v8/src/arm/builtins-arm.cc

1893 lines
66 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_ARM)
#include "codegen.h"
#include "debug.h"
#include "deoptimizer.h"
#include "full-codegen.h"
#include "runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- r0 : number of arguments excluding receiver
// -- r1 : called function (only guaranteed when
// extra_args requires it)
// -- cp : context
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument (argc == r0)
// -- sp[4 * argc] : receiver
// -----------------------------------
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
__ push(r1);
} else {
ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects r0 to contain the number of arguments
// including the receiver and the extra arguments.
__ add(r0, r0, Operand(num_extra_args + 1));
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the native context.
__ ldr(result,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ ldr(result,
FieldMemOperand(result, GlobalObject::kNativeContextOffset));
// Load the InternalArray function from the native context.
__ ldr(result,
MemOperand(result,
Context::SlotOffset(
Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the native context.
__ ldr(result,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ ldr(result,
FieldMemOperand(result, GlobalObject::kNativeContextOffset));
// Load the Array function from the native context.
__ ldr(result,
MemOperand(result,
Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
}
// Allocate an empty JSArray. The allocated array is put into the result
// register. An elements backing store is allocated with size initial_capacity
// and filled with the hole values.
static void AllocateEmptyJSArray(MacroAssembler* masm,
Register array_function,
Register result,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
const int initial_capacity = JSArray::kPreallocatedArrayElements;
STATIC_ASSERT(initial_capacity >= 0);
__ LoadInitialArrayMap(array_function, scratch2, scratch1, false);
// Allocate the JSArray object together with space for a fixed array with the
// requested elements.
int size = JSArray::kSize;
if (initial_capacity > 0) {
size += FixedArray::SizeFor(initial_capacity);
}
__ Allocate(size, result, scratch2, scratch3, gc_required, TAG_OBJECT);
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// scratch1: initial map
// scratch2: start of next object
__ str(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
__ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
__ str(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
// Field JSArray::kElementsOffset is initialized later.
__ mov(scratch3, Operand::Zero());
__ str(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
if (initial_capacity == 0) {
__ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
return;
}
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// scratch2: start of next object
__ add(scratch1, result, Operand(JSArray::kSize));
__ str(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
// Clear the heap tag on the elements array.
__ sub(scratch1, scratch1, Operand(kHeapObjectTag));
// Initialize the FixedArray and fill it with holes. FixedArray length is
// stored as a smi.
// result: JSObject
// scratch1: elements array (untagged)
// scratch2: start of next object
__ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
STATIC_ASSERT(0 * kPointerSize == FixedArray::kMapOffset);
__ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
__ mov(scratch3, Operand(Smi::FromInt(initial_capacity)));
STATIC_ASSERT(1 * kPointerSize == FixedArray::kLengthOffset);
__ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
// Fill the FixedArray with the hole value. Inline the code if short.
STATIC_ASSERT(2 * kPointerSize == FixedArray::kHeaderSize);
__ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
static const int kLoopUnfoldLimit = 4;
if (initial_capacity <= kLoopUnfoldLimit) {
for (int i = 0; i < initial_capacity; i++) {
__ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
}
} else {
Label loop, entry;
__ add(scratch2, scratch1, Operand(initial_capacity * kPointerSize));
__ b(&entry);
__ bind(&loop);
__ str(scratch3, MemOperand(scratch1, kPointerSize, PostIndex));
__ bind(&entry);
__ cmp(scratch1, scratch2);
__ b(lt, &loop);
}
}
// Allocate a JSArray with the number of elements stored in a register. The
// register array_function holds the built-in Array function and the register
// array_size holds the size of the array as a smi. The allocated array is put
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array_storage and elements_array_end
// (see below for when that is not the case). If the parameter fill_with_holes
// is true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array_storage is scratched.
static void AllocateJSArray(MacroAssembler* masm,
Register array_function, // Array function.
Register array_size, // As a smi, cannot be 0.
Register result,
Register elements_array_storage,
Register elements_array_end,
Register scratch1,
Register scratch2,
bool fill_with_hole,
Label* gc_required) {
// Load the initial map from the array function.
__ LoadInitialArrayMap(array_function, scratch2,
elements_array_storage, fill_with_hole);
if (FLAG_debug_code) { // Assert that array size is not zero.
__ tst(array_size, array_size);
__ Assert(ne, "array size is unexpectedly 0");
}
// Allocate the JSArray object together with space for a FixedArray with the
// requested number of elements.
__ mov(elements_array_end,
Operand((JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize));
__ add(elements_array_end, elements_array_end, Operand::SmiUntag(array_size));
__ Allocate(elements_array_end,
result,
scratch1,
scratch2,
gc_required,
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
// Allocated the JSArray. Now initialize the fields except for the elements
// array.
// result: JSObject
// elements_array_storage: initial map
// array_size: size of array (smi)
__ str(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
__ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
__ str(elements_array_storage,
FieldMemOperand(result, JSArray::kPropertiesOffset));
// Field JSArray::kElementsOffset is initialized later.
__ str(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
// Calculate the location of the elements array and set elements array member
// of the JSArray.
// result: JSObject
// array_size: size of array (smi)
__ add(elements_array_storage, result, Operand(JSArray::kSize));
__ str(elements_array_storage,
FieldMemOperand(result, JSArray::kElementsOffset));
// Clear the heap tag on the elements array.
__ sub(elements_array_storage,
elements_array_storage,
Operand(kHeapObjectTag));
// Initialize the fixed array and fill it with holes. FixedArray length is
// stored as a smi.
// result: JSObject
// elements_array_storage: elements array (untagged)
// array_size: size of array (smi)
__ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
__ str(scratch1, MemOperand(elements_array_storage, kPointerSize, PostIndex));
ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
__ str(array_size,
MemOperand(elements_array_storage, kPointerSize, PostIndex));
// Calculate elements array and elements array end.
// result: JSObject
// elements_array_storage: elements array element storage
// array_size: smi-tagged size of elements array
__ add(elements_array_end,
elements_array_storage,
Operand::PointerOffsetFromSmiKey(array_size));
// Fill the allocated FixedArray with the hole value if requested.
// result: JSObject
// elements_array_storage: elements array element storage
// elements_array_end: start of next object
if (fill_with_hole) {
Label loop, entry;
__ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
__ jmp(&entry);
__ bind(&loop);
__ str(scratch1,
MemOperand(elements_array_storage, kPointerSize, PostIndex));
__ bind(&entry);
__ cmp(elements_array_storage, elements_array_end);
__ b(lt, &loop);
}
}
// Create a new array for the built-in Array function. This function allocates
// the JSArray object and the FixedArray elements array and initializes these.
// If the Array cannot be constructed in native code the runtime is called. This
// function assumes the following state:
// r0: argc
// r1: constructor (built-in Array function)
// lr: return address
// sp[0]: last argument
// This function is used for both construct and normal calls of Array. The only
// difference between handling a construct call and a normal call is that for a
// construct call the constructor function in r1 needs to be preserved for
// entering the generic code. In both cases argc in r0 needs to be preserved.
// Both registers are preserved by this code so no need to differentiate between
// construct call and normal call.
void ArrayNativeCode(MacroAssembler* masm, Label* call_generic_code) {
Counters* counters = masm->isolate()->counters();
Label argc_one_or_more, argc_two_or_more, not_empty_array, empty_array,
has_non_smi_element, finish, cant_transition_map, not_double;
// Check for array construction with zero arguments or one.
__ cmp(r0, Operand::Zero());
__ b(ne, &argc_one_or_more);
// Handle construction of an empty array.
__ bind(&empty_array);
AllocateEmptyJSArray(masm,
r1,
r2,
r3,
r4,
r5,
call_generic_code);
__ IncrementCounter(counters->array_function_native(), 1, r3, r4);
// Set up return value, remove receiver from stack and return.
__ mov(r0, r2);
__ add(sp, sp, Operand(kPointerSize));
__ Jump(lr);
// Check for one argument. Bail out if argument is not smi or if it is
// negative.
__ bind(&argc_one_or_more);
__ cmp(r0, Operand(1));
__ b(ne, &argc_two_or_more);
__ ldr(r2, MemOperand(sp)); // Get the argument from the stack.
__ tst(r2, r2);
__ b(ne, &not_empty_array);
__ Drop(1); // Adjust stack.
__ mov(r0, Operand::Zero()); // Treat this as a call with argc of zero.
__ b(&empty_array);
__ bind(&not_empty_array);
STATIC_ASSERT(kSmiTag == 0);
__ and_(r3, r2, Operand(kIntptrSignBit | kSmiTagMask), SetCC);
__ b(ne, call_generic_code);
// Handle construction of an empty array of a certain size. Bail out if size
// is too large to actually allocate an elements array.
STATIC_ASSERT(kSmiTag == 0);
__ cmp(r2, Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
__ b(ge, call_generic_code);
// r0: argc
// r1: constructor
// r2: array_size (smi)
// sp[0]: argument
AllocateJSArray(masm,
r1,
r2,
r3,
r4,
r5,
r6,
r7,
true,
call_generic_code);
__ IncrementCounter(counters->array_function_native(), 1, r2, r4);
// Set up return value, remove receiver and argument from stack and return.
__ mov(r0, r3);
__ add(sp, sp, Operand(2 * kPointerSize));
__ Jump(lr);
// Handle construction of an array from a list of arguments.
__ bind(&argc_two_or_more);
__ SmiTag(r2, r0);
// r0: argc
// r1: constructor
// r2: array_size (smi)
// sp[0]: last argument
AllocateJSArray(masm,
r1,
r2,
r3,
r4,
r5,
r6,
r7,
false,
call_generic_code);
__ IncrementCounter(counters->array_function_native(), 1, r2, r6);
// Fill arguments as array elements. Copy from the top of the stack (last
// element) to the array backing store filling it backwards. Note:
// elements_array_end points after the backing store therefore PreIndex is
// used when filling the backing store.
// r0: argc
// r3: JSArray
// r4: elements_array storage start (untagged)
// r5: elements_array_end (untagged)
// sp[0]: last argument
Label loop, entry;
__ mov(r7, sp);
__ jmp(&entry);
__ bind(&loop);
__ ldr(r2, MemOperand(r7, kPointerSize, PostIndex));
if (FLAG_smi_only_arrays) {
__ JumpIfNotSmi(r2, &has_non_smi_element);
}
__ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
__ bind(&entry);
__ cmp(r4, r5);
__ b(lt, &loop);
__ bind(&finish);
__ mov(sp, r7);
// Remove caller arguments and receiver from the stack, setup return value and
// return.
// r0: argc
// r3: JSArray
// sp[0]: receiver
__ add(sp, sp, Operand(kPointerSize));
__ mov(r0, r3);
__ Jump(lr);
__ bind(&has_non_smi_element);
// Double values are handled by the runtime.
__ CheckMap(
r2, r9, Heap::kHeapNumberMapRootIndex, &not_double, DONT_DO_SMI_CHECK);
__ bind(&cant_transition_map);
__ UndoAllocationInNewSpace(r3, r4);
__ b(call_generic_code);
__ bind(&not_double);
// Transition FAST_SMI_ELEMENTS to FAST_ELEMENTS.
// r3: JSArray
__ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_ELEMENTS,
r2,
r9,
&cant_transition_map);
__ str(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
__ RecordWriteField(r3,
HeapObject::kMapOffset,
r2,
r9,
kLRHasNotBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
Label loop2;
__ sub(r7, r7, Operand(kPointerSize));
__ bind(&loop2);
__ ldr(r2, MemOperand(r7, kPointerSize, PostIndex));
__ str(r2, MemOperand(r5, -kPointerSize, PreIndex));
__ cmp(r4, r5);
__ b(lt, &loop2);
__ b(&finish);
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, r1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(r2);
__ Assert(ne, "Unexpected initial map for InternalArray function");
__ CompareObjectType(r2, r3, r4, MAP_TYPE);
__ Assert(eq, "Unexpected initial map for InternalArray function");
}
// Run the native code for the InternalArray function called as a normal
// function.
if (FLAG_optimize_constructed_arrays) {
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
} else {
ArrayNativeCode(masm, &generic_array_code);
// Jump to the generic array code if the specialized code cannot handle the
// construction.
__ bind(&generic_array_code);
Handle<Code> array_code =
masm->isolate()->builtins()->InternalArrayCodeGeneric();
__ Jump(array_code, RelocInfo::CODE_TARGET);
}
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the Array function.
GenerateLoadArrayFunction(masm, r1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(r2);
__ Assert(ne, "Unexpected initial map for Array function");
__ CompareObjectType(r2, r3, r4, MAP_TYPE);
__ Assert(eq, "Unexpected initial map for Array function");
}
// Run the native code for the Array function called as a normal function.
if (FLAG_optimize_constructed_arrays) {
// tail call a stub
Handle<Object> undefined_sentinel(
masm->isolate()->heap()->undefined_value(),
masm->isolate());
__ mov(r2, Operand(undefined_sentinel));
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
} else {
ArrayNativeCode(masm, &generic_array_code);
// Jump to the generic array code if the specialized code cannot handle
// the construction.
__ bind(&generic_array_code);
Handle<Code> array_code =
masm->isolate()->builtins()->ArrayCodeGeneric();
__ Jump(array_code, RelocInfo::CODE_TARGET);
}
}
void Builtins::Generate_CommonArrayConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- r2 : type info cell
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the builtin and internal
// Array functions which always have a map.
// Initial map for the builtin Array function should be a map.
__ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(r3);
__ Assert(ne, "Unexpected initial map for Array function");
__ CompareObjectType(r3, r3, r4, MAP_TYPE);
__ Assert(eq, "Unexpected initial map for Array function");
}
Label generic_constructor;
// Run the native code for the Array function called as a constructor.
ArrayNativeCode(masm, &generic_constructor);
// Jump to the generic construct code in case the specialized code cannot
// handle the construction.
__ bind(&generic_constructor);
Handle<Code> generic_construct_stub =
masm->isolate()->builtins()->JSConstructStubGeneric();
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
// -- sp[argc * 4] : receiver
// -----------------------------------
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_ctor_calls(), 1, r2, r3);
Register function = r1;
if (FLAG_debug_code) {
__ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, r2);
__ cmp(function, Operand(r2));
__ Assert(eq, "Unexpected String function");
}
// Load the first arguments in r0 and get rid of the rest.
Label no_arguments;
__ cmp(r0, Operand::Zero());
__ b(eq, &no_arguments);
// First args = sp[(argc - 1) * 4].
__ sub(r0, r0, Operand(1));
__ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex));
// sp now point to args[0], drop args[0] + receiver.
__ Drop(2);
Register argument = r2;
Label not_cached, argument_is_string;
NumberToStringStub::GenerateLookupNumberStringCache(
masm,
r0, // Input.
argument, // Result.
r3, // Scratch.
r4, // Scratch.
r5, // Scratch.
false, // Is it a Smi?
&not_cached);
__ IncrementCounter(counters->string_ctor_cached_number(), 1, r3, r4);
__ bind(&argument_is_string);
// ----------- S t a t e -------------
// -- r2 : argument converted to string
// -- r1 : constructor function
// -- lr : return address
// -----------------------------------
Label gc_required;
__ Allocate(JSValue::kSize,
r0, // Result.
r3, // Scratch.
r4, // Scratch.
&gc_required,
TAG_OBJECT);
// Initialising the String Object.
Register map = r3;
__ LoadGlobalFunctionInitialMap(function, map, r4);
if (FLAG_debug_code) {
__ ldrb(r4, FieldMemOperand(map, Map::kInstanceSizeOffset));
__ cmp(r4, Operand(JSValue::kSize >> kPointerSizeLog2));
__ Assert(eq, "Unexpected string wrapper instance size");
__ ldrb(r4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
__ cmp(r4, Operand::Zero());
__ Assert(eq, "Unexpected unused properties of string wrapper");
}
__ str(map, FieldMemOperand(r0, HeapObject::kMapOffset));
__ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
__ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
__ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
__ str(argument, FieldMemOperand(r0, JSValue::kValueOffset));
// Ensure the object is fully initialized.
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
__ Ret();
// The argument was not found in the number to string cache. Check
// if it's a string already before calling the conversion builtin.
Label convert_argument;
__ bind(&not_cached);
__ JumpIfSmi(r0, &convert_argument);
// Is it a String?
__ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
__ ldrb(r3, FieldMemOperand(r2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ tst(r3, Operand(kIsNotStringMask));
__ b(ne, &convert_argument);
__ mov(argument, r0);
__ IncrementCounter(counters->string_ctor_conversions(), 1, r3, r4);
__ b(&argument_is_string);
// Invoke the conversion builtin and put the result into r2.
__ bind(&convert_argument);
__ push(function); // Preserve the function.
__ IncrementCounter(counters->string_ctor_conversions(), 1, r3, r4);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(r0);
__ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
}
__ pop(function);
__ mov(argument, r0);
__ b(&argument_is_string);
// Load the empty string into r2, remove the receiver from the
// stack, and jump back to the case where the argument is a string.
__ bind(&no_arguments);
__ LoadRoot(argument, Heap::kempty_stringRootIndex);
__ Drop(1);
__ b(&argument_is_string);
// At this point the argument is already a string. Call runtime to
// create a string wrapper.
__ bind(&gc_required);
__ IncrementCounter(counters->string_ctor_gc_required(), 1, r3, r4);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(argument);
__ CallRuntime(Runtime::kNewStringWrapper, 1);
}
__ Ret();
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCodeOffset));
__ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ mov(pc, r2);
}
void Builtins::Generate_InRecompileQueue(MacroAssembler* masm) {
GenerateTailCallToSharedCode(masm);
}
void Builtins::Generate_InstallRecompiledCode(MacroAssembler* masm) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve the function.
__ push(r1);
// Push call kind information.
__ push(r5);
// Push the function on the stack as the argument to the runtime function.
__ push(r1);
__ CallRuntime(Runtime::kInstallRecompiledCode, 1);
// Calculate the entry point.
__ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
// Restore call kind information.
__ pop(r5);
// Restore saved function.
__ pop(r1);
// Tear down internal frame.
}
// Do a tail-call of the compiled function.
__ Jump(r2);
}
void Builtins::Generate_ParallelRecompile(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
__ push(r1);
// Push call kind information.
__ push(r5);
__ push(r1); // Function is also the parameter to the runtime call.
__ CallRuntime(Runtime::kParallelRecompile, 1);
// Restore call kind information.
__ pop(r5);
// Restore receiver.
__ pop(r1);
// Tear down internal frame.
}
GenerateTailCallToSharedCode(masm);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool count_constructions) {
// ----------- S t a t e -------------
// -- r0 : number of arguments
// -- r1 : constructor function
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Should never count constructions for api objects.
ASSERT(!is_api_function || !count_constructions);
Isolate* isolate = masm->isolate();
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the two incoming parameters on the stack.
__ SmiTag(r0);
__ push(r0); // Smi-tagged arguments count.
__ push(r1); // Constructor function.
// Try to allocate the object without transitioning into C code. If any of
// the preconditions is not met, the code bails out to the runtime call.
Label rt_call, allocated;
if (FLAG_inline_new) {
Label undo_allocation;
#ifdef ENABLE_DEBUGGER_SUPPORT
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(isolate);
__ mov(r2, Operand(debug_step_in_fp));
__ ldr(r2, MemOperand(r2));
__ tst(r2, r2);
__ b(ne, &rt_call);
#endif
// Load the initial map and verify that it is in fact a map.
// r1: constructor function
__ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ JumpIfSmi(r2, &rt_call);
__ CompareObjectType(r2, r3, r4, MAP_TYPE);
__ b(ne, &rt_call);
// Check that the constructor is not constructing a JSFunction (see
// comments in Runtime_NewObject in runtime.cc). In which case the
// initial map's instance type would be JS_FUNCTION_TYPE.
// r1: constructor function
// r2: initial map
__ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
__ b(eq, &rt_call);
if (count_constructions) {
Label allocate;
// Decrease generous allocation count.
__ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
MemOperand constructor_count =
FieldMemOperand(r3, SharedFunctionInfo::kConstructionCountOffset);
__ ldrb(r4, constructor_count);
__ sub(r4, r4, Operand(1), SetCC);
__ strb(r4, constructor_count);
__ b(ne, &allocate);
__ Push(r1, r2);
__ push(r1); // constructor
// The call will replace the stub, so the countdown is only done once.
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ pop(r2);
__ pop(r1);
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
// r1: constructor function
// r2: initial map
__ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
__ Allocate(r3, r4, r5, r6, &rt_call, SIZE_IN_WORDS);
// Allocated the JSObject, now initialize the fields. Map is set to
// initial map and properties and elements are set to empty fixed array.
// r1: constructor function
// r2: initial map
// r3: object size
// r4: JSObject (not tagged)
__ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
__ mov(r5, r4);
ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
__ str(r2, MemOperand(r5, kPointerSize, PostIndex));
ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
__ str(r6, MemOperand(r5, kPointerSize, PostIndex));
ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
__ str(r6, MemOperand(r5, kPointerSize, PostIndex));
// Fill all the in-object properties with the appropriate filler.
// r1: constructor function
// r2: initial map
// r3: object size (in words)
// r4: JSObject (not tagged)
// r5: First in-object property of JSObject (not tagged)
__ add(r6, r4, Operand(r3, LSL, kPointerSizeLog2)); // End of object.
ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
__ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
if (count_constructions) {
__ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
__ Ubfx(r0, r0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
kBitsPerByte);
__ add(r0, r5, Operand(r0, LSL, kPointerSizeLog2));
// r0: offset of first field after pre-allocated fields
if (FLAG_debug_code) {
__ cmp(r0, r6);
__ Assert(le, "Unexpected number of pre-allocated property fields.");
}
__ InitializeFieldsWithFiller(r5, r0, r7);
// To allow for truncation.
__ LoadRoot(r7, Heap::kOnePointerFillerMapRootIndex);
}
__ InitializeFieldsWithFiller(r5, r6, r7);
// Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on. Any
// failures need to undo the allocation, so that the heap is in a
// consistent state and verifiable.
__ add(r4, r4, Operand(kHeapObjectTag));
// Check if a non-empty properties array is needed. Continue with
// allocated object if not fall through to runtime call if it is.
// r1: constructor function
// r4: JSObject
// r5: start of next object (not tagged)
__ ldrb(r3, FieldMemOperand(r2, Map::kUnusedPropertyFieldsOffset));
// The field instance sizes contains both pre-allocated property fields
// and in-object properties.
__ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset));
__ Ubfx(r6, r0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
kBitsPerByte);
__ add(r3, r3, Operand(r6));
__ Ubfx(r6, r0, Map::kInObjectPropertiesByte * kBitsPerByte,
kBitsPerByte);
__ sub(r3, r3, Operand(r6), SetCC);
// Done if no extra properties are to be allocated.
__ b(eq, &allocated);
__ Assert(pl, "Property allocation count failed.");
// Scale the number of elements by pointer size and add the header for
// FixedArrays to the start of the next object calculation from above.
// r1: constructor
// r3: number of elements in properties array
// r4: JSObject
// r5: start of next object
__ add(r0, r3, Operand(FixedArray::kHeaderSize / kPointerSize));
__ Allocate(
r0,
r5,
r6,
r2,
&undo_allocation,
static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
// Initialize the FixedArray.
// r1: constructor
// r3: number of elements in properties array
// r4: JSObject
// r5: FixedArray (not tagged)
__ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
__ mov(r2, r5);
ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
__ str(r6, MemOperand(r2, kPointerSize, PostIndex));
ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
__ SmiTag(r0, r3);
__ str(r0, MemOperand(r2, kPointerSize, PostIndex));
// Initialize the fields to undefined.
// r1: constructor function
// r2: First element of FixedArray (not tagged)
// r3: number of elements in properties array
// r4: JSObject
// r5: FixedArray (not tagged)
__ add(r6, r2, Operand(r3, LSL, kPointerSizeLog2)); // End of object.
ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
{ Label loop, entry;
if (count_constructions) {
__ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
} else if (FLAG_debug_code) {
__ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
__ cmp(r7, r8);
__ Assert(eq, "Undefined value not loaded.");
}
__ b(&entry);
__ bind(&loop);
__ str(r7, MemOperand(r2, kPointerSize, PostIndex));
__ bind(&entry);
__ cmp(r2, r6);
__ b(lt, &loop);
}
// Store the initialized FixedArray into the properties field of
// the JSObject
// r1: constructor function
// r4: JSObject
// r5: FixedArray (not tagged)
__ add(r5, r5, Operand(kHeapObjectTag)); // Add the heap tag.
__ str(r5, FieldMemOperand(r4, JSObject::kPropertiesOffset));
// Continue with JSObject being successfully allocated
// r1: constructor function
// r4: JSObject
__ jmp(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
// r4: JSObject (previous new top)
__ bind(&undo_allocation);
__ UndoAllocationInNewSpace(r4, r5);
}
// Allocate the new receiver object using the runtime call.
// r1: constructor function
__ bind(&rt_call);
__ push(r1); // argument for Runtime_NewObject
__ CallRuntime(Runtime::kNewObject, 1);
__ mov(r4, r0);
// Receiver for constructor call allocated.
// r4: JSObject
__ bind(&allocated);
__ push(r4);
__ push(r4);
// Reload the number of arguments and the constructor from the stack.
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: constructor function
// sp[3]: number of arguments (smi-tagged)
__ ldr(r1, MemOperand(sp, 2 * kPointerSize));
__ ldr(r3, MemOperand(sp, 3 * kPointerSize));
// Set up pointer to last argument.
__ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Set up number of arguments for function call below
__ SmiUntag(r0, r3);
// Copy arguments and receiver to the expression stack.
// r0: number of arguments
// r1: constructor function
// r2: address of last argument (caller sp)
// r3: number of arguments (smi-tagged)
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: constructor function
// sp[3]: number of arguments (smi-tagged)
Label loop, entry;
__ b(&entry);
__ bind(&loop);
__ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1));
__ push(ip);
__ bind(&entry);
__ sub(r3, r3, Operand(2), SetCC);
__ b(ge, &loop);
// Call the function.
// r0: number of arguments
// r1: constructor function
if (is_api_function) {
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
ParameterCount expected(0);
__ InvokeCode(code, expected, expected,
RelocInfo::CODE_TARGET, CALL_FUNCTION, CALL_AS_METHOD);
} else {
ParameterCount actual(r0);
__ InvokeFunction(r1, actual, CALL_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
// Store offset of return address for deoptimizer.
if (!is_api_function && !count_constructions) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
// r0: result
// sp[0]: receiver
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// r0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ JumpIfSmi(r0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
__ CompareObjectType(r0, r1, r3, FIRST_SPEC_OBJECT_TYPE);
__ b(ge, &exit);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ ldr(r0, MemOperand(sp));
// Remove receiver from the stack, remove caller arguments, and
// return.
__ bind(&exit);
// r0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ ldr(r1, MemOperand(sp, 2 * kPointerSize));
// Leave construct frame.
}
__ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1));
__ add(sp, sp, Operand(kPointerSize));
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, r1, r2);
__ Jump(lr);
}
void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from Generate_JS_Entry
// r0: code entry
// r1: function
// r2: receiver
// r3: argc
// r4: argv
// r5-r7, cp may be clobbered
// Clear the context before we push it when entering the internal frame.
__ mov(cp, Operand::Zero());
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Set up the context from the function argument.
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
__ InitializeRootRegister();
// Push the function and the receiver onto the stack.
__ push(r1);
__ push(r2);
// Copy arguments to the stack in a loop.
// r1: function
// r3: argc
// r4: argv, i.e. points to first arg
Label loop, entry;
__ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2));
// r2 points past last arg.
__ b(&entry);
__ bind(&loop);
__ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter
__ ldr(r0, MemOperand(r0)); // dereference handle
__ push(r0); // push parameter
__ bind(&entry);
__ cmp(r4, r2);
__ b(ne, &loop);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
__ mov(r5, Operand(r4));
__ mov(r6, Operand(r4));
__ mov(r7, Operand(r4));
if (kR9Available == 1) {
__ mov(r9, Operand(r4));
}
// Invoke the code and pass argc as r0.
__ mov(r0, Operand(r3));
if (is_construct) {
// No type feedback cell is available
Handle<Object> undefined_sentinel(
masm->isolate()->heap()->undefined_value(), masm->isolate());
__ mov(r2, Operand(undefined_sentinel));
CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
__ CallStub(&stub);
} else {
ParameterCount actual(r0);
__ InvokeFunction(r1, actual, CALL_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
// Exit the JS frame and remove the parameters (except function), and
// return.
// Respect ABI stack constraint.
}
__ Jump(lr);
// r0: result
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve the function.
__ push(r1);
// Push call kind information.
__ push(r5);
// Push the function on the stack as the argument to the runtime function.
__ push(r1);
__ CallRuntime(Runtime::kLazyCompile, 1);
// Calculate the entry point.
__ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
// Restore call kind information.
__ pop(r5);
// Restore saved function.
__ pop(r1);
// Tear down internal frame.
}
// Do a tail-call of the compiled function.
__ Jump(r2);
}
void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve the function.
__ push(r1);
// Push call kind information.
__ push(r5);
// Push the function on the stack as the argument to the runtime function.
__ push(r1);
__ CallRuntime(Runtime::kLazyRecompile, 1);
// Calculate the entry point.
__ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
// Restore call kind information.
__ pop(r5);
// Restore saved function.
__ pop(r1);
// Tear down internal frame.
}
// Do a tail-call of the compiled function.
__ Jump(r2);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// The following registers must be saved and restored when calling through to
// the runtime:
// r0 - contains return address (beginning of patch sequence)
// r1 - function object
FrameScope scope(masm, StackFrame::MANUAL);
__ stm(db_w, sp, r0.bit() | r1.bit() | fp.bit() | lr.bit());
__ PrepareCallCFunction(1, 0, r1);
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 1);
__ ldm(ia_w, sp, r0.bit() | r1.bit() | fp.bit() | lr.bit());
__ mov(pc, r0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ stm(db_w, sp, kJSCallerSaved | kCalleeSaved);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, 0);
__ ldm(ia_w, sp, kJSCallerSaved | kCalleeSaved);
}
__ add(sp, sp, Operand(kPointerSize)); // Ignore state
__ mov(pc, lr); // Jump to miss handler
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the function and deoptimization type to the runtime system.
__ mov(r0, Operand(Smi::FromInt(static_cast<int>(type))));
__ push(r0);
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
}
// Get the full codegen state from the stack and untag it -> r6.
__ ldr(r6, MemOperand(sp, 0 * kPointerSize));
__ SmiUntag(r6);
// Switch on the state.
Label with_tos_register, unknown_state;
__ cmp(r6, Operand(FullCodeGenerator::NO_REGISTERS));
__ b(ne, &with_tos_register);
__ add(sp, sp, Operand(1 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&with_tos_register);
__ ldr(r0, MemOperand(sp, 1 * kPointerSize));
__ cmp(r6, Operand(FullCodeGenerator::TOS_REG));
__ b(ne, &unknown_state);
__ add(sp, sp, Operand(2 * kPointerSize)); // Remove state.
__ Ret();
__ bind(&unknown_state);
__ stop("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
// For now, we are relying on the fact that Runtime::NotifyOSR
// doesn't do any garbage collection which allows us to save/restore
// the registers without worrying about which of them contain
// pointers. This seems a bit fragile.
__ stm(db_w, sp, kJSCallerSaved | kCalleeSaved | lr.bit() | fp.bit());
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyOSR, 0);
}
__ ldm(ia_w, sp, kJSCallerSaved | kCalleeSaved | lr.bit() | fp.bit());
__ Ret();
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame and push it as an
// argument to the on-stack replacement function.
__ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(r0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
}
// If the result was -1 it means that we couldn't optimize the
// function. Just return and continue in the unoptimized version.
Label skip;
__ cmp(r0, Operand(Smi::FromInt(-1)));
__ b(ne, &skip);
__ Ret();
__ bind(&skip);
// Untag the AST id and push it on the stack.
__ SmiUntag(r0);
__ push(r0);
// Generate the code for doing the frame-to-frame translation using
// the deoptimizer infrastructure.
Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
generator.Generate();
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// r0: actual number of arguments
{ Label done;
__ cmp(r0, Operand::Zero());
__ b(ne, &done);
__ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
__ push(r2);
__ add(r0, r0, Operand(1));
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check
// if it is a function.
// r0: actual number of arguments
Label slow, non_function;
__ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ JumpIfSmi(r1, &non_function);
__ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
__ b(ne, &slow);
// 3a. Patch the first argument if necessary when calling a function.
// r0: actual number of arguments
// r1: function
Label shift_arguments;
__ mov(r4, Operand::Zero()); // indicate regular JS_FUNCTION
{ Label convert_to_object, use_global_receiver, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset));
__ tst(r3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
kSmiTagSize)));
__ b(ne, &shift_arguments);
// Do not transform the receiver for native (Compilerhints already in r3).
__ tst(r3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
__ b(ne, &shift_arguments);
// Compute the receiver in non-strict mode.
__ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
__ ldr(r2, MemOperand(r2, -kPointerSize));
// r0: actual number of arguments
// r1: function
// r2: first argument
__ JumpIfSmi(r2, &convert_to_object);
__ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
__ cmp(r2, r3);
__ b(eq, &use_global_receiver);
__ LoadRoot(r3, Heap::kNullValueRootIndex);
__ cmp(r2, r3);
__ b(eq, &use_global_receiver);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CompareObjectType(r2, r3, r3, FIRST_SPEC_OBJECT_TYPE);
__ b(ge, &shift_arguments);
__ bind(&convert_to_object);
{
// Enter an internal frame in order to preserve argument count.
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(r0);
__ push(r0);
__ push(r2);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(r2, r0);
__ pop(r0);
__ SmiUntag(r0);
// Exit the internal frame.
}
// Restore the function to r1, and the flag to r4.
__ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2));
__ mov(r4, Operand::Zero());
__ jmp(&patch_receiver);
// Use the global receiver object from the called function as the
// receiver.
__ bind(&use_global_receiver);
const int kGlobalIndex =
Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
__ ldr(r2, FieldMemOperand(cp, kGlobalIndex));
__ ldr(r2, FieldMemOperand(r2, GlobalObject::kNativeContextOffset));
__ ldr(r2, FieldMemOperand(r2, kGlobalIndex));
__ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
__ bind(&patch_receiver);
__ add(r3, sp, Operand(r0, LSL, kPointerSizeLog2));
__ str(r2, MemOperand(r3, -kPointerSize));
__ jmp(&shift_arguments);
}
// 3b. Check for function proxy.
__ bind(&slow);
__ mov(r4, Operand(1, RelocInfo::NONE32)); // indicate function proxy
__ cmp(r2, Operand(JS_FUNCTION_PROXY_TYPE));
__ b(eq, &shift_arguments);
__ bind(&non_function);
__ mov(r4, Operand(2, RelocInfo::NONE32)); // indicate non-function
// 3c. Patch the first argument when calling a non-function. The
// CALL_NON_FUNCTION builtin expects the non-function callee as
// receiver, so overwrite the first argument which will ultimately
// become the receiver.
// r0: actual number of arguments
// r1: function
// r4: call type (0: JS function, 1: function proxy, 2: non-function)
__ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
__ str(r1, MemOperand(r2, -kPointerSize));
// 4. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// r0: actual number of arguments
// r1: function
// r4: call type (0: JS function, 1: function proxy, 2: non-function)
__ bind(&shift_arguments);
{ Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2));
__ bind(&loop);
__ ldr(ip, MemOperand(r2, -kPointerSize));
__ str(ip, MemOperand(r2));
__ sub(r2, r2, Operand(kPointerSize));
__ cmp(r2, sp);
__ b(ne, &loop);
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ sub(r0, r0, Operand(1));
__ pop();
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
// or a function proxy via CALL_FUNCTION_PROXY.
// r0: actual number of arguments
// r1: function
// r4: call type (0: JS function, 1: function proxy, 2: non-function)
{ Label function, non_proxy;
__ tst(r4, r4);
__ b(eq, &function);
// Expected number of arguments is 0 for CALL_NON_FUNCTION.
__ mov(r2, Operand::Zero());
__ SetCallKind(r5, CALL_AS_METHOD);
__ cmp(r4, Operand(1));
__ b(ne, &non_proxy);
__ push(r1); // re-add proxy object as additional argument
__ add(r0, r0, Operand(1));
__ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&non_proxy);
__ GetBuiltinEntry(r3, Builtins::CALL_NON_FUNCTION);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&function);
}
// 5b. Get the code to call from the function and check that the number of
// expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
// r0: actual number of arguments
// r1: function
__ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r2,
FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
__ SmiUntag(r2);
__ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ SetCallKind(r5, CALL_AS_METHOD);
__ cmp(r2, r0); // Check formal and actual parameter counts.
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET,
ne);
ParameterCount expected(0);
__ InvokeCode(r3, expected, expected, JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
const int kIndexOffset = -5 * kPointerSize;
const int kLimitOffset = -4 * kPointerSize;
const int kArgsOffset = 2 * kPointerSize;
const int kRecvOffset = 3 * kPointerSize;
const int kFunctionOffset = 4 * kPointerSize;
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
__ ldr(r0, MemOperand(fp, kFunctionOffset)); // get the function
__ push(r0);
__ ldr(r0, MemOperand(fp, kArgsOffset)); // get the args array
__ push(r0);
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
// Make r2 the space we have left. The stack might already be overflowed
// here which will cause r2 to become negative.
__ sub(r2, sp, r2);
// Check if the arguments will overflow the stack.
__ cmp(r2, Operand::PointerOffsetFromSmiKey(r0));
__ b(gt, &okay); // Signed comparison.
// Out of stack space.
__ ldr(r1, MemOperand(fp, kFunctionOffset));
__ push(r1);
__ push(r0);
__ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
// End of stack check.
// Push current limit and index.
__ bind(&okay);
__ push(r0); // limit
__ mov(r1, Operand::Zero()); // initial index
__ push(r1);
// Get the receiver.
__ ldr(r0, MemOperand(fp, kRecvOffset));
// Check that the function is a JS function (otherwise it must be a proxy).
Label push_receiver;
__ ldr(r1, MemOperand(fp, kFunctionOffset));
__ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
__ b(ne, &push_receiver);
// Change context eagerly to get the right global object if necessary.
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// Load the shared function info while the function is still in r1.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
// Compute the receiver.
// Do not transform the receiver for strict mode functions.
Label call_to_object, use_global_receiver;
__ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset));
__ tst(r2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
kSmiTagSize)));
__ b(ne, &push_receiver);
// Do not transform the receiver for strict mode functions.
__ tst(r2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
__ b(ne, &push_receiver);
// Compute the receiver in non-strict mode.
__ JumpIfSmi(r0, &call_to_object);
__ LoadRoot(r1, Heap::kNullValueRootIndex);
__ cmp(r0, r1);
__ b(eq, &use_global_receiver);
__ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
__ cmp(r0, r1);
__ b(eq, &use_global_receiver);
// Check if the receiver is already a JavaScript object.
// r0: receiver
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
__ b(ge, &push_receiver);
// Convert the receiver to a regular object.
// r0: receiver
__ bind(&call_to_object);
__ push(r0);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ b(&push_receiver);
// Use the current global receiver object as the receiver.
__ bind(&use_global_receiver);
const int kGlobalOffset =
Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
__ ldr(r0, FieldMemOperand(cp, kGlobalOffset));
__ ldr(r0, FieldMemOperand(r0, GlobalObject::kNativeContextOffset));
__ ldr(r0, FieldMemOperand(r0, kGlobalOffset));
__ ldr(r0, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
// Push the receiver.
// r0: receiver
__ bind(&push_receiver);
__ push(r0);
// Copy all arguments from the array to the stack.
Label entry, loop;
__ ldr(r0, MemOperand(fp, kIndexOffset));
__ b(&entry);
// Load the current argument from the arguments array and push it to the
// stack.
// r0: current argument index
__ bind(&loop);
__ ldr(r1, MemOperand(fp, kArgsOffset));
__ push(r1);
__ push(r0);
// Call the runtime to access the property in the arguments array.
__ CallRuntime(Runtime::kGetProperty, 2);
__ push(r0);
// Use inline caching to access the arguments.
__ ldr(r0, MemOperand(fp, kIndexOffset));
__ add(r0, r0, Operand(1 << kSmiTagSize));
__ str(r0, MemOperand(fp, kIndexOffset));
// Test if the copy loop has finished copying all the elements from the
// arguments object.
__ bind(&entry);
__ ldr(r1, MemOperand(fp, kLimitOffset));
__ cmp(r0, r1);
__ b(ne, &loop);
// Invoke the function.
Label call_proxy;
ParameterCount actual(r0);
__ SmiUntag(r0);
__ ldr(r1, MemOperand(fp, kFunctionOffset));
__ CompareObjectType(r1, r2, r2, JS_FUNCTION_TYPE);
__ b(ne, &call_proxy);
__ InvokeFunction(r1, actual, CALL_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
frame_scope.GenerateLeaveFrame();
__ add(sp, sp, Operand(3 * kPointerSize));
__ Jump(lr);
// Invoke the function proxy.
__ bind(&call_proxy);
__ push(r1); // add function proxy as last argument
__ add(r0, r0, Operand(1));
__ mov(r2, Operand::Zero());
__ SetCallKind(r5, CALL_AS_METHOD);
__ GetBuiltinEntry(r3, Builtins::CALL_FUNCTION_PROXY);
__ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
// Tear down the internal frame and remove function, receiver and args.
}
__ add(sp, sp, Operand(3 * kPointerSize));
__ Jump(lr);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(r0);
__ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | fp.bit() | lr.bit());
__ add(fp, sp, Operand(3 * kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ ldr(r1, MemOperand(fp, -3 * kPointerSize));
__ mov(sp, fp);
__ ldm(ia_w, sp, fp.bit() | lr.bit());
__ add(sp, sp, Operand::PointerOffsetFromSmiKey(r1));
__ add(sp, sp, Operand(kPointerSize)); // adjust for receiver
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : actual number of arguments
// -- r1 : function (passed through to callee)
// -- r2 : expected number of arguments
// -- r3 : code entry to call
// -- r5 : call kind information
// -----------------------------------
Label invoke, dont_adapt_arguments;
Label enough, too_few;
__ cmp(r0, r2);
__ b(lt, &too_few);
__ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
__ b(eq, &dont_adapt_arguments);
{ // Enough parameters: actual >= expected
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Calculate copy start address into r0 and copy end address into r2.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: code entry to call
__ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0));
// adjust for return address and receiver
__ add(r0, r0, Operand(2 * kPointerSize));
__ sub(r2, r0, Operand(r2, LSL, kPointerSizeLog2));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: copy end address
// r3: code entry to call
Label copy;
__ bind(&copy);
__ ldr(ip, MemOperand(r0, 0));
__ push(ip);
__ cmp(r0, r2); // Compare before moving to next argument.
__ sub(r0, r0, Operand(kPointerSize));
__ b(ne, &copy);
__ b(&invoke);
}
{ // Too few parameters: Actual < expected
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// Calculate copy start address into r0 and copy end address is fp.
// r0: actual number of arguments as a smi
// r1: function
// r2: expected number of arguments
// r3: code entry to call
__ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0));
// Copy the arguments (including the receiver) to the new stack frame.
// r0: copy start address
// r1: function
// r2: expected number of arguments
// r3: code entry to call
Label copy;
__ bind(&copy);
// Adjust load for return address and receiver.
__ ldr(ip, MemOperand(r0, 2 * kPointerSize));
__ push(ip);
__ cmp(r0, fp); // Compare before moving to next argument.
__ sub(r0, r0, Operand(kPointerSize));
__ b(ne, &copy);
// Fill the remaining expected arguments with undefined.
// r1: function
// r2: expected number of arguments
// r3: code entry to call
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ sub(r2, fp, Operand(r2, LSL, kPointerSizeLog2));
__ sub(r2, r2, Operand(4 * kPointerSize)); // Adjust for frame.
Label fill;
__ bind(&fill);
__ push(ip);
__ cmp(sp, r2);
__ b(ne, &fill);
}
// Call the entry point.
__ bind(&invoke);
__ Call(r3);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Jump(lr);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ Jump(r3);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM