v8/test/unittests/objects/dictionary-unittest.cc
jameslahm 9f783f229b [test] Move cctest/test-dictionary to unittests/
... objects/dictionary-unittest.

Bug: v8:12781
Change-Id: I7faeb9fedf7857b25a85bf32f14323ba3da207c0
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/3706968
Reviewed-by: Michael Lippautz <mlippautz@chromium.org>
Commit-Queue: 王澳 <wangao.james@bytedance.com>
Cr-Commit-Position: refs/heads/main@{#81395}
2022-06-27 12:06:50 +00:00

300 lines
11 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/builtins/builtins-constructor.h"
#include "src/debug/debug.h"
#include "src/execution/execution.h"
#include "src/handles/global-handles.h"
#include "src/heap/factory.h"
#include "src/heap/spaces.h"
#include "src/init/v8.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/objects-inl.h"
#include "src/roots/roots.h"
#include "test/unittests/heap/heap-utils.h"
namespace v8 {
namespace internal {
class DictionaryTest : public TestWithHeapInternalsAndContext {
public:
template <typename HashMap>
void TestHashMap(Handle<HashMap> table) {
Factory* factory = isolate()->factory();
Handle<JSObject> a = factory->NewJSArray(7);
Handle<JSObject> b = factory->NewJSArray(11);
table = HashMap::Put(table, a, b);
CHECK_EQ(1, table->NumberOfElements());
CHECK_EQ(table->Lookup(a), *b);
// When the key does not exist in the map, Lookup returns the hole.
ReadOnlyRoots roots(heap());
CHECK_EQ(table->Lookup(b), roots.the_hole_value());
// Keys still have to be valid after objects were moved.
CollectGarbage(NEW_SPACE);
CHECK_EQ(1, table->NumberOfElements());
CHECK_EQ(table->Lookup(a), *b);
CHECK_EQ(table->Lookup(b), roots.the_hole_value());
// Keys that are overwritten should not change number of elements.
table = HashMap::Put(table, a, factory->NewJSArray(13));
CHECK_EQ(1, table->NumberOfElements());
CHECK_NE(table->Lookup(a), *b);
// Keys that have been removed are mapped to the hole.
bool was_present = false;
table = HashMap::Remove(isolate(), table, a, &was_present);
CHECK(was_present);
CHECK_EQ(0, table->NumberOfElements());
CHECK_EQ(table->Lookup(a), roots.the_hole_value());
// Keys should map back to their respective values and also should get
// an identity hash code generated.
for (int i = 0; i < 100; i++) {
Handle<JSReceiver> key = factory->NewJSArray(7);
Handle<JSObject> value = factory->NewJSArray(11);
table = HashMap::Put(table, key, value);
CHECK_EQ(table->NumberOfElements(), i + 1);
CHECK(table->FindEntry(isolate(), key).is_found());
CHECK_EQ(table->Lookup(key), *value);
CHECK(key->GetIdentityHash().IsSmi());
}
// Keys never added to the map which already have an identity hash
// code should not be found.
for (int i = 0; i < 100; i++) {
Handle<JSReceiver> key = factory->NewJSArray(7);
CHECK(key->GetOrCreateIdentityHash(isolate()).IsSmi());
CHECK(table->FindEntry(isolate(), key).is_not_found());
CHECK_EQ(table->Lookup(key), roots.the_hole_value());
CHECK(key->GetIdentityHash().IsSmi());
}
// Keys that don't have an identity hash should not be found and also
// should not get an identity hash code generated.
for (int i = 0; i < 100; i++) {
Handle<JSReceiver> key = factory->NewJSArray(7);
CHECK_EQ(table->Lookup(key), roots.the_hole_value());
Object identity_hash = key->GetIdentityHash();
CHECK_EQ(roots.undefined_value(), identity_hash);
}
}
template <typename HashSet>
void TestHashSet(Handle<HashSet> table) {
Factory* factory = isolate()->factory();
Handle<JSObject> a = factory->NewJSArray(7);
Handle<JSObject> b = factory->NewJSArray(11);
table = HashSet::Add(isolate(), table, a);
CHECK_EQ(1, table->NumberOfElements());
CHECK(table->Has(isolate(), a));
CHECK(!table->Has(isolate(), b));
// Keys still have to be valid after objects were moved.
CollectGarbage(NEW_SPACE);
CHECK_EQ(1, table->NumberOfElements());
CHECK(table->Has(isolate(), a));
CHECK(!table->Has(isolate(), b));
// Keys that are overwritten should not change number of elements.
table = HashSet::Add(isolate(), table, a);
CHECK_EQ(1, table->NumberOfElements());
CHECK(table->Has(isolate(), a));
CHECK(!table->Has(isolate(), b));
// Keys that have been removed are mapped to the hole.
// TODO(cbruni): not implemented yet.
// bool was_present = false;
// table = HashSet::Remove(table, a, &was_present);
// CHECK(was_present);
// CHECK_EQ(0, table->NumberOfElements());
// CHECK(!table->Has(a));
// CHECK(!table->Has(b));
// Keys should map back to their respective values and also should get
// an identity hash code generated.
for (int i = 0; i < 100; i++) {
Handle<JSReceiver> key = factory->NewJSArray(7);
table = HashSet::Add(isolate(), table, key);
CHECK_EQ(table->NumberOfElements(), i + 2);
CHECK(table->Has(isolate(), key));
CHECK(key->GetIdentityHash().IsSmi());
}
// Keys never added to the map which already have an identity hash
// code should not be found.
for (int i = 0; i < 100; i++) {
Handle<JSReceiver> key = factory->NewJSArray(7);
CHECK(key->GetOrCreateIdentityHash(isolate()).IsSmi());
CHECK(!table->Has(isolate(), key));
CHECK(key->GetIdentityHash().IsSmi());
}
// Keys that don't have an identity hash should not be found and also
// should not get an identity hash code generated.
for (int i = 0; i < 100; i++) {
Handle<JSReceiver> key = factory->NewJSArray(7);
CHECK(!table->Has(isolate(), key));
Object identity_hash = key->GetIdentityHash();
CHECK_EQ(ReadOnlyRoots(heap()).undefined_value(), identity_hash);
}
}
#ifdef DEBUG
template <class HashSet>
void TestHashSetCausesGC(Handle<HashSet> table) {
Factory* factory = isolate()->factory();
Handle<JSObject> key = factory->NewJSArray(0);
// Simulate a full heap so that generating an identity hash code
// in subsequent calls will request GC.
SimulateFullSpace(heap()->new_space());
SimulateFullSpace(heap()->old_space());
// Calling Contains() should not cause GC ever.
int gc_count = heap()->gc_count();
CHECK(!table->Contains(key));
CHECK(gc_count == heap()->gc_count());
// Calling Remove() will not cause GC in this case.
bool was_present = false;
table = HashSet::Remove(table, key, &was_present);
CHECK(!was_present);
CHECK(gc_count == heap()->gc_count());
// Calling Add() should cause GC.
table = HashSet::Add(table, key);
CHECK(gc_count < heap()->gc_count());
}
#endif
#ifdef DEBUG
template <class HashMap>
void TestHashMapDoesNotCauseGC(Handle<HashMap> table) {
Factory* factory = isolate()->factory();
Handle<JSObject> key = factory->NewJSArray(0);
// Even though we simulate a full heap, generating an identity hash
// code in subsequent calls will not request GC.
if (!FLAG_single_generation) {
SimulateFullSpace(heap()->new_space());
}
SimulateFullSpace(heap()->old_space());
// Calling Lookup() should not cause GC ever.
CHECK(table->Lookup(key).IsTheHole(isolate()));
// Calling Put() should request GC by returning a failure.
int gc_count = heap()->gc_count();
HashMap::Put(table, key, key);
CHECK(gc_count == heap()->gc_count());
}
#endif
};
TEST_F(DictionaryTest, HashMap) {
TestHashMap(ObjectHashTable::New(isolate(), 23));
}
TEST_F(DictionaryTest, HashSet) {
TestHashSet(ObjectHashSet::New(isolate(), 23));
}
class ObjectHashTableTest : public ObjectHashTable {
public:
explicit ObjectHashTableTest(ObjectHashTable o) : ObjectHashTable(o) {}
void insert(InternalIndex entry, int key, int value) {
set(EntryToIndex(entry), Smi::FromInt(key));
set(EntryToIndex(entry) + 1, Smi::FromInt(value));
}
int lookup(int key, Isolate* isolate) {
Handle<Object> key_obj(Smi::FromInt(key), isolate);
return Smi::ToInt(Lookup(key_obj));
}
int capacity() { return Capacity(); }
};
TEST_F(DictionaryTest, HashTableRehash) {
// Test almost filled table.
{
Handle<ObjectHashTable> table = ObjectHashTable::New(isolate(), 100);
ObjectHashTableTest t(*table);
int capacity = t.capacity();
for (int i = 0; i < capacity - 1; i++) {
t.insert(InternalIndex(i), i * i, i);
}
t.Rehash(isolate());
for (int i = 0; i < capacity - 1; i++) {
CHECK_EQ(i, t.lookup(i * i, isolate()));
}
}
// Test half-filled table.
{
Handle<ObjectHashTable> table = ObjectHashTable::New(isolate(), 100);
ObjectHashTableTest t(*table);
int capacity = t.capacity();
for (int i = 0; i < capacity / 2; i++) {
t.insert(InternalIndex(i), i * i, i);
}
t.Rehash(isolate());
for (int i = 0; i < capacity / 2; i++) {
CHECK_EQ(i, t.lookup(i * i, isolate()));
}
}
}
#ifdef DEBUG
TEST_F(DictionaryTest, ObjectHashTableCausesGC) {
i::FLAG_stress_compaction = false;
// For SimulateFullSpace in TestHashMapDoesNotCauseGC.
i::FLAG_stress_concurrent_allocation = false;
TestHashMapDoesNotCauseGC(ObjectHashTable::New(isolate(), 1));
}
#endif
TEST_F(DictionaryTest, MaximumClonedShallowObjectProperties) {
// Assert that a NameDictionary with kMaximumClonedShallowObjectProperties is
// not in large-object space.
const int max_capacity = NameDictionary::ComputeCapacity(
ConstructorBuiltins::kMaximumClonedShallowObjectProperties);
const InternalIndex max_literal_entry(max_capacity /
NameDictionary::kEntrySize);
const int max_literal_index = NameDictionary::EntryToIndex(max_literal_entry);
CHECK_LE(NameDictionary::OffsetOfElementAt(max_literal_index),
kMaxRegularHeapObjectSize);
}
} // namespace internal
} // namespace v8