}, // min_int12 - 1
// Generates ori + add_w
// To load this value to at we need two instructions and another one to
// subtract, lu12i + ori + sub_w. But we can load -value to at using just
// ori and then add at register with add_w.
{0x801, 0xFFFFFFFFFFFFF7FF, 2}, // max_int12 + 2
// Generates ori + sub_w
// Not int12 but is uint12, load value to at with ori and subtract with
// sub_w.
{0x00010000, 0xFFFFFFFFFFFF0000, 2},
// Generates lu12i_w + sub_w
// Load value using lui to at and subtract with subu.
{0x00010001, 0xFFFFFFFFFFFEFFFF, 3},
// Generates lu12i + ori + sub_w
// We have to generate three instructions in this case.
{0x7FFFFFFF, 0xFFFFFFFF80000001, 3}, // max_int32
// Generates lu12i_w + ori + sub_w
{0xFFFFFFFF80000000, 0xFFFFFFFF80000000, 2}, // min_int32
// The test case above generates lu12i + sub_w intruction sequence.
// The result of 0 - min_int32 eqauls max_int32 + 1, which wraps around to
// min_int32 again.
};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSub);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_Sub_w(tc[i].imm, tc[i].num_instr));
}
}
uint64_t run_Sub_d(uint64_t imm, int32_t num_instr) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
Label code_start;
__ bind(&code_start);
__ Sub_d(a2, zero_reg, Operand(imm));
CHECK_EQ(masm->InstructionsGeneratedSince(&code_start), num_instr);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
auto f = GeneratedCode<F2>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(0, 0, 0, 0, 0));
return res;
}
TEST(SUB_D) {
CcTest::InitializeVM();
// Test Sub_d macro-instruction for min_int12 and max_int12 border cases.
// For subtracting int12 immediate values we use addi_d.
struct TestCaseSub {
uint64_t imm;
uint64_t expected_res;
int32_t num_instr;
};
// We call Sub(v0, zero_reg, imm) to test cases listed below.
// 0 - imm = expected_res
// clang-format off
struct TestCaseSub tc[] = {
// imm, expected_res, num_instr
{0xFFFFFFFFFFFFF800, 0x800, 2}, // min_int12
// The test case above generates addi_d instruction.
// This is int12 value and we can load it using just addi_d.
{ 0x800, 0xFFFFFFFFFFFFF800, 1}, // max_int12 + 1
// Generates addi_d
// max_int12 + 1 is not int12 but is uint12, just use ori.
{0xFFFFFFFFFFFFF7FF, 0x801, 2}, // min_int12 - 1
// Generates ori + add_d
{ 0x801, 0xFFFFFFFFFFFFF7FF, 2}, // max_int12 + 2
// Generates ori + add_d
{ 0x00001000, 0xFFFFFFFFFFFFF000, 2}, // max_uint12 + 1
// Generates lu12i_w + sub_d
{ 0x00001001, 0xFFFFFFFFFFFFEFFF, 3}, // max_uint12 + 2
// Generates lu12i_w + ori + sub_d
{0x00000000FFFFFFFF, 0xFFFFFFFF00000001, 3}, // max_uint32
// Generates addi_w + li32i_d + sub_d
{0x00000000FFFFFFFE, 0xFFFFFFFF00000002, 3}, // max_uint32 - 1
// Generates addi_w + li32i_d + sub_d
{0xFFFFFFFF80000000, 0x80000000, 2}, // min_int32
// Generates lu12i_w + sub_d
{0x0000000080000000, 0xFFFFFFFF80000000, 2}, // max_int32 + 1
// Generates lu12i_w + add_d
{0xFFFF0000FFFF8765, 0x0000FFFF0000789B, 4},
// Generates lu12i_w + ori + lu32i_d + sub
{0x1234ABCD87654321, 0xEDCB5432789ABCDF, 5},
// Generates lu12i_w + ori + lu32i_d + lu52i_d + sub
{0xFFFF789100000000, 0x876F00000000, 3},
// Generates xor + lu32i_d + sub
{0xF12F789100000000, 0xED0876F00000000, 4},
// Generates xor + lu32i_d + lu52i_d + sub
{0xF120000000000800, 0xEDFFFFFFFFFF800, 3},
// Generates ori + lu52i_d + sub
{0xFFF0000000000000, 0x10000000000000, 2}
// Generates lu52i_d + sub
};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSub);
for (size_t i = 0; i < nr_test_cases; ++i) {
CHECK_EQ(tc[i].expected_res, run_Sub_d(tc[i].imm, tc[i].num_instr));
}
}
TEST(Move) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct T {
float a;
float b;
float result_a;
float result_b;
double c;
double d;
double e;
double result_c;
double result_d;
double result_e;
};
T t;
__ li(a4, static_cast<int32_t>(0x80000000));
__ St_w(a4, MemOperand(a0, offsetof(T, a)));
__ li(a5, static_cast<int32_t>(0x12345678));
__ St_w(a5, MemOperand(a0, offsetof(T, b)));
__ li(a6, static_cast<int64_t>(0x8877665544332211));
__ St_d(a6, MemOperand(a0, offsetof(T, c)));
__ li(a7, static_cast<int64_t>(0x1122334455667788));
__ St_d(a7, MemOperand(a0, offsetof(T, d)));
__ li(t0, static_cast<int64_t>(0));
__ St_d(t0, MemOperand(a0, offsetof(T, e)));
__ Move(f8, static_cast<uint32_t>(0x80000000));
__ Move(f9, static_cast<uint32_t>(0x12345678));
__ Move(f10, static_cast<uint64_t>(0x8877665544332211));
__ Move(f11, static_cast<uint64_t>(0x1122334455667788));
__ Move(f12, static_cast<uint64_t>(0));
__ Fst_s(f8, MemOperand(a0, offsetof(T, result_a)));
__ Fst_s(f9, MemOperand(a0, offsetof(T, result_b)));
__ Fst_d(f10, MemOperand(a0, offsetof(T, result_c)));
__ Fst_d(f11, MemOperand(a0, offsetof(T, result_d)));
__ Fst_d(f12, MemOperand(a0, offsetof(T, result_e)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(t.a, t.result_a);
CHECK_EQ(t.b, t.result_b);
CHECK_EQ(t.c, t.result_c);
CHECK_EQ(t.d, t.result_d);
CHECK_EQ(t.e, t.result_e);
}
TEST(Movz_Movn) {
const int kTableLength = 4;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct Test {
int64_t rt;
int64_t a;
int64_t b;
int64_t bold;
int64_t b1;
int64_t bold1;
int32_t c;
int32_t d;
int32_t dold;
int32_t d1;
int32_t dold1;
};
Test test;
// clang-format off
int64_t inputs_D[kTableLength] = {
7, 8, -9, -10
};
int32_t inputs_W[kTableLength] = {
3, 4, -5, -6
};
int32_t outputs_W[kTableLength] = {
3, 4, -5, -6
};
int64_t outputs_D[kTableLength] = {
7, 8, -9, -10
};
// clang-format on
__ Ld_d(a4, MemOperand(a0, offsetof(Test, a)));
__ Ld_w(a5, MemOperand(a0, offsetof(Test, c)));
__ Ld_d(a6, MemOperand(a0, offsetof(Test, rt)));
__ li(t0, 1);
__ li(t1, 1);
__ li(t2, 1);
__ li(t3, 1);
__ St_d(t0, MemOperand(a0, offsetof(Test, bold)));
__ St_d(t1, MemOperand(a0, offsetof(Test, bold1)));
__ St_w(t2, MemOperand(a0, offsetof(Test, dold)));
__ St_w(t3, MemOperand(a0, offsetof(Test, dold1)));
__ Movz(t0, a4, a6);
__ Movn(t1, a4, a6);
__ Movz(t2, a5, a6);
__ Movn(t3, a5, a6);
__ St_d(t0, MemOperand(a0, offsetof(Test, b)));
__ St_d(t1, MemOperand(a0, offsetof(Test, b1)));
__ St_w(t2, MemOperand(a0, offsetof(Test, d)));
__ St_w(t3, MemOperand(a0, offsetof(Test, d1)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 0; i < kTableLength; i++) {
test.a = inputs_D[i];
test.c = inputs_W[i];
test.rt = 1;
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.b, test.bold);
CHECK_EQ(test.d, test.dold);
CHECK_EQ(test.b1, outputs_D[i]);
CHECK_EQ(test.d1, outputs_W[i]);
test.rt = 0;
f.Call(&test, 0, 0, 0, 0);
CHECK_EQ(test.b, outputs_D[i]);
CHECK_EQ(test.d, outputs_W[i]);
CHECK_EQ(test.b1, test.bold1);
CHECK_EQ(test.d1, test.dold1);
}
}
TEST(macro_instructions1) {
// Test 32bit calculate instructions macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
Label exit, error;
__ li(a4, 0x00000004);
__ li(a5, 0x00001234);
__ li(a6, 0x12345678);
__ li(a7, 0x7FFFFFFF);
__ li(t0, static_cast<int32_t>(0xFFFFFFFC));
__ li(t1, static_cast<int32_t>(0xFFFFEDCC));
__ li(t2, static_cast<int32_t>(0xEDCBA988));
__ li(t3, static_cast<int32_t>(0x80000000));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ add_w(a2, a7, t1);
__ Add_w(a3, t1, a7);
__ Branch(&error, ne, a2, Operand(a3));
__ Add_w(t4, t1, static_cast<int32_t>(0x7FFFFFFF));
__ Branch(&error, ne, a2, Operand(t4));
__ addi_w(a2, a6, 0x800);
__ Add_w(a3, a6, 0xFFFFF800);
__ Branch(&error, ne, a2, Operand(a3));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ mul_w(a2, t1, a7);
__ Mul_w(a3, t1, a7);
__ Branch(&error, ne, a2, Operand(a3));
__ Mul_w(t4, t1, static_cast<int32_t>(0x7FFFFFFF));
__ Branch(&error, ne, a2, Operand(t4));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ mulh_w(a2, t1, a7);
__ Mulh_w(a3, t1, a7);
__ Branch(&error, ne, a2, Operand(a3));
__ Mulh_w(t4, t1, static_cast<int32_t>(0x7FFFFFFF));
__ Branch(&error, ne, a2, Operand(t4));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mulh_wu(a2, a4, static_cast<int32_t>(0xFFFFEDCC));
__ Branch(&error, ne, a2, Operand(0x3));
__ Mulh_wu(a3, a4, t1);
__ Branch(&error, ne, a3, Operand(0x3));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ div_w(a2, a7, t2);
__ Div_w(a3, a7, t2);
__ Branch(&error, ne, a2, Operand(a3));
__ Div_w(t4, a7, static_cast<int32_t>(0xEDCBA988));
__ Branch(&error, ne, a2, Operand(t4));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Div_wu(a2, a7, a5);
__ Branch(&error, ne, a2, Operand(0x70821));
__ Div_wu(a3, t0, static_cast<int32_t>(0x00001234));
__ Branch(&error, ne, a3, Operand(0xE1042));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mod_w(a2, a6, a5);
__ Branch(&error, ne, a2, Operand(0xDA8));
__ Mod_w(a3, t2, static_cast<int32_t>(0x00001234));
__ Branch(&error, ne, a3, Operand(0xFFFFFFFFFFFFF258));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mod_wu(a2, a6, a5);
__ Branch(&error, ne, a2, Operand(0xDA8));
__ Mod_wu(a3, t2, static_cast<int32_t>(0x00001234));
__ Branch(&error, ne, a3, Operand(0xF0));
__ li(a2, 0x31415926);
__ b(&exit);
__ bind(&error);
__ li(a2, 0x666);
__ bind(&exit);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F2>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(0, 0, 0, 0, 0));
CHECK_EQ(0x31415926L, res);
}
TEST(macro_instructions2) {
// Test 64bit calculate instructions macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
Label exit, error;
__ li(a4, 0x17312);
__ li(a5, 0x1012131415161718);
__ li(a6, 0x51F4B764A26E7412);
__ li(a7, 0x7FFFFFFFFFFFFFFF);
__ li(t0, static_cast<int64_t>(0xFFFFFFFFFFFFF547));
__ li(t1, static_cast<int64_t>(0xDF6B8F35A10E205C));
__ li(t2, static_cast<int64_t>(0x81F25A87C4236841));
__ li(t3, static_cast<int64_t>(0x8000000000000000));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ add_d(a2, a7, t1);
__ Add_d(a3, t1, a7);
__ Branch(&error, ne, a2, Operand(a3));
__ Add_d(t4, t1, Operand(0x7FFFFFFFFFFFFFFF));
__ Branch(&error, ne, a2, Operand(t4));
__ addi_d(a2, a6, 0x800);
__ Add_d(a3, a6, Operand(0xFFFFFFFFFFFFF800));
__ Branch(&error, ne, a2, Operand(a3));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mul_d(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(0xdbe6a8729a547fb0));
__ Mul_d(a3, t0, Operand(0xDF6B8F35A10E205C));
__ Branch(&error, ne, a3, Operand(0x57ad69f40f870584));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mulh_d(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(0x52514c6c6b54467));
__ Mulh_d(a3, t0, Operand(0xDF6B8F35A10E205C));
__ Branch(&error, ne, a3, Operand(0x15d));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Div_d(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ Div_d(a3, t1, Operand(0x17312));
__ Branch(&error, ne, a3, Operand(0xffffe985f631e6d9));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Div_du(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(0x1));
__ Div_du(a3, t1, 0x17312);
__ Branch(&error, ne, a3, Operand(0x9a22ffd3973d));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mod_d(a2, a6, a4);
__ Branch(&error, ne, a2, Operand(0x13558));
__ Mod_d(a3, t2, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(0xfffffffffffffb0a));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Mod_du(a2, a6, a4);
__ Branch(&error, ne, a2, Operand(0x13558));
__ Mod_du(a3, t2, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(0x81f25a87c4236841));
__ li(a2, 0x31415926);
__ b(&exit);
__ bind(&error);
__ li(a2, 0x666);
__ bind(&exit);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F2>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(0, 0, 0, 0, 0));
CHECK_EQ(0x31415926L, res);
}
TEST(macro_instructions3) {
// Test 64bit calculate instructions macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
Label exit, error;
__ li(a4, 0x17312);
__ li(a5, 0x1012131415161718);
__ li(a6, 0x51F4B764A26E7412);
__ li(a7, 0x7FFFFFFFFFFFFFFF);
__ li(t0, static_cast<int64_t>(0xFFFFFFFFFFFFF547));
__ li(t1, static_cast<int64_t>(0xDF6B8F35A10E205C));
__ li(t2, static_cast<int64_t>(0x81F25A87C4236841));
__ li(t3, static_cast<int64_t>(0x8000000000000000));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ And(a2, a4, a5);
__ Branch(&error, ne, a2, Operand(0x1310));
__ And(a3, a6, Operand(0x7FFFFFFFFFFFFFFF));
__ Branch(&error, ne, a3, Operand(0x51F4B764A26E7412));
__ andi(a2, a6, 0xDCB);
__ And(a3, a6, Operand(0xDCB));
__ Branch(&error, ne, a3, Operand(a2));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Or(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(0xfffffffffffff55f));
__ Or(a3, t2, Operand(0x8000000000000000));
__ Branch(&error, ne, a3, Operand(0x81f25a87c4236841));
__ ori(a2, a5, 0xDCB);
__ Or(a3, a5, Operand(0xDCB));
__ Branch(&error, ne, a2, Operand(a3));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Orn(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(0xffffffffffffffe7));
__ Orn(a3, t2, Operand(0x81F25A87C4236841));
__ Branch(&error, ne, a3, Operand(0xffffffffffffffff));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Xor(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(0x209470ca5ef1d51b));
__ Xor(a3, t2, Operand(0x8000000000000000));
__ Branch(&error, ne, a3, Operand(0x1f25a87c4236841));
__ Xor(a2, t2, Operand(0xDCB));
__ Branch(&error, ne, a2, Operand(0x81f25a87c423658a));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Nor(a2, a4, a5);
__ Branch(&error, ne, a2, Operand(0xefedecebeae888e5));
__ Nor(a3, a6, Operand(0x7FFFFFFFFFFFFFFF));
__ Branch(&error, ne, a3, Operand(0x8000000000000000));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Andn(a2, a4, a5);
__ Branch(&error, ne, a2, Operand(0x16002));
__ Andn(a3, a6, Operand(0x7FFFFFFFFFFFFFFF));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Orn(a2, t0, t1);
__ Branch(&error, ne, a2, Operand(0xffffffffffffffe7));
__ Orn(a3, t2, Operand(0x8000000000000000));
__ Branch(&error, ne, a3, Operand(0xffffffffffffffff));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Neg(a2, a7);
__ Branch(&error, ne, a2, Operand(0x8000000000000001));
__ Neg(a3, t0);
__ Branch(&error, ne, a3, Operand(0xAB9));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Slt(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(0x1));
__ Slt(a3, a7, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0)));
__ Slt(a3, a4, 0x800);
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sle(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(0x1));
__ Sle(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0x1)));
__ Sle(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sleu(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(0x1));
__ Sleu(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0x1)));
__ Sleu(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0x1)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sge(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ Sge(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0x1)));
__ Sge(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0x1)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sgeu(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ Sgeu(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0x1)));
__ Sgeu(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sgt(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ Sgt(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0)));
__ Sgt(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0x1)));
__ or_(a2, zero_reg, zero_reg);
__ or_(a3, zero_reg, zero_reg);
__ Sgtu(a2, a5, a6);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ Sgtu(a3, t0, Operand(0xFFFFFFFFFFFFF547));
__ Branch(&error, ne, a3, Operand(static_cast<int64_t>(0)));
__ Sgtu(a2, a7, t0);
__ Branch(&error, ne, a2, Operand(static_cast<int64_t>(0)));
__ li(a2, 0x31415926);
__ b(&exit);
__ bind(&error);
__ li(a2, 0x666);
__ bind(&exit);
__ or_(a0, a2, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F2>::FromCode(*code);
int64_t res = reinterpret_cast<int64_t>(f.Call(0, 0, 0, 0, 0));
CHECK_EQ(0x31415926L, res);
}
TEST(Rotr_w) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct T {
int32_t input;
int32_t result_rotr_0;
int32_t result_rotr_4;
int32_t result_rotr_8;
int32_t result_rotr_12;
int32_t result_rotr_16;
int32_t result_rotr_20;
int32_t result_rotr_24;
int32_t result_rotr_28;
int32_t result_rotr_32;
int32_t result_rotri_0;
int32_t result_rotri_4;
int32_t result_rotri_8;
int32_t result_rotri_12;
int32_t result_rotri_16;
int32_t result_rotri_20;
int32_t result_rotri_24;
int32_t result_rotri_28;
int32_t result_rotri_32;
};
T t;
__ Ld_w(a4, MemOperand(a0, offsetof(T, input)));
__ Rotr_w(a5, a4, 0);
__ Rotr_w(a6, a4, 0x04);
__ Rotr_w(a7, a4, 0x08);
__ Rotr_w(t0, a4, 0x0C);
__ Rotr_w(t1, a4, 0x10);
__ Rotr_w(t2, a4, -0x0C);
__ Rotr_w(t3, a4, -0x08);
__ Rotr_w(t4, a4, -0x04);
__ Rotr_w(t5, a4, 0x20);
__ St_w(a5, MemOperand(a0, offsetof(T, result_rotr_0)));
__ St_w(a6, MemOperand(a0, offsetof(T, result_rotr_4)));
__ St_w(a7, MemOperand(a0, offsetof(T, result_rotr_8)));
__ St_w(t0, MemOperand(a0, offsetof(T, result_rotr_12)));
__ St_w(t1, MemOperand(a0, offsetof(T, result_rotr_16)));
__ St_w(t2, MemOperand(a0, offsetof(T, result_rotr_20)));
__ St_w(t3, MemOperand(a0, offsetof(T, result_rotr_24)));
__ St_w(t4, MemOperand(a0, offsetof(T, result_rotr_28)));
__ St_w(t5, MemOperand(a0, offsetof(T, result_rotr_32)));
__ li(t5, 0);
__ Rotr_w(a5, a4, t5);
__ li(t5, 0x04);
__ Rotr_w(a6, a4, t5);
__ li(t5, 0x08);
__ Rotr_w(a7, a4, t5);
__ li(t5, 0x0C);
__ Rotr_w(t0, a4, t5);
__ li(t5, 0x10);
__ Rotr_w(t1, a4, t5);
__ li(t5, -0x0C);
__ Rotr_w(t2, a4, t5);
__ li(t5, -0x08);
__ Rotr_w(t3, a4, t5);
__ li(t5, -0x04);
__ Rotr_w(t4, a4, t5);
__ li(t5, 0x20);
__ Rotr_w(t5, a4, t5);
__ St_w(a5, MemOperand(a0, offsetof(T, result_rotri_0)));
__ St_w(a6, MemOperand(a0, offsetof(T, result_rotri_4)));
__ St_w(a7, MemOperand(a0, offsetof(T, result_rotri_8)));
__ St_w(t0, MemOperand(a0, offsetof(T, result_rotri_12)));
__ St_w(t1, MemOperand(a0, offsetof(T, result_rotri_16)));
__ St_w(t2, MemOperand(a0, offsetof(T, result_rotri_20)));
__ St_w(t3, MemOperand(a0, offsetof(T, result_rotri_24)));
__ St_w(t4, MemOperand(a0, offsetof(T, result_rotri_28)));
__ St_w(t5, MemOperand(a0, offsetof(T, result_rotri_32)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
t.input = 0x12345678;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(static_cast<int32_t>(0x12345678), t.result_rotr_0);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotr_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotr_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotr_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotr_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotr_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotr_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotr_28);
CHECK_EQ(static_cast<int32_t>(0x12345678), t.result_rotr_32);
CHECK_EQ(static_cast<int32_t>(0x12345678), t.result_rotri_0);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotri_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotri_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotri_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotri_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotri_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotri_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotri_28);
CHECK_EQ(static_cast<int32_t>(0x12345678), t.result_rotri_32);
}
TEST(Rotr_d) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct T {
int64_t input;
int64_t result_rotr_0;
int64_t result_rotr_8;
int64_t result_rotr_16;
int64_t result_rotr_24;
int64_t result_rotr_32;
int64_t result_rotr_40;
int64_t result_rotr_48;
int64_t result_rotr_56;
int64_t result_rotr_64;
int64_t result_rotri_0;
int64_t result_rotri_8;
int64_t result_rotri_16;
int64_t result_rotri_24;
int64_t result_rotri_32;
int64_t result_rotri_40;
int64_t result_rotri_48;
int64_t result_rotri_56;
int64_t result_rotri_64;
};
T t;
__ Ld_d(a4, MemOperand(a0, offsetof(T, input)));
__ Rotr_d(a5, a4, 0);
__ Rotr_d(a6, a4, 0x08);
__ Rotr_d(a7, a4, 0x10);
__ Rotr_d(t0, a4, 0x18);
__ Rotr_d(t1, a4, 0x20);
__ Rotr_d(t2, a4, -0x18);
__ Rotr_d(t3, a4, -0x10);
__ Rotr_d(t4, a4, -0x08);
__ Rotr_d(t5, a4, 0x40);
__ St_d(a5, MemOperand(a0, offsetof(T, result_rotr_0)));
__ St_d(a6, MemOperand(a0, offsetof(T, result_rotr_8)));
__ St_d(a7, MemOperand(a0, offsetof(T, result_rotr_16)));
__ St_d(t0, MemOperand(a0, offsetof(T, result_rotr_24)));
__ St_d(t1, MemOperand(a0, offsetof(T, result_rotr_32)));
__ St_d(t2, MemOperand(a0, offsetof(T, result_rotr_40)));
__ St_d(t3, MemOperand(a0, offsetof(T, result_rotr_48)));
__ St_d(t4, MemOperand(a0, offsetof(T, result_rotr_56)));
__ St_d(t5, MemOperand(a0, offsetof(T, result_rotr_64)));
__ li(t5, 0);
__ Rotr_d(a5, a4, t5);
__ li(t5, 0x08);
__ Rotr_d(a6, a4, t5);
__ li(t5, 0x10);
__ Rotr_d(a7, a4, t5);
__ li(t5, 0x18);
__ Rotr_d(t0, a4, t5);
__ li(t5, 0x20);
__ Rotr_d(t1, a4, t5);
__ li(t5, -0x18);
__ Rotr_d(t2, a4, t5);
__ li(t5, -0x10);
__ Rotr_d(t3, a4, t5);
__ li(t5, -0x08);
__ Rotr_d(t4, a4, t5);
__ li(t5, 0x40);
__ Rotr_d(t5, a4, t5);
__ St_d(a5, MemOperand(a0, offsetof(T, result_rotri_0)));
__ St_d(a6, MemOperand(a0, offsetof(T, result_rotri_8)));
__ St_d(a7, MemOperand(a0, offsetof(T, result_rotri_16)));
__ St_d(t0, MemOperand(a0, offsetof(T, result_rotri_24)));
__ St_d(t1, MemOperand(a0, offsetof(T, result_rotri_32)));
__ St_d(t2, MemOperand(a0, offsetof(T, result_rotri_40)));
__ St_d(t3, MemOperand(a0, offsetof(T, result_rotri_48)));
__ St_d(t4, MemOperand(a0, offsetof(T, result_rotri_56)));
__ St_d(t5, MemOperand(a0, offsetof(T, result_rotri_64)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
t.input = 0x0123456789ABCDEF;
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(static_cast<int64_t>(0x0123456789ABCDEF), t.result_rotr_0);
CHECK_EQ(static_cast<int64_t>(0xEF0123456789ABCD), t.result_rotr_8);
CHECK_EQ(static_cast<int64_t>(0xCDEF0123456789AB), t.result_rotr_16);
CHECK_EQ(static_cast<int64_t>(0xABCDEF0123456789), t.result_rotr_24);
CHECK_EQ(static_cast<int64_t>(0x89ABCDEF01234567), t.result_rotr_32);
CHECK_EQ(static_cast<int64_t>(0x6789ABCDEF012345), t.result_rotr_40);
CHECK_EQ(static_cast<int64_t>(0x456789ABCDEF0123), t.result_rotr_48);
CHECK_EQ(static_cast<int64_t>(0x23456789ABCDEF01), t.result_rotr_56);
CHECK_EQ(static_cast<int64_t>(0x0123456789ABCDEF), t.result_rotr_64);
CHECK_EQ(static_cast<int64_t>(0x0123456789ABCDEF), t.result_rotri_0);
CHECK_EQ(static_cast<int64_t>(0xEF0123456789ABCD), t.result_rotri_8);
CHECK_EQ(static_cast<int64_t>(0xCDEF0123456789AB), t.result_rotri_16);
CHECK_EQ(static_cast<int64_t>(0xABCDEF0123456789), t.result_rotri_24);
CHECK_EQ(static_cast<int64_t>(0x89ABCDEF01234567), t.result_rotri_32);
CHECK_EQ(static_cast<int64_t>(0x6789ABCDEF012345), t.result_rotri_40);
CHECK_EQ(static_cast<int64_t>(0x456789ABCDEF0123), t.result_rotri_48);
CHECK_EQ(static_cast<int64_t>(0x23456789ABCDEF01), t.result_rotri_56);
CHECK_EQ(static_cast<int64_t>(0x0123456789ABCDEF), t.result_rotri_64);
}
TEST(macro_instructions4) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct T {
double a;
float b;
double result_floor_a;
float result_floor_b;
double result_ceil_a;
float result_ceil_b;
double result_trunc_a;
float result_trunc_b;
double result_round_a;
float result_round_b;
};
T t;
const int kTableLength = 16;
// clang-format off
double inputs_d[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
1.7976931348623157E+308, 6.27463370218383111104242366943E-307,
std::numeric_limits<double>::max() - 0.1,
std::numeric_limits<double>::infinity()
};
float inputs_s[kTableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
1.7976931348623157E+38, 6.27463370218383111104242366943E-37,
std::numeric_limits<float>::lowest() + 0.6,
std::numeric_limits<float>::infinity()
};
float outputs_round_s[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
1.7976931348623157E+38, 0,
std::numeric_limits<float>::lowest() + 1,
std::numeric_limits<float>::infinity()
};
double outputs_round_d[kTableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
1.7976931348623157E+308, 0,
std::numeric_limits<double>::max(),
std::numeric_limits<double>::infinity()
};
float outputs_trunc_s[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
1.7976931348623157E+38, 0,
std::numeric_limits<float>::lowest() + 1,
std::numeric_limits<float>::infinity()
};
double outputs_trunc_d[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
1.7976931348623157E+308, 0,
std::numeric_limits<double>::max() - 1,
std::numeric_limits<double>::infinity()
};
float outputs_ceil_s[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
1.7976931348623157E38, 1,
std::numeric_limits<float>::lowest() + 1,
std::numeric_limits<float>::infinity()
};
double outputs_ceil_d[kTableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
1.7976931348623157E308, 1,
std::numeric_limits<double>::max(),
std::numeric_limits<double>::infinity()
};
float outputs_floor_s[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
1.7976931348623157E38, 0,
std::numeric_limits<float>::lowest() + 1,
std::numeric_limits<float>::infinity()
};
double outputs_floor_d[kTableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
1.7976931348623157E308, 0,
std::numeric_limits<double>::max(),
std::numeric_limits<double>::infinity()
};
// clang-format on
__ Fld_d(f8, MemOperand(a0, offsetof(T, a)));
__ Fld_s(f9, MemOperand(a0, offsetof(T, b)));
__ Floor_d(f10, f8);
__ Floor_s(f11, f9);
__ Fst_d(f10, MemOperand(a0, offsetof(T, result_floor_a)));
__ Fst_s(f11, MemOperand(a0, offsetof(T, result_floor_b)));
__ Ceil_d(f10, f8);
__ Ceil_s(f11, f9);
__ Fst_d(f10, MemOperand(a0, offsetof(T, result_ceil_a)));
__ Fst_s(f11, MemOperand(a0, offsetof(T, result_ceil_b)));
__ Trunc_d(f10, f8);
__ Trunc_s(f11, f9);
__ Fst_d(f10, MemOperand(a0, offsetof(T, result_trunc_a)));
__ Fst_s(f11, MemOperand(a0, offsetof(T, result_trunc_b)));
__ Round_d(f10, f8);
__ Round_s(f11, f9);
__ Fst_d(f10, MemOperand(a0, offsetof(T, result_round_a)));
__ Fst_s(f11, MemOperand(a0, offsetof(T, result_round_b)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
for (int i = 0; i < kTableLength; i++) {
t.a = inputs_d[i];
t.b = inputs_s[i];
f.Call(&t, 0, 0, 0, 0);
CHECK_EQ(t.result_floor_a, outputs_floor_d[i]);
CHECK_EQ(t.result_floor_b, outputs_floor_s[i]);
CHECK_EQ(t.result_ceil_a, outputs_ceil_d[i]);
CHECK_EQ(t.result_ceil_b, outputs_ceil_s[i]);
CHECK_EQ(t.result_trunc_a, outputs_trunc_d[i]);
CHECK_EQ(t.result_trunc_b, outputs_trunc_s[i]);
CHECK_EQ(t.result_round_a, outputs_round_d[i]);
CHECK_EQ(t.result_round_b, outputs_round_s[i]);
}
}
uint64_t run_ExtractBits(uint64_t source, int pos, int size, bool sign_extend) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
if (sign_extend) {
__ ExtractBits(t0, a0, a1, size, true);
} else {
__ ExtractBits(t0, a0, a1, size);
}
__ or_(a0, t0, zero_reg);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<FV>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(source, pos, 0, 0, 0));
return res;
}
TEST(ExtractBits) {
CcTest::InitializeVM();
struct TestCase {
uint64_t source;
int pos;
int size;
bool sign_extend;
uint64_t res;
};
// clang-format off
struct TestCase tc[] = {
//source, pos, size, sign_extend, res;
{0x800, 4, 8, false, 0x80},
{0x800, 4, 8, true, 0xFFFFFFFFFFFFFF80},
{0x800, 5, 8, true, 0x40},
{0x40000, 3, 16, false, 0x8000},
{0x40000, 3, 16, true, 0xFFFFFFFFFFFF8000},
{0x40000, 4, 16, true, 0x4000},
{0x200000000, 2, 32, false, 0x80000000},
{0x200000000, 2, 32, true, 0xFFFFFFFF80000000},
{0x200000000, 3, 32, true, 0x40000000},
};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCase);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t result =
run_ExtractBits(tc[i].source, tc[i].pos, tc[i].size, tc[i].sign_extend);
CHECK_EQ(tc[i].res, result);
}
}
uint64_t run_InsertBits(uint64_t dest, uint64_t source, int pos, int size) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
__ InsertBits(a0, a1, a2, size);
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<FV>::FromCode(*code);
uint64_t res = reinterpret_cast<uint64_t>(f.Call(dest, source, pos, 0, 0));
return res;
}
TEST(InsertBits) {
CcTest::InitializeVM();
struct TestCase {
uint64_t dest;
uint64_t source;
int pos;
int size;
uint64_t res;
};
// clang-format off
struct TestCase tc[] = {
//dest source, pos, size, res;
{0x11111111, 0x1234, 32, 16, 0x123411111111},
{0x111111111111, 0xFFFFF, 24, 10, 0x1113FF111111},
{0x1111111111111111, 0xFEDCBA, 16, 4, 0x11111111111A1111},
};
// clang-format on
size_t nr_test_cases = sizeof(tc) / sizeof(TestCase);
for (size_t i = 0; i < nr_test_cases; ++i) {
uint64_t result =
run_InsertBits(tc[i].dest, tc[i].source, tc[i].pos, tc[i].size);
CHECK_EQ(tc[i].res, result);
}
}
TEST(Popcnt) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assembler(isolate, v8::internal::CodeObjectRequired::kYes);
MacroAssembler* masm = &assembler;
struct TestCase {
uint32_t a;
uint64_t b;
int expected_a;
int expected_b;
int result_a;
int result_b;
};
// clang-format off
struct TestCase tc[] = {
{ 0x12345678, 0x1122334455667788, 13, 26, 0, 0},
{ 0x1234, 0x123456, 5, 9, 0, 0},
{ 0xFFF00000, 0xFFFF000000000000, 12, 16, 0, 0},
{ 0xFF000012, 0xFFFF000000001234, 10, 21, 0, 0}
};
// clang-format on
__ Ld_w(t0, MemOperand(a0, offsetof(TestCase, a)));
__ Ld_d(t1, MemOperand(a0, offsetof(TestCase, b)));
__ Popcnt_w(t2, t0);
__ Popcnt_d(t3, t1);
__ St_w(t2, MemOperand(a0, offsetof(TestCase, result_a)));
__ St_w(t3, MemOperand(a0, offsetof(TestCase, result_b)));
__ jirl(zero_reg, ra, 0);
CodeDesc desc;
masm->GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::FOR_TESTING).Build();
auto f = GeneratedCode<F3>::FromCode(*code);
size_t nr_test_cases = sizeof(tc) / sizeof(TestCase);
for (size_t i = 0; i < nr_test_cases; ++i) {
f.Call(&tc[i], 0, 0, 0, 0);
CHECK_EQ(tc[i].expected_a, tc[i].result_a);
CHECK_EQ(tc[i].expected_b, tc[i].result_b);
}
}
TEST(DeoptExitSizeIsFixed) {
CHECK(Deoptimizer::kSupportsFixedDeoptExitSizes);
Isolate* isolate = CcTest::i_isolate();
HandleScope handles(isolate);
auto buffer = AllocateAssemblerBuffer();
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes,
buffer->CreateView());
STATIC_ASSERT(static_cast<int>(kFirstDeoptimizeKind) == 0);
for (int i = 0; i < kDeoptimizeKindCount; i++) {
DeoptimizeKind kind = static_cast<DeoptimizeKind>(i);
Label before_exit;
masm.bind(&before_exit);
if (kind == DeoptimizeKind::kEagerWithResume) {
Builtin target = Deoptimizer::GetDeoptWithResumeBuiltin(
DeoptimizeReason::kDynamicCheckMaps);
masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit,
nullptr);
CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit),
Deoptimizer::kEagerWithResumeBeforeArgsSize);
} else {
Builtin target = Deoptimizer::GetDeoptimizationEntry(kind);
masm.CallForDeoptimization(target, 42, &before_exit, kind, &before_exit,
nullptr);
CHECK_EQ(masm.SizeOfCodeGeneratedSince(&before_exit),
kind == DeoptimizeKind::kLazy
? Deoptimizer::kLazyDeoptExitSize
: Deoptimizer::kNonLazyDeoptExitSize);
}
}
}
#undef __
} // namespace internal
} // namespace v8