e64c79c2e7
BUG=None R=svenpanne@chromium.org Review URL: https://codereview.chromium.org/17176003 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@15217 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2455 lines
81 KiB
C++
2455 lines
81 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "v8.h"
|
|
|
|
#include "ast.h"
|
|
#include "bootstrapper.h"
|
|
#include "codegen.h"
|
|
#include "compilation-cache.h"
|
|
#include "debug.h"
|
|
#include "deoptimizer.h"
|
|
#include "heap-profiler.h"
|
|
#include "hydrogen.h"
|
|
#include "isolate.h"
|
|
#include "lithium-allocator.h"
|
|
#include "log.h"
|
|
#include "marking-thread.h"
|
|
#include "messages.h"
|
|
#include "platform.h"
|
|
#include "regexp-stack.h"
|
|
#include "runtime-profiler.h"
|
|
#include "scopeinfo.h"
|
|
#include "serialize.h"
|
|
#include "simulator.h"
|
|
#include "spaces.h"
|
|
#include "stub-cache.h"
|
|
#include "sweeper-thread.h"
|
|
#include "version.h"
|
|
#include "vm-state-inl.h"
|
|
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
Atomic32 ThreadId::highest_thread_id_ = 0;
|
|
|
|
int ThreadId::AllocateThreadId() {
|
|
int new_id = NoBarrier_AtomicIncrement(&highest_thread_id_, 1);
|
|
return new_id;
|
|
}
|
|
|
|
|
|
int ThreadId::GetCurrentThreadId() {
|
|
int thread_id = Thread::GetThreadLocalInt(Isolate::thread_id_key_);
|
|
if (thread_id == 0) {
|
|
thread_id = AllocateThreadId();
|
|
Thread::SetThreadLocalInt(Isolate::thread_id_key_, thread_id);
|
|
}
|
|
return thread_id;
|
|
}
|
|
|
|
|
|
ThreadLocalTop::ThreadLocalTop() {
|
|
InitializeInternal();
|
|
// This flag may be set using v8::V8::IgnoreOutOfMemoryException()
|
|
// before an isolate is initialized. The initialize methods below do
|
|
// not touch it to preserve its value.
|
|
ignore_out_of_memory_ = false;
|
|
}
|
|
|
|
|
|
void ThreadLocalTop::InitializeInternal() {
|
|
c_entry_fp_ = 0;
|
|
handler_ = 0;
|
|
#ifdef USE_SIMULATOR
|
|
simulator_ = NULL;
|
|
#endif
|
|
js_entry_sp_ = NULL;
|
|
external_callback_ = NULL;
|
|
current_vm_state_ = EXTERNAL;
|
|
try_catch_handler_address_ = NULL;
|
|
context_ = NULL;
|
|
thread_id_ = ThreadId::Invalid();
|
|
external_caught_exception_ = false;
|
|
failed_access_check_callback_ = NULL;
|
|
save_context_ = NULL;
|
|
catcher_ = NULL;
|
|
top_lookup_result_ = NULL;
|
|
|
|
// These members are re-initialized later after deserialization
|
|
// is complete.
|
|
pending_exception_ = NULL;
|
|
has_pending_message_ = false;
|
|
pending_message_obj_ = NULL;
|
|
pending_message_script_ = NULL;
|
|
scheduled_exception_ = NULL;
|
|
}
|
|
|
|
|
|
void ThreadLocalTop::Initialize() {
|
|
InitializeInternal();
|
|
#ifdef USE_SIMULATOR
|
|
#ifdef V8_TARGET_ARCH_ARM
|
|
simulator_ = Simulator::current(isolate_);
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
simulator_ = Simulator::current(isolate_);
|
|
#endif
|
|
#endif
|
|
thread_id_ = ThreadId::Current();
|
|
}
|
|
|
|
|
|
v8::TryCatch* ThreadLocalTop::TryCatchHandler() {
|
|
return TRY_CATCH_FROM_ADDRESS(try_catch_handler_address());
|
|
}
|
|
|
|
|
|
int SystemThreadManager::NumberOfParallelSystemThreads(
|
|
ParallelSystemComponent type) {
|
|
int number_of_threads = Min(OS::NumberOfCores(), kMaxThreads);
|
|
ASSERT(number_of_threads > 0);
|
|
if (number_of_threads == 1) {
|
|
return 0;
|
|
}
|
|
if (type == PARALLEL_SWEEPING) {
|
|
return number_of_threads;
|
|
} else if (type == CONCURRENT_SWEEPING) {
|
|
return number_of_threads - 1;
|
|
} else if (type == PARALLEL_MARKING) {
|
|
return number_of_threads;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
// Create a dummy thread that will wait forever on a semaphore. The only
|
|
// purpose for this thread is to have some stack area to save essential data
|
|
// into for use by a stacks only core dump (aka minidump).
|
|
class PreallocatedMemoryThread: public Thread {
|
|
public:
|
|
char* data() {
|
|
if (data_ready_semaphore_ != NULL) {
|
|
// Initial access is guarded until the data has been published.
|
|
data_ready_semaphore_->Wait();
|
|
delete data_ready_semaphore_;
|
|
data_ready_semaphore_ = NULL;
|
|
}
|
|
return data_;
|
|
}
|
|
|
|
unsigned length() {
|
|
if (data_ready_semaphore_ != NULL) {
|
|
// Initial access is guarded until the data has been published.
|
|
data_ready_semaphore_->Wait();
|
|
delete data_ready_semaphore_;
|
|
data_ready_semaphore_ = NULL;
|
|
}
|
|
return length_;
|
|
}
|
|
|
|
// Stop the PreallocatedMemoryThread and release its resources.
|
|
void StopThread() {
|
|
keep_running_ = false;
|
|
wait_for_ever_semaphore_->Signal();
|
|
|
|
// Wait for the thread to terminate.
|
|
Join();
|
|
|
|
if (data_ready_semaphore_ != NULL) {
|
|
delete data_ready_semaphore_;
|
|
data_ready_semaphore_ = NULL;
|
|
}
|
|
|
|
delete wait_for_ever_semaphore_;
|
|
wait_for_ever_semaphore_ = NULL;
|
|
}
|
|
|
|
protected:
|
|
// When the thread starts running it will allocate a fixed number of bytes
|
|
// on the stack and publish the location of this memory for others to use.
|
|
void Run() {
|
|
EmbeddedVector<char, 15 * 1024> local_buffer;
|
|
|
|
// Initialize the buffer with a known good value.
|
|
OS::StrNCpy(local_buffer, "Trace data was not generated.\n",
|
|
local_buffer.length());
|
|
|
|
// Publish the local buffer and signal its availability.
|
|
data_ = local_buffer.start();
|
|
length_ = local_buffer.length();
|
|
data_ready_semaphore_->Signal();
|
|
|
|
while (keep_running_) {
|
|
// This thread will wait here until the end of time.
|
|
wait_for_ever_semaphore_->Wait();
|
|
}
|
|
|
|
// Make sure we access the buffer after the wait to remove all possibility
|
|
// of it being optimized away.
|
|
OS::StrNCpy(local_buffer, "PreallocatedMemoryThread shutting down.\n",
|
|
local_buffer.length());
|
|
}
|
|
|
|
|
|
private:
|
|
PreallocatedMemoryThread()
|
|
: Thread("v8:PreallocMem"),
|
|
keep_running_(true),
|
|
wait_for_ever_semaphore_(OS::CreateSemaphore(0)),
|
|
data_ready_semaphore_(OS::CreateSemaphore(0)),
|
|
data_(NULL),
|
|
length_(0) {
|
|
}
|
|
|
|
// Used to make sure that the thread keeps looping even for spurious wakeups.
|
|
bool keep_running_;
|
|
|
|
// This semaphore is used by the PreallocatedMemoryThread to wait for ever.
|
|
Semaphore* wait_for_ever_semaphore_;
|
|
// Semaphore to signal that the data has been initialized.
|
|
Semaphore* data_ready_semaphore_;
|
|
|
|
// Location and size of the preallocated memory block.
|
|
char* data_;
|
|
unsigned length_;
|
|
|
|
friend class Isolate;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(PreallocatedMemoryThread);
|
|
};
|
|
|
|
|
|
void Isolate::PreallocatedMemoryThreadStart() {
|
|
if (preallocated_memory_thread_ != NULL) return;
|
|
preallocated_memory_thread_ = new PreallocatedMemoryThread();
|
|
preallocated_memory_thread_->Start();
|
|
}
|
|
|
|
|
|
void Isolate::PreallocatedMemoryThreadStop() {
|
|
if (preallocated_memory_thread_ == NULL) return;
|
|
preallocated_memory_thread_->StopThread();
|
|
// Done with the thread entirely.
|
|
delete preallocated_memory_thread_;
|
|
preallocated_memory_thread_ = NULL;
|
|
}
|
|
|
|
|
|
void Isolate::PreallocatedStorageInit(size_t size) {
|
|
ASSERT(free_list_.next_ == &free_list_);
|
|
ASSERT(free_list_.previous_ == &free_list_);
|
|
PreallocatedStorage* free_chunk =
|
|
reinterpret_cast<PreallocatedStorage*>(new char[size]);
|
|
free_list_.next_ = free_list_.previous_ = free_chunk;
|
|
free_chunk->next_ = free_chunk->previous_ = &free_list_;
|
|
free_chunk->size_ = size - sizeof(PreallocatedStorage);
|
|
preallocated_storage_preallocated_ = true;
|
|
}
|
|
|
|
|
|
void* Isolate::PreallocatedStorageNew(size_t size) {
|
|
if (!preallocated_storage_preallocated_) {
|
|
return FreeStoreAllocationPolicy().New(size);
|
|
}
|
|
ASSERT(free_list_.next_ != &free_list_);
|
|
ASSERT(free_list_.previous_ != &free_list_);
|
|
|
|
size = (size + kPointerSize - 1) & ~(kPointerSize - 1);
|
|
// Search for exact fit.
|
|
for (PreallocatedStorage* storage = free_list_.next_;
|
|
storage != &free_list_;
|
|
storage = storage->next_) {
|
|
if (storage->size_ == size) {
|
|
storage->Unlink();
|
|
storage->LinkTo(&in_use_list_);
|
|
return reinterpret_cast<void*>(storage + 1);
|
|
}
|
|
}
|
|
// Search for first fit.
|
|
for (PreallocatedStorage* storage = free_list_.next_;
|
|
storage != &free_list_;
|
|
storage = storage->next_) {
|
|
if (storage->size_ >= size + sizeof(PreallocatedStorage)) {
|
|
storage->Unlink();
|
|
storage->LinkTo(&in_use_list_);
|
|
PreallocatedStorage* left_over =
|
|
reinterpret_cast<PreallocatedStorage*>(
|
|
reinterpret_cast<char*>(storage + 1) + size);
|
|
left_over->size_ = storage->size_ - size - sizeof(PreallocatedStorage);
|
|
ASSERT(size + left_over->size_ + sizeof(PreallocatedStorage) ==
|
|
storage->size_);
|
|
storage->size_ = size;
|
|
left_over->LinkTo(&free_list_);
|
|
return reinterpret_cast<void*>(storage + 1);
|
|
}
|
|
}
|
|
// Allocation failure.
|
|
ASSERT(false);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
// We don't attempt to coalesce.
|
|
void Isolate::PreallocatedStorageDelete(void* p) {
|
|
if (p == NULL) {
|
|
return;
|
|
}
|
|
if (!preallocated_storage_preallocated_) {
|
|
FreeStoreAllocationPolicy::Delete(p);
|
|
return;
|
|
}
|
|
PreallocatedStorage* storage = reinterpret_cast<PreallocatedStorage*>(p) - 1;
|
|
ASSERT(storage->next_->previous_ == storage);
|
|
ASSERT(storage->previous_->next_ == storage);
|
|
storage->Unlink();
|
|
storage->LinkTo(&free_list_);
|
|
}
|
|
|
|
Isolate* Isolate::default_isolate_ = NULL;
|
|
Thread::LocalStorageKey Isolate::isolate_key_;
|
|
Thread::LocalStorageKey Isolate::thread_id_key_;
|
|
Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_;
|
|
#ifdef DEBUG
|
|
Thread::LocalStorageKey PerThreadAssertScopeBase::thread_local_key;
|
|
#endif // DEBUG
|
|
Mutex* Isolate::process_wide_mutex_ = OS::CreateMutex();
|
|
Isolate::ThreadDataTable* Isolate::thread_data_table_ = NULL;
|
|
Atomic32 Isolate::isolate_counter_ = 0;
|
|
|
|
Isolate::PerIsolateThreadData* Isolate::AllocatePerIsolateThreadData(
|
|
ThreadId thread_id) {
|
|
ASSERT(!thread_id.Equals(ThreadId::Invalid()));
|
|
PerIsolateThreadData* per_thread = new PerIsolateThreadData(this, thread_id);
|
|
{
|
|
ScopedLock lock(process_wide_mutex_);
|
|
ASSERT(thread_data_table_->Lookup(this, thread_id) == NULL);
|
|
thread_data_table_->Insert(per_thread);
|
|
ASSERT(thread_data_table_->Lookup(this, thread_id) == per_thread);
|
|
}
|
|
return per_thread;
|
|
}
|
|
|
|
|
|
Isolate::PerIsolateThreadData*
|
|
Isolate::FindOrAllocatePerThreadDataForThisThread() {
|
|
ThreadId thread_id = ThreadId::Current();
|
|
PerIsolateThreadData* per_thread = NULL;
|
|
{
|
|
ScopedLock lock(process_wide_mutex_);
|
|
per_thread = thread_data_table_->Lookup(this, thread_id);
|
|
if (per_thread == NULL) {
|
|
per_thread = AllocatePerIsolateThreadData(thread_id);
|
|
}
|
|
}
|
|
return per_thread;
|
|
}
|
|
|
|
|
|
Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() {
|
|
ThreadId thread_id = ThreadId::Current();
|
|
return FindPerThreadDataForThread(thread_id);
|
|
}
|
|
|
|
|
|
Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread(
|
|
ThreadId thread_id) {
|
|
PerIsolateThreadData* per_thread = NULL;
|
|
{
|
|
ScopedLock lock(process_wide_mutex_);
|
|
per_thread = thread_data_table_->Lookup(this, thread_id);
|
|
}
|
|
return per_thread;
|
|
}
|
|
|
|
|
|
void Isolate::EnsureDefaultIsolate() {
|
|
ScopedLock lock(process_wide_mutex_);
|
|
if (default_isolate_ == NULL) {
|
|
isolate_key_ = Thread::CreateThreadLocalKey();
|
|
thread_id_key_ = Thread::CreateThreadLocalKey();
|
|
per_isolate_thread_data_key_ = Thread::CreateThreadLocalKey();
|
|
#ifdef DEBUG
|
|
PerThreadAssertScopeBase::thread_local_key = Thread::CreateThreadLocalKey();
|
|
#endif // DEBUG
|
|
thread_data_table_ = new Isolate::ThreadDataTable();
|
|
default_isolate_ = new Isolate();
|
|
}
|
|
// Can't use SetIsolateThreadLocals(default_isolate_, NULL) here
|
|
// because a non-null thread data may be already set.
|
|
if (Thread::GetThreadLocal(isolate_key_) == NULL) {
|
|
Thread::SetThreadLocal(isolate_key_, default_isolate_);
|
|
}
|
|
}
|
|
|
|
struct StaticInitializer {
|
|
StaticInitializer() {
|
|
Isolate::EnsureDefaultIsolate();
|
|
}
|
|
} static_initializer;
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
Debugger* Isolate::GetDefaultIsolateDebugger() {
|
|
EnsureDefaultIsolate();
|
|
return default_isolate_->debugger();
|
|
}
|
|
#endif
|
|
|
|
|
|
StackGuard* Isolate::GetDefaultIsolateStackGuard() {
|
|
EnsureDefaultIsolate();
|
|
return default_isolate_->stack_guard();
|
|
}
|
|
|
|
|
|
void Isolate::EnterDefaultIsolate() {
|
|
EnsureDefaultIsolate();
|
|
ASSERT(default_isolate_ != NULL);
|
|
|
|
PerIsolateThreadData* data = CurrentPerIsolateThreadData();
|
|
// If not yet in default isolate - enter it.
|
|
if (data == NULL || data->isolate() != default_isolate_) {
|
|
default_isolate_->Enter();
|
|
}
|
|
}
|
|
|
|
|
|
v8::Isolate* Isolate::GetDefaultIsolateForLocking() {
|
|
EnsureDefaultIsolate();
|
|
return reinterpret_cast<v8::Isolate*>(default_isolate_);
|
|
}
|
|
|
|
|
|
Address Isolate::get_address_from_id(Isolate::AddressId id) {
|
|
return isolate_addresses_[id];
|
|
}
|
|
|
|
|
|
char* Isolate::Iterate(ObjectVisitor* v, char* thread_storage) {
|
|
ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
|
|
Iterate(v, thread);
|
|
return thread_storage + sizeof(ThreadLocalTop);
|
|
}
|
|
|
|
|
|
void Isolate::IterateThread(ThreadVisitor* v, char* t) {
|
|
ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t);
|
|
v->VisitThread(this, thread);
|
|
}
|
|
|
|
|
|
void Isolate::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
|
|
// Visit the roots from the top for a given thread.
|
|
Object* pending;
|
|
// The pending exception can sometimes be a failure. We can't show
|
|
// that to the GC, which only understands objects.
|
|
if (thread->pending_exception_->ToObject(&pending)) {
|
|
v->VisitPointer(&pending);
|
|
thread->pending_exception_ = pending; // In case GC updated it.
|
|
}
|
|
v->VisitPointer(&(thread->pending_message_obj_));
|
|
v->VisitPointer(BitCast<Object**>(&(thread->pending_message_script_)));
|
|
v->VisitPointer(BitCast<Object**>(&(thread->context_)));
|
|
Object* scheduled;
|
|
if (thread->scheduled_exception_->ToObject(&scheduled)) {
|
|
v->VisitPointer(&scheduled);
|
|
thread->scheduled_exception_ = scheduled;
|
|
}
|
|
|
|
for (v8::TryCatch* block = thread->TryCatchHandler();
|
|
block != NULL;
|
|
block = TRY_CATCH_FROM_ADDRESS(block->next_)) {
|
|
v->VisitPointer(BitCast<Object**>(&(block->exception_)));
|
|
v->VisitPointer(BitCast<Object**>(&(block->message_)));
|
|
}
|
|
|
|
// Iterate over pointers on native execution stack.
|
|
for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) {
|
|
it.frame()->Iterate(v);
|
|
}
|
|
|
|
// Iterate pointers in live lookup results.
|
|
thread->top_lookup_result_->Iterate(v);
|
|
}
|
|
|
|
|
|
void Isolate::Iterate(ObjectVisitor* v) {
|
|
ThreadLocalTop* current_t = thread_local_top();
|
|
Iterate(v, current_t);
|
|
}
|
|
|
|
void Isolate::IterateDeferredHandles(ObjectVisitor* visitor) {
|
|
for (DeferredHandles* deferred = deferred_handles_head_;
|
|
deferred != NULL;
|
|
deferred = deferred->next_) {
|
|
deferred->Iterate(visitor);
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
bool Isolate::IsDeferredHandle(Object** handle) {
|
|
// Each DeferredHandles instance keeps the handles to one job in the
|
|
// parallel recompilation queue, containing a list of blocks. Each block
|
|
// contains kHandleBlockSize handles except for the first block, which may
|
|
// not be fully filled.
|
|
// We iterate through all the blocks to see whether the argument handle
|
|
// belongs to one of the blocks. If so, it is deferred.
|
|
for (DeferredHandles* deferred = deferred_handles_head_;
|
|
deferred != NULL;
|
|
deferred = deferred->next_) {
|
|
List<Object**>* blocks = &deferred->blocks_;
|
|
for (int i = 0; i < blocks->length(); i++) {
|
|
Object** block_limit = (i == 0) ? deferred->first_block_limit_
|
|
: blocks->at(i) + kHandleBlockSize;
|
|
if (blocks->at(i) <= handle && handle < block_limit) return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
#endif // DEBUG
|
|
|
|
|
|
void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) {
|
|
// The ARM simulator has a separate JS stack. We therefore register
|
|
// the C++ try catch handler with the simulator and get back an
|
|
// address that can be used for comparisons with addresses into the
|
|
// JS stack. When running without the simulator, the address
|
|
// returned will be the address of the C++ try catch handler itself.
|
|
Address address = reinterpret_cast<Address>(
|
|
SimulatorStack::RegisterCTryCatch(reinterpret_cast<uintptr_t>(that)));
|
|
thread_local_top()->set_try_catch_handler_address(address);
|
|
}
|
|
|
|
|
|
void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) {
|
|
ASSERT(thread_local_top()->TryCatchHandler() == that);
|
|
thread_local_top()->set_try_catch_handler_address(
|
|
reinterpret_cast<Address>(that->next_));
|
|
thread_local_top()->catcher_ = NULL;
|
|
SimulatorStack::UnregisterCTryCatch();
|
|
}
|
|
|
|
|
|
Handle<String> Isolate::StackTraceString() {
|
|
if (stack_trace_nesting_level_ == 0) {
|
|
stack_trace_nesting_level_++;
|
|
HeapStringAllocator allocator;
|
|
StringStream::ClearMentionedObjectCache();
|
|
StringStream accumulator(&allocator);
|
|
incomplete_message_ = &accumulator;
|
|
PrintStack(&accumulator);
|
|
Handle<String> stack_trace = accumulator.ToString();
|
|
incomplete_message_ = NULL;
|
|
stack_trace_nesting_level_ = 0;
|
|
return stack_trace;
|
|
} else if (stack_trace_nesting_level_ == 1) {
|
|
stack_trace_nesting_level_++;
|
|
OS::PrintError(
|
|
"\n\nAttempt to print stack while printing stack (double fault)\n");
|
|
OS::PrintError(
|
|
"If you are lucky you may find a partial stack dump on stdout.\n\n");
|
|
incomplete_message_->OutputToStdOut();
|
|
return factory()->empty_string();
|
|
} else {
|
|
OS::Abort();
|
|
// Unreachable
|
|
return factory()->empty_string();
|
|
}
|
|
}
|
|
|
|
|
|
void Isolate::PushStackTraceAndDie(unsigned int magic,
|
|
Object* object,
|
|
Map* map,
|
|
unsigned int magic2) {
|
|
const int kMaxStackTraceSize = 8192;
|
|
Handle<String> trace = StackTraceString();
|
|
uint8_t buffer[kMaxStackTraceSize];
|
|
int length = Min(kMaxStackTraceSize - 1, trace->length());
|
|
String::WriteToFlat(*trace, buffer, 0, length);
|
|
buffer[length] = '\0';
|
|
// TODO(dcarney): convert buffer to utf8?
|
|
OS::PrintError("Stacktrace (%x-%x) %p %p: %s\n",
|
|
magic, magic2,
|
|
static_cast<void*>(object), static_cast<void*>(map),
|
|
reinterpret_cast<char*>(buffer));
|
|
OS::Abort();
|
|
}
|
|
|
|
|
|
// Determines whether the given stack frame should be displayed in
|
|
// a stack trace. The caller is the error constructor that asked
|
|
// for the stack trace to be collected. The first time a construct
|
|
// call to this function is encountered it is skipped. The seen_caller
|
|
// in/out parameter is used to remember if the caller has been seen
|
|
// yet.
|
|
static bool IsVisibleInStackTrace(StackFrame* raw_frame,
|
|
Object* caller,
|
|
bool* seen_caller) {
|
|
// Only display JS frames.
|
|
if (!raw_frame->is_java_script()) return false;
|
|
JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
|
|
Object* raw_fun = frame->function();
|
|
// Not sure when this can happen but skip it just in case.
|
|
if (!raw_fun->IsJSFunction()) return false;
|
|
if ((raw_fun == caller) && !(*seen_caller)) {
|
|
*seen_caller = true;
|
|
return false;
|
|
}
|
|
// Skip all frames until we've seen the caller.
|
|
if (!(*seen_caller)) return false;
|
|
// Also, skip non-visible built-in functions and any call with the builtins
|
|
// object as receiver, so as to not reveal either the builtins object or
|
|
// an internal function.
|
|
// The --builtins-in-stack-traces command line flag allows including
|
|
// internal call sites in the stack trace for debugging purposes.
|
|
if (!FLAG_builtins_in_stack_traces) {
|
|
JSFunction* fun = JSFunction::cast(raw_fun);
|
|
if (frame->receiver()->IsJSBuiltinsObject() ||
|
|
(fun->IsBuiltin() && !fun->shared()->native())) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
Handle<JSArray> Isolate::CaptureSimpleStackTrace(Handle<JSObject> error_object,
|
|
Handle<Object> caller,
|
|
int limit) {
|
|
limit = Max(limit, 0); // Ensure that limit is not negative.
|
|
int initial_size = Min(limit, 10);
|
|
Handle<FixedArray> elements =
|
|
factory()->NewFixedArrayWithHoles(initial_size * 4 + 1);
|
|
|
|
// If the caller parameter is a function we skip frames until we're
|
|
// under it before starting to collect.
|
|
bool seen_caller = !caller->IsJSFunction();
|
|
// First element is reserved to store the number of non-strict frames.
|
|
int cursor = 1;
|
|
int frames_seen = 0;
|
|
int non_strict_frames = 0;
|
|
bool encountered_strict_function = false;
|
|
for (StackFrameIterator iter(this);
|
|
!iter.done() && frames_seen < limit;
|
|
iter.Advance()) {
|
|
StackFrame* raw_frame = iter.frame();
|
|
if (IsVisibleInStackTrace(raw_frame, *caller, &seen_caller)) {
|
|
frames_seen++;
|
|
JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
|
|
// Set initial size to the maximum inlining level + 1 for the outermost
|
|
// function.
|
|
List<FrameSummary> frames(Compiler::kMaxInliningLevels + 1);
|
|
frame->Summarize(&frames);
|
|
for (int i = frames.length() - 1; i >= 0; i--) {
|
|
if (cursor + 4 > elements->length()) {
|
|
int new_capacity = JSObject::NewElementsCapacity(elements->length());
|
|
Handle<FixedArray> new_elements =
|
|
factory()->NewFixedArrayWithHoles(new_capacity);
|
|
for (int i = 0; i < cursor; i++) {
|
|
new_elements->set(i, elements->get(i));
|
|
}
|
|
elements = new_elements;
|
|
}
|
|
ASSERT(cursor + 4 <= elements->length());
|
|
|
|
Handle<Object> recv = frames[i].receiver();
|
|
Handle<JSFunction> fun = frames[i].function();
|
|
Handle<Code> code = frames[i].code();
|
|
Handle<Smi> offset(Smi::FromInt(frames[i].offset()), this);
|
|
// The stack trace API should not expose receivers and function
|
|
// objects on frames deeper than the top-most one with a strict
|
|
// mode function. The number of non-strict frames is stored as
|
|
// first element in the result array.
|
|
if (!encountered_strict_function) {
|
|
if (!fun->shared()->is_classic_mode()) {
|
|
encountered_strict_function = true;
|
|
} else {
|
|
non_strict_frames++;
|
|
}
|
|
}
|
|
elements->set(cursor++, *recv);
|
|
elements->set(cursor++, *fun);
|
|
elements->set(cursor++, *code);
|
|
elements->set(cursor++, *offset);
|
|
}
|
|
}
|
|
}
|
|
elements->set(0, Smi::FromInt(non_strict_frames));
|
|
Handle<JSArray> result = factory()->NewJSArrayWithElements(elements);
|
|
result->set_length(Smi::FromInt(cursor));
|
|
return result;
|
|
}
|
|
|
|
|
|
void Isolate::CaptureAndSetDetailedStackTrace(Handle<JSObject> error_object) {
|
|
if (capture_stack_trace_for_uncaught_exceptions_) {
|
|
// Capture stack trace for a detailed exception message.
|
|
Handle<String> key = factory()->hidden_stack_trace_string();
|
|
Handle<JSArray> stack_trace = CaptureCurrentStackTrace(
|
|
stack_trace_for_uncaught_exceptions_frame_limit_,
|
|
stack_trace_for_uncaught_exceptions_options_);
|
|
JSObject::SetHiddenProperty(error_object, key, stack_trace);
|
|
}
|
|
}
|
|
|
|
|
|
Handle<JSArray> Isolate::CaptureCurrentStackTrace(
|
|
int frame_limit, StackTrace::StackTraceOptions options) {
|
|
// Ensure no negative values.
|
|
int limit = Max(frame_limit, 0);
|
|
Handle<JSArray> stack_trace = factory()->NewJSArray(frame_limit);
|
|
|
|
Handle<String> column_key =
|
|
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("column"));
|
|
Handle<String> line_key =
|
|
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("lineNumber"));
|
|
Handle<String> script_key =
|
|
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("scriptName"));
|
|
Handle<String> script_name_or_source_url_key =
|
|
factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("scriptNameOrSourceURL"));
|
|
Handle<String> function_key =
|
|
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("functionName"));
|
|
Handle<String> eval_key =
|
|
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("isEval"));
|
|
Handle<String> constructor_key =
|
|
factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("isConstructor"));
|
|
|
|
StackTraceFrameIterator it(this);
|
|
int frames_seen = 0;
|
|
while (!it.done() && (frames_seen < limit)) {
|
|
JavaScriptFrame* frame = it.frame();
|
|
// Set initial size to the maximum inlining level + 1 for the outermost
|
|
// function.
|
|
List<FrameSummary> frames(Compiler::kMaxInliningLevels + 1);
|
|
frame->Summarize(&frames);
|
|
for (int i = frames.length() - 1; i >= 0 && frames_seen < limit; i--) {
|
|
// Create a JSObject to hold the information for the StackFrame.
|
|
Handle<JSObject> stack_frame = factory()->NewJSObject(object_function());
|
|
|
|
Handle<JSFunction> fun = frames[i].function();
|
|
Handle<Script> script(Script::cast(fun->shared()->script()));
|
|
|
|
if (options & StackTrace::kLineNumber) {
|
|
int script_line_offset = script->line_offset()->value();
|
|
int position = frames[i].code()->SourcePosition(frames[i].pc());
|
|
int line_number = GetScriptLineNumber(script, position);
|
|
// line_number is already shifted by the script_line_offset.
|
|
int relative_line_number = line_number - script_line_offset;
|
|
if (options & StackTrace::kColumnOffset && relative_line_number >= 0) {
|
|
Handle<FixedArray> line_ends(FixedArray::cast(script->line_ends()));
|
|
int start = (relative_line_number == 0) ? 0 :
|
|
Smi::cast(line_ends->get(relative_line_number - 1))->value() + 1;
|
|
int column_offset = position - start;
|
|
if (relative_line_number == 0) {
|
|
// For the case where the code is on the same line as the script
|
|
// tag.
|
|
column_offset += script->column_offset()->value();
|
|
}
|
|
CHECK_NOT_EMPTY_HANDLE(
|
|
this,
|
|
JSObject::SetLocalPropertyIgnoreAttributes(
|
|
stack_frame, column_key,
|
|
Handle<Smi>(Smi::FromInt(column_offset + 1), this), NONE));
|
|
}
|
|
CHECK_NOT_EMPTY_HANDLE(
|
|
this,
|
|
JSObject::SetLocalPropertyIgnoreAttributes(
|
|
stack_frame, line_key,
|
|
Handle<Smi>(Smi::FromInt(line_number + 1), this), NONE));
|
|
}
|
|
|
|
if (options & StackTrace::kScriptName) {
|
|
Handle<Object> script_name(script->name(), this);
|
|
CHECK_NOT_EMPTY_HANDLE(this,
|
|
JSObject::SetLocalPropertyIgnoreAttributes(
|
|
stack_frame, script_key, script_name, NONE));
|
|
}
|
|
|
|
if (options & StackTrace::kScriptNameOrSourceURL) {
|
|
Handle<Object> result = GetScriptNameOrSourceURL(script);
|
|
CHECK_NOT_EMPTY_HANDLE(this,
|
|
JSObject::SetLocalPropertyIgnoreAttributes(
|
|
stack_frame, script_name_or_source_url_key,
|
|
result, NONE));
|
|
}
|
|
|
|
if (options & StackTrace::kFunctionName) {
|
|
Handle<Object> fun_name(fun->shared()->name(), this);
|
|
if (!fun_name->BooleanValue()) {
|
|
fun_name = Handle<Object>(fun->shared()->inferred_name(), this);
|
|
}
|
|
CHECK_NOT_EMPTY_HANDLE(this,
|
|
JSObject::SetLocalPropertyIgnoreAttributes(
|
|
stack_frame, function_key, fun_name, NONE));
|
|
}
|
|
|
|
if (options & StackTrace::kIsEval) {
|
|
int type = Smi::cast(script->compilation_type())->value();
|
|
Handle<Object> is_eval = (type == Script::COMPILATION_TYPE_EVAL) ?
|
|
factory()->true_value() : factory()->false_value();
|
|
CHECK_NOT_EMPTY_HANDLE(this,
|
|
JSObject::SetLocalPropertyIgnoreAttributes(
|
|
stack_frame, eval_key, is_eval, NONE));
|
|
}
|
|
|
|
if (options & StackTrace::kIsConstructor) {
|
|
Handle<Object> is_constructor = (frames[i].is_constructor()) ?
|
|
factory()->true_value() : factory()->false_value();
|
|
CHECK_NOT_EMPTY_HANDLE(this,
|
|
JSObject::SetLocalPropertyIgnoreAttributes(
|
|
stack_frame, constructor_key,
|
|
is_constructor, NONE));
|
|
}
|
|
|
|
FixedArray::cast(stack_trace->elements())->set(frames_seen, *stack_frame);
|
|
frames_seen++;
|
|
}
|
|
it.Advance();
|
|
}
|
|
|
|
stack_trace->set_length(Smi::FromInt(frames_seen));
|
|
return stack_trace;
|
|
}
|
|
|
|
|
|
void Isolate::PrintStack(FILE* out) {
|
|
if (stack_trace_nesting_level_ == 0) {
|
|
stack_trace_nesting_level_++;
|
|
|
|
StringAllocator* allocator;
|
|
if (preallocated_message_space_ == NULL) {
|
|
allocator = new HeapStringAllocator();
|
|
} else {
|
|
allocator = preallocated_message_space_;
|
|
}
|
|
|
|
StringStream::ClearMentionedObjectCache();
|
|
StringStream accumulator(allocator);
|
|
incomplete_message_ = &accumulator;
|
|
PrintStack(&accumulator);
|
|
accumulator.OutputToFile(out);
|
|
InitializeLoggingAndCounters();
|
|
accumulator.Log();
|
|
incomplete_message_ = NULL;
|
|
stack_trace_nesting_level_ = 0;
|
|
if (preallocated_message_space_ == NULL) {
|
|
// Remove the HeapStringAllocator created above.
|
|
delete allocator;
|
|
}
|
|
} else if (stack_trace_nesting_level_ == 1) {
|
|
stack_trace_nesting_level_++;
|
|
OS::PrintError(
|
|
"\n\nAttempt to print stack while printing stack (double fault)\n");
|
|
OS::PrintError(
|
|
"If you are lucky you may find a partial stack dump on stdout.\n\n");
|
|
incomplete_message_->OutputToFile(out);
|
|
}
|
|
}
|
|
|
|
|
|
static void PrintFrames(Isolate* isolate,
|
|
StringStream* accumulator,
|
|
StackFrame::PrintMode mode) {
|
|
StackFrameIterator it(isolate);
|
|
for (int i = 0; !it.done(); it.Advance()) {
|
|
it.frame()->Print(accumulator, mode, i++);
|
|
}
|
|
}
|
|
|
|
|
|
void Isolate::PrintStack(StringStream* accumulator) {
|
|
if (!IsInitialized()) {
|
|
accumulator->Add(
|
|
"\n==== JS stack trace is not available =======================\n\n");
|
|
accumulator->Add(
|
|
"\n==== Isolate for the thread is not initialized =============\n\n");
|
|
return;
|
|
}
|
|
// The MentionedObjectCache is not GC-proof at the moment.
|
|
DisallowHeapAllocation no_gc;
|
|
ASSERT(StringStream::IsMentionedObjectCacheClear());
|
|
|
|
// Avoid printing anything if there are no frames.
|
|
if (c_entry_fp(thread_local_top()) == 0) return;
|
|
|
|
accumulator->Add(
|
|
"\n==== JS stack trace =========================================\n\n");
|
|
PrintFrames(this, accumulator, StackFrame::OVERVIEW);
|
|
|
|
accumulator->Add(
|
|
"\n==== Details ================================================\n\n");
|
|
PrintFrames(this, accumulator, StackFrame::DETAILS);
|
|
|
|
accumulator->PrintMentionedObjectCache();
|
|
accumulator->Add("=====================\n\n");
|
|
}
|
|
|
|
|
|
void Isolate::SetFailedAccessCheckCallback(
|
|
v8::FailedAccessCheckCallback callback) {
|
|
thread_local_top()->failed_access_check_callback_ = callback;
|
|
}
|
|
|
|
|
|
void Isolate::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) {
|
|
if (!thread_local_top()->failed_access_check_callback_) return;
|
|
|
|
ASSERT(receiver->IsAccessCheckNeeded());
|
|
ASSERT(context());
|
|
|
|
// Get the data object from access check info.
|
|
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
|
|
if (!constructor->shared()->IsApiFunction()) return;
|
|
Object* data_obj =
|
|
constructor->shared()->get_api_func_data()->access_check_info();
|
|
if (data_obj == heap_.undefined_value()) return;
|
|
|
|
HandleScope scope(this);
|
|
Handle<JSObject> receiver_handle(receiver);
|
|
Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this);
|
|
{ VMState<EXTERNAL> state(this);
|
|
thread_local_top()->failed_access_check_callback_(
|
|
v8::Utils::ToLocal(receiver_handle),
|
|
type,
|
|
v8::Utils::ToLocal(data));
|
|
}
|
|
}
|
|
|
|
|
|
enum MayAccessDecision {
|
|
YES, NO, UNKNOWN
|
|
};
|
|
|
|
|
|
static MayAccessDecision MayAccessPreCheck(Isolate* isolate,
|
|
JSObject* receiver,
|
|
v8::AccessType type) {
|
|
// During bootstrapping, callback functions are not enabled yet.
|
|
if (isolate->bootstrapper()->IsActive()) return YES;
|
|
|
|
if (receiver->IsJSGlobalProxy()) {
|
|
Object* receiver_context = JSGlobalProxy::cast(receiver)->native_context();
|
|
if (!receiver_context->IsContext()) return NO;
|
|
|
|
// Get the native context of current top context.
|
|
// avoid using Isolate::native_context() because it uses Handle.
|
|
Context* native_context =
|
|
isolate->context()->global_object()->native_context();
|
|
if (receiver_context == native_context) return YES;
|
|
|
|
if (Context::cast(receiver_context)->security_token() ==
|
|
native_context->security_token())
|
|
return YES;
|
|
}
|
|
|
|
return UNKNOWN;
|
|
}
|
|
|
|
|
|
bool Isolate::MayNamedAccess(JSObject* receiver, Object* key,
|
|
v8::AccessType type) {
|
|
ASSERT(receiver->IsAccessCheckNeeded());
|
|
|
|
// The callers of this method are not expecting a GC.
|
|
DisallowHeapAllocation no_gc;
|
|
|
|
// Skip checks for hidden properties access. Note, we do not
|
|
// require existence of a context in this case.
|
|
if (key == heap_.hidden_string()) return true;
|
|
|
|
// Check for compatibility between the security tokens in the
|
|
// current lexical context and the accessed object.
|
|
ASSERT(context());
|
|
|
|
MayAccessDecision decision = MayAccessPreCheck(this, receiver, type);
|
|
if (decision != UNKNOWN) return decision == YES;
|
|
|
|
// Get named access check callback
|
|
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
|
|
if (!constructor->shared()->IsApiFunction()) return false;
|
|
|
|
Object* data_obj =
|
|
constructor->shared()->get_api_func_data()->access_check_info();
|
|
if (data_obj == heap_.undefined_value()) return false;
|
|
|
|
Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback();
|
|
v8::NamedSecurityCallback callback =
|
|
v8::ToCData<v8::NamedSecurityCallback>(fun_obj);
|
|
|
|
if (!callback) return false;
|
|
|
|
HandleScope scope(this);
|
|
Handle<JSObject> receiver_handle(receiver, this);
|
|
Handle<Object> key_handle(key, this);
|
|
Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this);
|
|
LOG(this, ApiNamedSecurityCheck(key));
|
|
bool result = false;
|
|
{
|
|
// Leaving JavaScript.
|
|
VMState<EXTERNAL> state(this);
|
|
result = callback(v8::Utils::ToLocal(receiver_handle),
|
|
v8::Utils::ToLocal(key_handle),
|
|
type,
|
|
v8::Utils::ToLocal(data));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
bool Isolate::MayIndexedAccess(JSObject* receiver,
|
|
uint32_t index,
|
|
v8::AccessType type) {
|
|
ASSERT(receiver->IsAccessCheckNeeded());
|
|
// Check for compatibility between the security tokens in the
|
|
// current lexical context and the accessed object.
|
|
ASSERT(context());
|
|
|
|
MayAccessDecision decision = MayAccessPreCheck(this, receiver, type);
|
|
if (decision != UNKNOWN) return decision == YES;
|
|
|
|
// Get indexed access check callback
|
|
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
|
|
if (!constructor->shared()->IsApiFunction()) return false;
|
|
|
|
Object* data_obj =
|
|
constructor->shared()->get_api_func_data()->access_check_info();
|
|
if (data_obj == heap_.undefined_value()) return false;
|
|
|
|
Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback();
|
|
v8::IndexedSecurityCallback callback =
|
|
v8::ToCData<v8::IndexedSecurityCallback>(fun_obj);
|
|
|
|
if (!callback) return false;
|
|
|
|
HandleScope scope(this);
|
|
Handle<JSObject> receiver_handle(receiver, this);
|
|
Handle<Object> data(AccessCheckInfo::cast(data_obj)->data(), this);
|
|
LOG(this, ApiIndexedSecurityCheck(index));
|
|
bool result = false;
|
|
{
|
|
// Leaving JavaScript.
|
|
VMState<EXTERNAL> state(this);
|
|
result = callback(v8::Utils::ToLocal(receiver_handle),
|
|
index,
|
|
type,
|
|
v8::Utils::ToLocal(data));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
const char* const Isolate::kStackOverflowMessage =
|
|
"Uncaught RangeError: Maximum call stack size exceeded";
|
|
|
|
|
|
Failure* Isolate::StackOverflow() {
|
|
HandleScope scope(this);
|
|
// At this point we cannot create an Error object using its javascript
|
|
// constructor. Instead, we copy the pre-constructed boilerplate and
|
|
// attach the stack trace as a hidden property.
|
|
Handle<String> key = factory()->stack_overflow_string();
|
|
Handle<JSObject> boilerplate =
|
|
Handle<JSObject>::cast(GetProperty(this, js_builtins_object(), key));
|
|
Handle<JSObject> exception = Copy(boilerplate);
|
|
DoThrow(*exception, NULL);
|
|
|
|
// Get stack trace limit.
|
|
Handle<Object> error = GetProperty(js_builtins_object(), "$Error");
|
|
if (!error->IsJSObject()) return Failure::Exception();
|
|
Handle<Object> stack_trace_limit =
|
|
GetProperty(Handle<JSObject>::cast(error), "stackTraceLimit");
|
|
if (!stack_trace_limit->IsNumber()) return Failure::Exception();
|
|
double dlimit = stack_trace_limit->Number();
|
|
int limit = std::isnan(dlimit) ? 0 : static_cast<int>(dlimit);
|
|
|
|
Handle<JSArray> stack_trace = CaptureSimpleStackTrace(
|
|
exception, factory()->undefined_value(), limit);
|
|
JSObject::SetHiddenProperty(exception,
|
|
factory()->hidden_stack_trace_string(),
|
|
stack_trace);
|
|
return Failure::Exception();
|
|
}
|
|
|
|
|
|
Failure* Isolate::TerminateExecution() {
|
|
DoThrow(heap_.termination_exception(), NULL);
|
|
return Failure::Exception();
|
|
}
|
|
|
|
|
|
void Isolate::CancelTerminateExecution() {
|
|
if (try_catch_handler()) {
|
|
try_catch_handler()->has_terminated_ = false;
|
|
}
|
|
if (has_pending_exception() &&
|
|
pending_exception() == heap_.termination_exception()) {
|
|
thread_local_top()->external_caught_exception_ = false;
|
|
clear_pending_exception();
|
|
}
|
|
if (has_scheduled_exception() &&
|
|
scheduled_exception() == heap_.termination_exception()) {
|
|
thread_local_top()->external_caught_exception_ = false;
|
|
clear_scheduled_exception();
|
|
}
|
|
}
|
|
|
|
|
|
Failure* Isolate::Throw(Object* exception, MessageLocation* location) {
|
|
DoThrow(exception, location);
|
|
return Failure::Exception();
|
|
}
|
|
|
|
|
|
Failure* Isolate::ReThrow(MaybeObject* exception) {
|
|
bool can_be_caught_externally = false;
|
|
bool catchable_by_javascript = is_catchable_by_javascript(exception);
|
|
ShouldReportException(&can_be_caught_externally, catchable_by_javascript);
|
|
|
|
thread_local_top()->catcher_ = can_be_caught_externally ?
|
|
try_catch_handler() : NULL;
|
|
|
|
// Set the exception being re-thrown.
|
|
set_pending_exception(exception);
|
|
if (exception->IsFailure()) return exception->ToFailureUnchecked();
|
|
return Failure::Exception();
|
|
}
|
|
|
|
|
|
Failure* Isolate::ThrowIllegalOperation() {
|
|
return Throw(heap_.illegal_access_string());
|
|
}
|
|
|
|
|
|
void Isolate::ScheduleThrow(Object* exception) {
|
|
// When scheduling a throw we first throw the exception to get the
|
|
// error reporting if it is uncaught before rescheduling it.
|
|
Throw(exception);
|
|
PropagatePendingExceptionToExternalTryCatch();
|
|
if (has_pending_exception()) {
|
|
thread_local_top()->scheduled_exception_ = pending_exception();
|
|
thread_local_top()->external_caught_exception_ = false;
|
|
clear_pending_exception();
|
|
}
|
|
}
|
|
|
|
|
|
Failure* Isolate::PromoteScheduledException() {
|
|
MaybeObject* thrown = scheduled_exception();
|
|
clear_scheduled_exception();
|
|
// Re-throw the exception to avoid getting repeated error reporting.
|
|
return ReThrow(thrown);
|
|
}
|
|
|
|
|
|
void Isolate::PrintCurrentStackTrace(FILE* out) {
|
|
StackTraceFrameIterator it(this);
|
|
while (!it.done()) {
|
|
HandleScope scope(this);
|
|
// Find code position if recorded in relocation info.
|
|
JavaScriptFrame* frame = it.frame();
|
|
int pos = frame->LookupCode()->SourcePosition(frame->pc());
|
|
Handle<Object> pos_obj(Smi::FromInt(pos), this);
|
|
// Fetch function and receiver.
|
|
Handle<JSFunction> fun(JSFunction::cast(frame->function()));
|
|
Handle<Object> recv(frame->receiver(), this);
|
|
// Advance to the next JavaScript frame and determine if the
|
|
// current frame is the top-level frame.
|
|
it.Advance();
|
|
Handle<Object> is_top_level = it.done()
|
|
? factory()->true_value()
|
|
: factory()->false_value();
|
|
// Generate and print stack trace line.
|
|
Handle<String> line =
|
|
Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level);
|
|
if (line->length() > 0) {
|
|
line->PrintOn(out);
|
|
PrintF(out, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Isolate::ComputeLocation(MessageLocation* target) {
|
|
*target = MessageLocation(Handle<Script>(heap_.empty_script()), -1, -1);
|
|
StackTraceFrameIterator it(this);
|
|
if (!it.done()) {
|
|
JavaScriptFrame* frame = it.frame();
|
|
JSFunction* fun = JSFunction::cast(frame->function());
|
|
Object* script = fun->shared()->script();
|
|
if (script->IsScript() &&
|
|
!(Script::cast(script)->source()->IsUndefined())) {
|
|
int pos = frame->LookupCode()->SourcePosition(frame->pc());
|
|
// Compute the location from the function and the reloc info.
|
|
Handle<Script> casted_script(Script::cast(script));
|
|
*target = MessageLocation(casted_script, pos, pos + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Isolate::ShouldReportException(bool* can_be_caught_externally,
|
|
bool catchable_by_javascript) {
|
|
// Find the top-most try-catch handler.
|
|
StackHandler* handler =
|
|
StackHandler::FromAddress(Isolate::handler(thread_local_top()));
|
|
while (handler != NULL && !handler->is_catch()) {
|
|
handler = handler->next();
|
|
}
|
|
|
|
// Get the address of the external handler so we can compare the address to
|
|
// determine which one is closer to the top of the stack.
|
|
Address external_handler_address =
|
|
thread_local_top()->try_catch_handler_address();
|
|
|
|
// The exception has been externally caught if and only if there is
|
|
// an external handler which is on top of the top-most try-catch
|
|
// handler.
|
|
*can_be_caught_externally = external_handler_address != NULL &&
|
|
(handler == NULL || handler->address() > external_handler_address ||
|
|
!catchable_by_javascript);
|
|
|
|
if (*can_be_caught_externally) {
|
|
// Only report the exception if the external handler is verbose.
|
|
return try_catch_handler()->is_verbose_;
|
|
} else {
|
|
// Report the exception if it isn't caught by JavaScript code.
|
|
return handler == NULL;
|
|
}
|
|
}
|
|
|
|
|
|
bool Isolate::IsErrorObject(Handle<Object> obj) {
|
|
if (!obj->IsJSObject()) return false;
|
|
|
|
String* error_key =
|
|
*(factory()->InternalizeOneByteString(STATIC_ASCII_VECTOR("$Error")));
|
|
Object* error_constructor =
|
|
js_builtins_object()->GetPropertyNoExceptionThrown(error_key);
|
|
|
|
for (Object* prototype = *obj; !prototype->IsNull();
|
|
prototype = prototype->GetPrototype(this)) {
|
|
if (!prototype->IsJSObject()) return false;
|
|
if (JSObject::cast(prototype)->map()->constructor() == error_constructor) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int fatal_exception_depth = 0;
|
|
|
|
void Isolate::DoThrow(Object* exception, MessageLocation* location) {
|
|
ASSERT(!has_pending_exception());
|
|
|
|
HandleScope scope(this);
|
|
Handle<Object> exception_handle(exception, this);
|
|
|
|
// Determine reporting and whether the exception is caught externally.
|
|
bool catchable_by_javascript = is_catchable_by_javascript(exception);
|
|
bool can_be_caught_externally = false;
|
|
bool should_report_exception =
|
|
ShouldReportException(&can_be_caught_externally, catchable_by_javascript);
|
|
bool report_exception = catchable_by_javascript && should_report_exception;
|
|
bool try_catch_needs_message =
|
|
can_be_caught_externally && try_catch_handler()->capture_message_;
|
|
bool bootstrapping = bootstrapper()->IsActive();
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
// Notify debugger of exception.
|
|
if (catchable_by_javascript) {
|
|
debugger_->OnException(exception_handle, report_exception);
|
|
}
|
|
#endif
|
|
|
|
// Generate the message if required.
|
|
if (report_exception || try_catch_needs_message) {
|
|
MessageLocation potential_computed_location;
|
|
if (location == NULL) {
|
|
// If no location was specified we use a computed one instead.
|
|
ComputeLocation(&potential_computed_location);
|
|
location = &potential_computed_location;
|
|
}
|
|
// It's not safe to try to make message objects or collect stack traces
|
|
// while the bootstrapper is active since the infrastructure may not have
|
|
// been properly initialized.
|
|
if (!bootstrapping) {
|
|
Handle<String> stack_trace;
|
|
if (FLAG_trace_exception) stack_trace = StackTraceString();
|
|
Handle<JSArray> stack_trace_object;
|
|
if (capture_stack_trace_for_uncaught_exceptions_) {
|
|
if (IsErrorObject(exception_handle)) {
|
|
// We fetch the stack trace that corresponds to this error object.
|
|
String* key = heap()->hidden_stack_trace_string();
|
|
Object* stack_property =
|
|
JSObject::cast(*exception_handle)->GetHiddenProperty(key);
|
|
// Property lookup may have failed. In this case it's probably not
|
|
// a valid Error object.
|
|
if (stack_property->IsJSArray()) {
|
|
stack_trace_object = Handle<JSArray>(JSArray::cast(stack_property));
|
|
}
|
|
}
|
|
if (stack_trace_object.is_null()) {
|
|
// Not an error object, we capture at throw site.
|
|
stack_trace_object = CaptureCurrentStackTrace(
|
|
stack_trace_for_uncaught_exceptions_frame_limit_,
|
|
stack_trace_for_uncaught_exceptions_options_);
|
|
}
|
|
}
|
|
|
|
Handle<Object> exception_arg = exception_handle;
|
|
// If the exception argument is a custom object, turn it into a string
|
|
// before throwing as uncaught exception. Note that the pending
|
|
// exception object to be set later must not be turned into a string.
|
|
if (exception_arg->IsJSObject() && !IsErrorObject(exception_arg)) {
|
|
bool failed = false;
|
|
exception_arg = Execution::ToDetailString(exception_arg, &failed);
|
|
if (failed) {
|
|
exception_arg = factory()->InternalizeOneByteString(
|
|
STATIC_ASCII_VECTOR("exception"));
|
|
}
|
|
}
|
|
Handle<Object> message_obj = MessageHandler::MakeMessageObject(
|
|
this,
|
|
"uncaught_exception",
|
|
location,
|
|
HandleVector<Object>(&exception_arg, 1),
|
|
stack_trace,
|
|
stack_trace_object);
|
|
thread_local_top()->pending_message_obj_ = *message_obj;
|
|
if (location != NULL) {
|
|
thread_local_top()->pending_message_script_ = *location->script();
|
|
thread_local_top()->pending_message_start_pos_ = location->start_pos();
|
|
thread_local_top()->pending_message_end_pos_ = location->end_pos();
|
|
}
|
|
|
|
// If the abort-on-uncaught-exception flag is specified, abort on any
|
|
// exception not caught by JavaScript, even when an external handler is
|
|
// present. This flag is intended for use by JavaScript developers, so
|
|
// print a user-friendly stack trace (not an internal one).
|
|
if (fatal_exception_depth == 0 &&
|
|
FLAG_abort_on_uncaught_exception &&
|
|
(report_exception || can_be_caught_externally)) {
|
|
fatal_exception_depth++;
|
|
PrintF(stderr,
|
|
"%s\n\nFROM\n",
|
|
*MessageHandler::GetLocalizedMessage(this, message_obj));
|
|
PrintCurrentStackTrace(stderr);
|
|
OS::Abort();
|
|
}
|
|
} else if (location != NULL && !location->script().is_null()) {
|
|
// We are bootstrapping and caught an error where the location is set
|
|
// and we have a script for the location.
|
|
// In this case we could have an extension (or an internal error
|
|
// somewhere) and we print out the line number at which the error occured
|
|
// to the console for easier debugging.
|
|
int line_number = GetScriptLineNumberSafe(location->script(),
|
|
location->start_pos());
|
|
if (exception->IsString()) {
|
|
OS::PrintError(
|
|
"Extension or internal compilation error: %s in %s at line %d.\n",
|
|
*String::cast(exception)->ToCString(),
|
|
*String::cast(location->script()->name())->ToCString(),
|
|
line_number + 1);
|
|
} else {
|
|
OS::PrintError(
|
|
"Extension or internal compilation error in %s at line %d.\n",
|
|
*String::cast(location->script()->name())->ToCString(),
|
|
line_number + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Save the message for reporting if the the exception remains uncaught.
|
|
thread_local_top()->has_pending_message_ = report_exception;
|
|
|
|
// Do not forget to clean catcher_ if currently thrown exception cannot
|
|
// be caught. If necessary, ReThrow will update the catcher.
|
|
thread_local_top()->catcher_ = can_be_caught_externally ?
|
|
try_catch_handler() : NULL;
|
|
|
|
set_pending_exception(*exception_handle);
|
|
}
|
|
|
|
|
|
bool Isolate::IsExternallyCaught() {
|
|
ASSERT(has_pending_exception());
|
|
|
|
if ((thread_local_top()->catcher_ == NULL) ||
|
|
(try_catch_handler() != thread_local_top()->catcher_)) {
|
|
// When throwing the exception, we found no v8::TryCatch
|
|
// which should care about this exception.
|
|
return false;
|
|
}
|
|
|
|
if (!is_catchable_by_javascript(pending_exception())) {
|
|
return true;
|
|
}
|
|
|
|
// Get the address of the external handler so we can compare the address to
|
|
// determine which one is closer to the top of the stack.
|
|
Address external_handler_address =
|
|
thread_local_top()->try_catch_handler_address();
|
|
ASSERT(external_handler_address != NULL);
|
|
|
|
// The exception has been externally caught if and only if there is
|
|
// an external handler which is on top of the top-most try-finally
|
|
// handler.
|
|
// There should be no try-catch blocks as they would prohibit us from
|
|
// finding external catcher in the first place (see catcher_ check above).
|
|
//
|
|
// Note, that finally clause would rethrow an exception unless it's
|
|
// aborted by jumps in control flow like return, break, etc. and we'll
|
|
// have another chances to set proper v8::TryCatch.
|
|
StackHandler* handler =
|
|
StackHandler::FromAddress(Isolate::handler(thread_local_top()));
|
|
while (handler != NULL && handler->address() < external_handler_address) {
|
|
ASSERT(!handler->is_catch());
|
|
if (handler->is_finally()) return false;
|
|
|
|
handler = handler->next();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void Isolate::ReportPendingMessages() {
|
|
ASSERT(has_pending_exception());
|
|
PropagatePendingExceptionToExternalTryCatch();
|
|
|
|
// If the pending exception is OutOfMemoryException set out_of_memory in
|
|
// the native context. Note: We have to mark the native context here
|
|
// since the GenerateThrowOutOfMemory stub cannot make a RuntimeCall to
|
|
// set it.
|
|
HandleScope scope(this);
|
|
if (thread_local_top_.pending_exception_->IsOutOfMemory()) {
|
|
context()->mark_out_of_memory();
|
|
} else if (thread_local_top_.pending_exception_ ==
|
|
heap()->termination_exception()) {
|
|
// Do nothing: if needed, the exception has been already propagated to
|
|
// v8::TryCatch.
|
|
} else {
|
|
if (thread_local_top_.has_pending_message_) {
|
|
thread_local_top_.has_pending_message_ = false;
|
|
if (!thread_local_top_.pending_message_obj_->IsTheHole()) {
|
|
HandleScope scope(this);
|
|
Handle<Object> message_obj(thread_local_top_.pending_message_obj_,
|
|
this);
|
|
if (thread_local_top_.pending_message_script_ != NULL) {
|
|
Handle<Script> script(thread_local_top_.pending_message_script_);
|
|
int start_pos = thread_local_top_.pending_message_start_pos_;
|
|
int end_pos = thread_local_top_.pending_message_end_pos_;
|
|
MessageLocation location(script, start_pos, end_pos);
|
|
MessageHandler::ReportMessage(this, &location, message_obj);
|
|
} else {
|
|
MessageHandler::ReportMessage(this, NULL, message_obj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
clear_pending_message();
|
|
}
|
|
|
|
|
|
MessageLocation Isolate::GetMessageLocation() {
|
|
ASSERT(has_pending_exception());
|
|
|
|
if (!thread_local_top_.pending_exception_->IsOutOfMemory() &&
|
|
thread_local_top_.pending_exception_ != heap()->termination_exception() &&
|
|
thread_local_top_.has_pending_message_ &&
|
|
!thread_local_top_.pending_message_obj_->IsTheHole() &&
|
|
thread_local_top_.pending_message_script_ != NULL) {
|
|
Handle<Script> script(thread_local_top_.pending_message_script_);
|
|
int start_pos = thread_local_top_.pending_message_start_pos_;
|
|
int end_pos = thread_local_top_.pending_message_end_pos_;
|
|
return MessageLocation(script, start_pos, end_pos);
|
|
}
|
|
|
|
return MessageLocation();
|
|
}
|
|
|
|
|
|
void Isolate::TraceException(bool flag) {
|
|
FLAG_trace_exception = flag; // TODO(isolates): This is an unfortunate use.
|
|
}
|
|
|
|
|
|
bool Isolate::OptionalRescheduleException(bool is_bottom_call) {
|
|
ASSERT(has_pending_exception());
|
|
PropagatePendingExceptionToExternalTryCatch();
|
|
|
|
// Always reschedule out of memory exceptions.
|
|
if (!is_out_of_memory()) {
|
|
bool is_termination_exception =
|
|
pending_exception() == heap_.termination_exception();
|
|
|
|
// Do not reschedule the exception if this is the bottom call.
|
|
bool clear_exception = is_bottom_call;
|
|
|
|
if (is_termination_exception) {
|
|
if (is_bottom_call) {
|
|
thread_local_top()->external_caught_exception_ = false;
|
|
clear_pending_exception();
|
|
return false;
|
|
}
|
|
} else if (thread_local_top()->external_caught_exception_) {
|
|
// If the exception is externally caught, clear it if there are no
|
|
// JavaScript frames on the way to the C++ frame that has the
|
|
// external handler.
|
|
ASSERT(thread_local_top()->try_catch_handler_address() != NULL);
|
|
Address external_handler_address =
|
|
thread_local_top()->try_catch_handler_address();
|
|
JavaScriptFrameIterator it(this);
|
|
if (it.done() || (it.frame()->sp() > external_handler_address)) {
|
|
clear_exception = true;
|
|
}
|
|
}
|
|
|
|
// Clear the exception if needed.
|
|
if (clear_exception) {
|
|
thread_local_top()->external_caught_exception_ = false;
|
|
clear_pending_exception();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Reschedule the exception.
|
|
thread_local_top()->scheduled_exception_ = pending_exception();
|
|
clear_pending_exception();
|
|
return true;
|
|
}
|
|
|
|
|
|
void Isolate::SetCaptureStackTraceForUncaughtExceptions(
|
|
bool capture,
|
|
int frame_limit,
|
|
StackTrace::StackTraceOptions options) {
|
|
capture_stack_trace_for_uncaught_exceptions_ = capture;
|
|
stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit;
|
|
stack_trace_for_uncaught_exceptions_options_ = options;
|
|
}
|
|
|
|
|
|
bool Isolate::is_out_of_memory() {
|
|
if (has_pending_exception()) {
|
|
MaybeObject* e = pending_exception();
|
|
if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) {
|
|
return true;
|
|
}
|
|
}
|
|
if (has_scheduled_exception()) {
|
|
MaybeObject* e = scheduled_exception();
|
|
if (e->IsFailure() && Failure::cast(e)->IsOutOfMemoryException()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
Handle<Context> Isolate::native_context() {
|
|
return Handle<Context>(context()->global_object()->native_context());
|
|
}
|
|
|
|
|
|
Handle<Context> Isolate::global_context() {
|
|
return Handle<Context>(context()->global_object()->global_context());
|
|
}
|
|
|
|
|
|
Handle<Context> Isolate::GetCallingNativeContext() {
|
|
JavaScriptFrameIterator it(this);
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
if (debug_->InDebugger()) {
|
|
while (!it.done()) {
|
|
JavaScriptFrame* frame = it.frame();
|
|
Context* context = Context::cast(frame->context());
|
|
if (context->native_context() == *debug_->debug_context()) {
|
|
it.Advance();
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif // ENABLE_DEBUGGER_SUPPORT
|
|
if (it.done()) return Handle<Context>::null();
|
|
JavaScriptFrame* frame = it.frame();
|
|
Context* context = Context::cast(frame->context());
|
|
return Handle<Context>(context->native_context());
|
|
}
|
|
|
|
|
|
char* Isolate::ArchiveThread(char* to) {
|
|
OS::MemCopy(to, reinterpret_cast<char*>(thread_local_top()),
|
|
sizeof(ThreadLocalTop));
|
|
InitializeThreadLocal();
|
|
clear_pending_exception();
|
|
clear_pending_message();
|
|
clear_scheduled_exception();
|
|
return to + sizeof(ThreadLocalTop);
|
|
}
|
|
|
|
|
|
char* Isolate::RestoreThread(char* from) {
|
|
OS::MemCopy(reinterpret_cast<char*>(thread_local_top()), from,
|
|
sizeof(ThreadLocalTop));
|
|
// This might be just paranoia, but it seems to be needed in case a
|
|
// thread_local_top_ is restored on a separate OS thread.
|
|
#ifdef USE_SIMULATOR
|
|
#ifdef V8_TARGET_ARCH_ARM
|
|
thread_local_top()->simulator_ = Simulator::current(this);
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
thread_local_top()->simulator_ = Simulator::current(this);
|
|
#endif
|
|
#endif
|
|
ASSERT(context() == NULL || context()->IsContext());
|
|
return from + sizeof(ThreadLocalTop);
|
|
}
|
|
|
|
|
|
Isolate::ThreadDataTable::ThreadDataTable()
|
|
: list_(NULL) {
|
|
}
|
|
|
|
|
|
Isolate::ThreadDataTable::~ThreadDataTable() {
|
|
// TODO(svenpanne) The assertion below would fire if an embedder does not
|
|
// cleanly dispose all Isolates before disposing v8, so we are conservative
|
|
// and leave it out for now.
|
|
// ASSERT_EQ(NULL, list_);
|
|
}
|
|
|
|
|
|
Isolate::PerIsolateThreadData*
|
|
Isolate::ThreadDataTable::Lookup(Isolate* isolate,
|
|
ThreadId thread_id) {
|
|
for (PerIsolateThreadData* data = list_; data != NULL; data = data->next_) {
|
|
if (data->Matches(isolate, thread_id)) return data;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) {
|
|
if (list_ != NULL) list_->prev_ = data;
|
|
data->next_ = list_;
|
|
list_ = data;
|
|
}
|
|
|
|
|
|
void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) {
|
|
if (list_ == data) list_ = data->next_;
|
|
if (data->next_ != NULL) data->next_->prev_ = data->prev_;
|
|
if (data->prev_ != NULL) data->prev_->next_ = data->next_;
|
|
delete data;
|
|
}
|
|
|
|
|
|
void Isolate::ThreadDataTable::Remove(Isolate* isolate,
|
|
ThreadId thread_id) {
|
|
PerIsolateThreadData* data = Lookup(isolate, thread_id);
|
|
if (data != NULL) {
|
|
Remove(data);
|
|
}
|
|
}
|
|
|
|
|
|
void Isolate::ThreadDataTable::RemoveAllThreads(Isolate* isolate) {
|
|
PerIsolateThreadData* data = list_;
|
|
while (data != NULL) {
|
|
PerIsolateThreadData* next = data->next_;
|
|
if (data->isolate() == isolate) Remove(data);
|
|
data = next;
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
#define TRACE_ISOLATE(tag) \
|
|
do { \
|
|
if (FLAG_trace_isolates) { \
|
|
PrintF("Isolate %p (id %d)" #tag "\n", \
|
|
reinterpret_cast<void*>(this), id()); \
|
|
} \
|
|
} while (false)
|
|
#else
|
|
#define TRACE_ISOLATE(tag)
|
|
#endif
|
|
|
|
|
|
Isolate::Isolate()
|
|
: state_(UNINITIALIZED),
|
|
embedder_data_(NULL),
|
|
entry_stack_(NULL),
|
|
stack_trace_nesting_level_(0),
|
|
incomplete_message_(NULL),
|
|
preallocated_memory_thread_(NULL),
|
|
preallocated_message_space_(NULL),
|
|
bootstrapper_(NULL),
|
|
runtime_profiler_(NULL),
|
|
compilation_cache_(NULL),
|
|
counters_(NULL),
|
|
code_range_(NULL),
|
|
// Must be initialized early to allow v8::SetResourceConstraints calls.
|
|
break_access_(OS::CreateMutex()),
|
|
debugger_initialized_(false),
|
|
// Must be initialized early to allow v8::Debug calls.
|
|
debugger_access_(OS::CreateMutex()),
|
|
logger_(NULL),
|
|
stats_table_(NULL),
|
|
stub_cache_(NULL),
|
|
deoptimizer_data_(NULL),
|
|
capture_stack_trace_for_uncaught_exceptions_(false),
|
|
stack_trace_for_uncaught_exceptions_frame_limit_(0),
|
|
stack_trace_for_uncaught_exceptions_options_(StackTrace::kOverview),
|
|
transcendental_cache_(NULL),
|
|
memory_allocator_(NULL),
|
|
keyed_lookup_cache_(NULL),
|
|
context_slot_cache_(NULL),
|
|
descriptor_lookup_cache_(NULL),
|
|
handle_scope_implementer_(NULL),
|
|
unicode_cache_(NULL),
|
|
runtime_zone_(this),
|
|
in_use_list_(0),
|
|
free_list_(0),
|
|
preallocated_storage_preallocated_(false),
|
|
inner_pointer_to_code_cache_(NULL),
|
|
write_iterator_(NULL),
|
|
global_handles_(NULL),
|
|
context_switcher_(NULL),
|
|
thread_manager_(NULL),
|
|
fp_stubs_generated_(false),
|
|
has_installed_extensions_(false),
|
|
string_tracker_(NULL),
|
|
regexp_stack_(NULL),
|
|
date_cache_(NULL),
|
|
code_stub_interface_descriptors_(NULL),
|
|
context_exit_happened_(false),
|
|
cpu_profiler_(NULL),
|
|
heap_profiler_(NULL),
|
|
deferred_handles_head_(NULL),
|
|
optimizing_compiler_thread_(this),
|
|
marking_thread_(NULL),
|
|
sweeper_thread_(NULL),
|
|
callback_table_(NULL) {
|
|
id_ = NoBarrier_AtomicIncrement(&isolate_counter_, 1);
|
|
TRACE_ISOLATE(constructor);
|
|
|
|
memset(isolate_addresses_, 0,
|
|
sizeof(isolate_addresses_[0]) * (kIsolateAddressCount + 1));
|
|
|
|
heap_.isolate_ = this;
|
|
stack_guard_.isolate_ = this;
|
|
|
|
// ThreadManager is initialized early to support locking an isolate
|
|
// before it is entered.
|
|
thread_manager_ = new ThreadManager();
|
|
thread_manager_->isolate_ = this;
|
|
|
|
#if defined(V8_TARGET_ARCH_ARM) && !defined(__arm__) || \
|
|
defined(V8_TARGET_ARCH_MIPS) && !defined(__mips__)
|
|
simulator_initialized_ = false;
|
|
simulator_i_cache_ = NULL;
|
|
simulator_redirection_ = NULL;
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
// heap_histograms_ initializes itself.
|
|
memset(&js_spill_information_, 0, sizeof(js_spill_information_));
|
|
memset(code_kind_statistics_, 0,
|
|
sizeof(code_kind_statistics_[0]) * Code::NUMBER_OF_KINDS);
|
|
#endif
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
debug_ = NULL;
|
|
debugger_ = NULL;
|
|
#endif
|
|
|
|
handle_scope_data_.Initialize();
|
|
|
|
#define ISOLATE_INIT_EXECUTE(type, name, initial_value) \
|
|
name##_ = (initial_value);
|
|
ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE)
|
|
#undef ISOLATE_INIT_EXECUTE
|
|
|
|
#define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \
|
|
memset(name##_, 0, sizeof(type) * length);
|
|
ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE)
|
|
#undef ISOLATE_INIT_ARRAY_EXECUTE
|
|
}
|
|
|
|
|
|
void Isolate::TearDown() {
|
|
TRACE_ISOLATE(tear_down);
|
|
|
|
// Temporarily set this isolate as current so that various parts of
|
|
// the isolate can access it in their destructors without having a
|
|
// direct pointer. We don't use Enter/Exit here to avoid
|
|
// initializing the thread data.
|
|
PerIsolateThreadData* saved_data = CurrentPerIsolateThreadData();
|
|
Isolate* saved_isolate = UncheckedCurrent();
|
|
SetIsolateThreadLocals(this, NULL);
|
|
|
|
Deinit();
|
|
|
|
{ ScopedLock lock(process_wide_mutex_);
|
|
thread_data_table_->RemoveAllThreads(this);
|
|
}
|
|
|
|
if (serialize_partial_snapshot_cache_ != NULL) {
|
|
delete[] serialize_partial_snapshot_cache_;
|
|
serialize_partial_snapshot_cache_ = NULL;
|
|
}
|
|
|
|
if (!IsDefaultIsolate()) {
|
|
delete this;
|
|
}
|
|
|
|
// Restore the previous current isolate.
|
|
SetIsolateThreadLocals(saved_isolate, saved_data);
|
|
}
|
|
|
|
|
|
void Isolate::GlobalTearDown() {
|
|
delete thread_data_table_;
|
|
}
|
|
|
|
|
|
void Isolate::Deinit() {
|
|
if (state_ == INITIALIZED) {
|
|
TRACE_ISOLATE(deinit);
|
|
|
|
if (FLAG_parallel_recompilation) optimizing_compiler_thread_.Stop();
|
|
|
|
if (FLAG_sweeper_threads > 0) {
|
|
for (int i = 0; i < FLAG_sweeper_threads; i++) {
|
|
sweeper_thread_[i]->Stop();
|
|
delete sweeper_thread_[i];
|
|
}
|
|
delete[] sweeper_thread_;
|
|
}
|
|
|
|
if (FLAG_marking_threads > 0) {
|
|
for (int i = 0; i < FLAG_marking_threads; i++) {
|
|
marking_thread_[i]->Stop();
|
|
delete marking_thread_[i];
|
|
}
|
|
delete[] marking_thread_;
|
|
}
|
|
|
|
if (FLAG_hydrogen_stats) GetHStatistics()->Print();
|
|
|
|
// We must stop the logger before we tear down other components.
|
|
Sampler* sampler = logger_->sampler();
|
|
if (sampler && sampler->IsActive()) sampler->Stop();
|
|
|
|
delete deoptimizer_data_;
|
|
deoptimizer_data_ = NULL;
|
|
if (FLAG_preemption) {
|
|
v8::Locker locker(reinterpret_cast<v8::Isolate*>(this));
|
|
v8::Locker::StopPreemption();
|
|
}
|
|
builtins_.TearDown();
|
|
bootstrapper_->TearDown();
|
|
|
|
// Remove the external reference to the preallocated stack memory.
|
|
delete preallocated_message_space_;
|
|
preallocated_message_space_ = NULL;
|
|
PreallocatedMemoryThreadStop();
|
|
|
|
if (runtime_profiler_ != NULL) {
|
|
runtime_profiler_->TearDown();
|
|
delete runtime_profiler_;
|
|
runtime_profiler_ = NULL;
|
|
}
|
|
heap_.TearDown();
|
|
logger_->TearDown();
|
|
|
|
delete heap_profiler_;
|
|
heap_profiler_ = NULL;
|
|
delete cpu_profiler_;
|
|
cpu_profiler_ = NULL;
|
|
|
|
// The default isolate is re-initializable due to legacy API.
|
|
state_ = UNINITIALIZED;
|
|
}
|
|
}
|
|
|
|
|
|
void Isolate::PushToPartialSnapshotCache(Object* obj) {
|
|
int length = serialize_partial_snapshot_cache_length();
|
|
int capacity = serialize_partial_snapshot_cache_capacity();
|
|
|
|
if (length >= capacity) {
|
|
int new_capacity = static_cast<int>((capacity + 10) * 1.2);
|
|
Object** new_array = new Object*[new_capacity];
|
|
for (int i = 0; i < length; i++) {
|
|
new_array[i] = serialize_partial_snapshot_cache()[i];
|
|
}
|
|
if (capacity != 0) delete[] serialize_partial_snapshot_cache();
|
|
set_serialize_partial_snapshot_cache(new_array);
|
|
set_serialize_partial_snapshot_cache_capacity(new_capacity);
|
|
}
|
|
|
|
serialize_partial_snapshot_cache()[length] = obj;
|
|
set_serialize_partial_snapshot_cache_length(length + 1);
|
|
}
|
|
|
|
|
|
void Isolate::SetIsolateThreadLocals(Isolate* isolate,
|
|
PerIsolateThreadData* data) {
|
|
Thread::SetThreadLocal(isolate_key_, isolate);
|
|
Thread::SetThreadLocal(per_isolate_thread_data_key_, data);
|
|
}
|
|
|
|
|
|
Isolate::~Isolate() {
|
|
TRACE_ISOLATE(destructor);
|
|
|
|
// Has to be called while counters_ are still alive.
|
|
runtime_zone_.DeleteKeptSegment();
|
|
|
|
delete[] assembler_spare_buffer_;
|
|
assembler_spare_buffer_ = NULL;
|
|
|
|
delete unicode_cache_;
|
|
unicode_cache_ = NULL;
|
|
|
|
delete date_cache_;
|
|
date_cache_ = NULL;
|
|
|
|
delete[] code_stub_interface_descriptors_;
|
|
code_stub_interface_descriptors_ = NULL;
|
|
|
|
delete regexp_stack_;
|
|
regexp_stack_ = NULL;
|
|
|
|
delete descriptor_lookup_cache_;
|
|
descriptor_lookup_cache_ = NULL;
|
|
delete context_slot_cache_;
|
|
context_slot_cache_ = NULL;
|
|
delete keyed_lookup_cache_;
|
|
keyed_lookup_cache_ = NULL;
|
|
|
|
delete transcendental_cache_;
|
|
transcendental_cache_ = NULL;
|
|
delete stub_cache_;
|
|
stub_cache_ = NULL;
|
|
delete stats_table_;
|
|
stats_table_ = NULL;
|
|
|
|
delete logger_;
|
|
logger_ = NULL;
|
|
|
|
delete counters_;
|
|
counters_ = NULL;
|
|
|
|
delete handle_scope_implementer_;
|
|
handle_scope_implementer_ = NULL;
|
|
delete break_access_;
|
|
break_access_ = NULL;
|
|
delete debugger_access_;
|
|
debugger_access_ = NULL;
|
|
|
|
delete compilation_cache_;
|
|
compilation_cache_ = NULL;
|
|
delete bootstrapper_;
|
|
bootstrapper_ = NULL;
|
|
delete inner_pointer_to_code_cache_;
|
|
inner_pointer_to_code_cache_ = NULL;
|
|
delete write_iterator_;
|
|
write_iterator_ = NULL;
|
|
|
|
delete context_switcher_;
|
|
context_switcher_ = NULL;
|
|
delete thread_manager_;
|
|
thread_manager_ = NULL;
|
|
|
|
delete string_tracker_;
|
|
string_tracker_ = NULL;
|
|
|
|
delete memory_allocator_;
|
|
memory_allocator_ = NULL;
|
|
delete code_range_;
|
|
code_range_ = NULL;
|
|
delete global_handles_;
|
|
global_handles_ = NULL;
|
|
|
|
delete external_reference_table_;
|
|
external_reference_table_ = NULL;
|
|
|
|
delete callback_table_;
|
|
callback_table_ = NULL;
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
delete debugger_;
|
|
debugger_ = NULL;
|
|
delete debug_;
|
|
debug_ = NULL;
|
|
#endif
|
|
}
|
|
|
|
|
|
void Isolate::InitializeThreadLocal() {
|
|
thread_local_top_.isolate_ = this;
|
|
thread_local_top_.Initialize();
|
|
}
|
|
|
|
|
|
void Isolate::PropagatePendingExceptionToExternalTryCatch() {
|
|
ASSERT(has_pending_exception());
|
|
|
|
bool external_caught = IsExternallyCaught();
|
|
thread_local_top_.external_caught_exception_ = external_caught;
|
|
|
|
if (!external_caught) return;
|
|
|
|
if (thread_local_top_.pending_exception_->IsOutOfMemory()) {
|
|
// Do not propagate OOM exception: we should kill VM asap.
|
|
} else if (thread_local_top_.pending_exception_ ==
|
|
heap()->termination_exception()) {
|
|
try_catch_handler()->can_continue_ = false;
|
|
try_catch_handler()->has_terminated_ = true;
|
|
try_catch_handler()->exception_ = heap()->null_value();
|
|
} else {
|
|
// At this point all non-object (failure) exceptions have
|
|
// been dealt with so this shouldn't fail.
|
|
ASSERT(!pending_exception()->IsFailure());
|
|
try_catch_handler()->can_continue_ = true;
|
|
try_catch_handler()->has_terminated_ = false;
|
|
try_catch_handler()->exception_ = pending_exception();
|
|
if (!thread_local_top_.pending_message_obj_->IsTheHole()) {
|
|
try_catch_handler()->message_ = thread_local_top_.pending_message_obj_;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Isolate::InitializeLoggingAndCounters() {
|
|
if (logger_ == NULL) {
|
|
logger_ = new Logger(this);
|
|
}
|
|
if (counters_ == NULL) {
|
|
counters_ = new Counters(this);
|
|
}
|
|
}
|
|
|
|
|
|
void Isolate::InitializeDebugger() {
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
ScopedLock lock(debugger_access_);
|
|
if (NoBarrier_Load(&debugger_initialized_)) return;
|
|
InitializeLoggingAndCounters();
|
|
debug_ = new Debug(this);
|
|
debugger_ = new Debugger(this);
|
|
Release_Store(&debugger_initialized_, true);
|
|
#endif
|
|
}
|
|
|
|
|
|
bool Isolate::Init(Deserializer* des) {
|
|
ASSERT(state_ != INITIALIZED);
|
|
ASSERT(Isolate::Current() == this);
|
|
TRACE_ISOLATE(init);
|
|
|
|
// The initialization process does not handle memory exhaustion.
|
|
DisallowAllocationFailure disallow_allocation_failure;
|
|
|
|
InitializeLoggingAndCounters();
|
|
|
|
InitializeDebugger();
|
|
|
|
memory_allocator_ = new MemoryAllocator(this);
|
|
code_range_ = new CodeRange(this);
|
|
|
|
// Safe after setting Heap::isolate_, initializing StackGuard and
|
|
// ensuring that Isolate::Current() == this.
|
|
heap_.SetStackLimits();
|
|
|
|
#define ASSIGN_ELEMENT(CamelName, hacker_name) \
|
|
isolate_addresses_[Isolate::k##CamelName##Address] = \
|
|
reinterpret_cast<Address>(hacker_name##_address());
|
|
FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT)
|
|
#undef ASSIGN_ELEMENT
|
|
|
|
string_tracker_ = new StringTracker();
|
|
string_tracker_->isolate_ = this;
|
|
compilation_cache_ = new CompilationCache(this);
|
|
transcendental_cache_ = new TranscendentalCache();
|
|
keyed_lookup_cache_ = new KeyedLookupCache();
|
|
context_slot_cache_ = new ContextSlotCache();
|
|
descriptor_lookup_cache_ = new DescriptorLookupCache();
|
|
unicode_cache_ = new UnicodeCache();
|
|
inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
|
|
write_iterator_ = new ConsStringIteratorOp();
|
|
global_handles_ = new GlobalHandles(this);
|
|
bootstrapper_ = new Bootstrapper(this);
|
|
handle_scope_implementer_ = new HandleScopeImplementer(this);
|
|
stub_cache_ = new StubCache(this, runtime_zone());
|
|
regexp_stack_ = new RegExpStack();
|
|
regexp_stack_->isolate_ = this;
|
|
date_cache_ = new DateCache();
|
|
code_stub_interface_descriptors_ =
|
|
new CodeStubInterfaceDescriptor[CodeStub::NUMBER_OF_IDS];
|
|
cpu_profiler_ = new CpuProfiler(this);
|
|
heap_profiler_ = new HeapProfiler(heap());
|
|
|
|
// Enable logging before setting up the heap
|
|
logger_->SetUp(this);
|
|
|
|
// Initialize other runtime facilities
|
|
#if defined(USE_SIMULATOR)
|
|
#if defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_MIPS)
|
|
Simulator::Initialize(this);
|
|
#endif
|
|
#endif
|
|
|
|
{ // NOLINT
|
|
// Ensure that the thread has a valid stack guard. The v8::Locker object
|
|
// will ensure this too, but we don't have to use lockers if we are only
|
|
// using one thread.
|
|
ExecutionAccess lock(this);
|
|
stack_guard_.InitThread(lock);
|
|
}
|
|
|
|
// SetUp the object heap.
|
|
ASSERT(!heap_.HasBeenSetUp());
|
|
if (!heap_.SetUp()) {
|
|
V8::FatalProcessOutOfMemory("heap setup");
|
|
return false;
|
|
}
|
|
|
|
deoptimizer_data_ = new DeoptimizerData(memory_allocator_);
|
|
|
|
const bool create_heap_objects = (des == NULL);
|
|
if (create_heap_objects && !heap_.CreateHeapObjects()) {
|
|
V8::FatalProcessOutOfMemory("heap object creation");
|
|
return false;
|
|
}
|
|
|
|
if (create_heap_objects) {
|
|
// Terminate the cache array with the sentinel so we can iterate.
|
|
PushToPartialSnapshotCache(heap_.undefined_value());
|
|
}
|
|
|
|
InitializeThreadLocal();
|
|
|
|
bootstrapper_->Initialize(create_heap_objects);
|
|
builtins_.SetUp(create_heap_objects);
|
|
|
|
// Only preallocate on the first initialization.
|
|
if (FLAG_preallocate_message_memory && preallocated_message_space_ == NULL) {
|
|
// Start the thread which will set aside some memory.
|
|
PreallocatedMemoryThreadStart();
|
|
preallocated_message_space_ =
|
|
new NoAllocationStringAllocator(
|
|
preallocated_memory_thread_->data(),
|
|
preallocated_memory_thread_->length());
|
|
PreallocatedStorageInit(preallocated_memory_thread_->length() / 4);
|
|
}
|
|
|
|
if (FLAG_preemption) {
|
|
v8::Locker locker(reinterpret_cast<v8::Isolate*>(this));
|
|
v8::Locker::StartPreemption(100);
|
|
}
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
debug_->SetUp(create_heap_objects);
|
|
#endif
|
|
|
|
// If we are deserializing, read the state into the now-empty heap.
|
|
if (!create_heap_objects) {
|
|
des->Deserialize();
|
|
}
|
|
stub_cache_->Initialize();
|
|
|
|
// Finish initialization of ThreadLocal after deserialization is done.
|
|
clear_pending_exception();
|
|
clear_pending_message();
|
|
clear_scheduled_exception();
|
|
|
|
// Deserializing may put strange things in the root array's copy of the
|
|
// stack guard.
|
|
heap_.SetStackLimits();
|
|
|
|
// Quiet the heap NaN if needed on target platform.
|
|
if (!create_heap_objects) Assembler::QuietNaN(heap_.nan_value());
|
|
|
|
runtime_profiler_ = new RuntimeProfiler(this);
|
|
runtime_profiler_->SetUp();
|
|
|
|
// If we are deserializing, log non-function code objects and compiled
|
|
// functions found in the snapshot.
|
|
if (!create_heap_objects &&
|
|
(FLAG_log_code || FLAG_ll_prof || logger_->is_logging_code_events())) {
|
|
HandleScope scope(this);
|
|
LOG(this, LogCodeObjects());
|
|
LOG(this, LogCompiledFunctions());
|
|
}
|
|
|
|
CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, state_)),
|
|
Internals::kIsolateStateOffset);
|
|
CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, embedder_data_)),
|
|
Internals::kIsolateEmbedderDataOffset);
|
|
CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, heap_.roots_)),
|
|
Internals::kIsolateRootsOffset);
|
|
|
|
state_ = INITIALIZED;
|
|
time_millis_at_init_ = OS::TimeCurrentMillis();
|
|
|
|
if (!create_heap_objects) {
|
|
// Now that the heap is consistent, it's OK to generate the code for the
|
|
// deopt entry table that might have been referred to by optimized code in
|
|
// the snapshot.
|
|
HandleScope scope(this);
|
|
Deoptimizer::EnsureCodeForDeoptimizationEntry(
|
|
this,
|
|
Deoptimizer::LAZY,
|
|
kDeoptTableSerializeEntryCount - 1);
|
|
}
|
|
|
|
if (!Serializer::enabled()) {
|
|
// Ensure that all stubs which need to be generated ahead of time, but
|
|
// cannot be serialized into the snapshot have been generated.
|
|
HandleScope scope(this);
|
|
CodeStub::GenerateFPStubs(this);
|
|
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(this);
|
|
StubFailureTrampolineStub::GenerateAheadOfTime(this);
|
|
// TODO(mstarzinger): The following is an ugly hack to make sure the
|
|
// interface descriptor is initialized even when stubs have been
|
|
// deserialized out of the snapshot without the graph builder.
|
|
FastCloneShallowArrayStub stub(FastCloneShallowArrayStub::CLONE_ELEMENTS,
|
|
DONT_TRACK_ALLOCATION_SITE, 0);
|
|
stub.InitializeInterfaceDescriptor(
|
|
this, code_stub_interface_descriptor(CodeStub::FastCloneShallowArray));
|
|
CompareNilICStub::InitializeForIsolate(this);
|
|
ToBooleanStub::InitializeForIsolate(this);
|
|
ArrayConstructorStubBase::InstallDescriptors(this);
|
|
InternalArrayConstructorStubBase::InstallDescriptors(this);
|
|
}
|
|
|
|
if (FLAG_parallel_recompilation) optimizing_compiler_thread_.Start();
|
|
|
|
if (FLAG_marking_threads > 0) {
|
|
marking_thread_ = new MarkingThread*[FLAG_marking_threads];
|
|
for (int i = 0; i < FLAG_marking_threads; i++) {
|
|
marking_thread_[i] = new MarkingThread(this);
|
|
marking_thread_[i]->Start();
|
|
}
|
|
}
|
|
|
|
if (FLAG_sweeper_threads > 0) {
|
|
sweeper_thread_ = new SweeperThread*[FLAG_sweeper_threads];
|
|
for (int i = 0; i < FLAG_sweeper_threads; i++) {
|
|
sweeper_thread_[i] = new SweeperThread(this);
|
|
sweeper_thread_[i]->Start();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
// Initialized lazily to allow early
|
|
// v8::V8::SetAddHistogramSampleFunction calls.
|
|
StatsTable* Isolate::stats_table() {
|
|
if (stats_table_ == NULL) {
|
|
stats_table_ = new StatsTable;
|
|
}
|
|
return stats_table_;
|
|
}
|
|
|
|
|
|
void Isolate::Enter() {
|
|
Isolate* current_isolate = NULL;
|
|
PerIsolateThreadData* current_data = CurrentPerIsolateThreadData();
|
|
if (current_data != NULL) {
|
|
current_isolate = current_data->isolate_;
|
|
ASSERT(current_isolate != NULL);
|
|
if (current_isolate == this) {
|
|
ASSERT(Current() == this);
|
|
ASSERT(entry_stack_ != NULL);
|
|
ASSERT(entry_stack_->previous_thread_data == NULL ||
|
|
entry_stack_->previous_thread_data->thread_id().Equals(
|
|
ThreadId::Current()));
|
|
// Same thread re-enters the isolate, no need to re-init anything.
|
|
entry_stack_->entry_count++;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Threads can have default isolate set into TLS as Current but not yet have
|
|
// PerIsolateThreadData for it, as it requires more advanced phase of the
|
|
// initialization. For example, a thread might be the one that system used for
|
|
// static initializers - in this case the default isolate is set in TLS but
|
|
// the thread did not yet Enter the isolate. If PerisolateThreadData is not
|
|
// there, use the isolate set in TLS.
|
|
if (current_isolate == NULL) {
|
|
current_isolate = Isolate::UncheckedCurrent();
|
|
}
|
|
|
|
PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread();
|
|
ASSERT(data != NULL);
|
|
ASSERT(data->isolate_ == this);
|
|
|
|
EntryStackItem* item = new EntryStackItem(current_data,
|
|
current_isolate,
|
|
entry_stack_);
|
|
entry_stack_ = item;
|
|
|
|
SetIsolateThreadLocals(this, data);
|
|
|
|
// In case it's the first time some thread enters the isolate.
|
|
set_thread_id(data->thread_id());
|
|
}
|
|
|
|
|
|
void Isolate::Exit() {
|
|
ASSERT(entry_stack_ != NULL);
|
|
ASSERT(entry_stack_->previous_thread_data == NULL ||
|
|
entry_stack_->previous_thread_data->thread_id().Equals(
|
|
ThreadId::Current()));
|
|
|
|
if (--entry_stack_->entry_count > 0) return;
|
|
|
|
ASSERT(CurrentPerIsolateThreadData() != NULL);
|
|
ASSERT(CurrentPerIsolateThreadData()->isolate_ == this);
|
|
|
|
// Pop the stack.
|
|
EntryStackItem* item = entry_stack_;
|
|
entry_stack_ = item->previous_item;
|
|
|
|
PerIsolateThreadData* previous_thread_data = item->previous_thread_data;
|
|
Isolate* previous_isolate = item->previous_isolate;
|
|
|
|
delete item;
|
|
|
|
// Reinit the current thread for the isolate it was running before this one.
|
|
SetIsolateThreadLocals(previous_isolate, previous_thread_data);
|
|
}
|
|
|
|
|
|
void Isolate::LinkDeferredHandles(DeferredHandles* deferred) {
|
|
deferred->next_ = deferred_handles_head_;
|
|
if (deferred_handles_head_ != NULL) {
|
|
deferred_handles_head_->previous_ = deferred;
|
|
}
|
|
deferred_handles_head_ = deferred;
|
|
}
|
|
|
|
|
|
void Isolate::UnlinkDeferredHandles(DeferredHandles* deferred) {
|
|
#ifdef DEBUG
|
|
// In debug mode assert that the linked list is well-formed.
|
|
DeferredHandles* deferred_iterator = deferred;
|
|
while (deferred_iterator->previous_ != NULL) {
|
|
deferred_iterator = deferred_iterator->previous_;
|
|
}
|
|
ASSERT(deferred_handles_head_ == deferred_iterator);
|
|
#endif
|
|
if (deferred_handles_head_ == deferred) {
|
|
deferred_handles_head_ = deferred_handles_head_->next_;
|
|
}
|
|
if (deferred->next_ != NULL) {
|
|
deferred->next_->previous_ = deferred->previous_;
|
|
}
|
|
if (deferred->previous_ != NULL) {
|
|
deferred->previous_->next_ = deferred->next_;
|
|
}
|
|
}
|
|
|
|
|
|
HStatistics* Isolate::GetHStatistics() {
|
|
if (hstatistics() == NULL) set_hstatistics(new HStatistics());
|
|
return hstatistics();
|
|
}
|
|
|
|
|
|
HTracer* Isolate::GetHTracer() {
|
|
if (htracer() == NULL) set_htracer(new HTracer(id()));
|
|
return htracer();
|
|
}
|
|
|
|
|
|
Map* Isolate::get_initial_js_array_map(ElementsKind kind) {
|
|
Context* native_context = context()->native_context();
|
|
Object* maybe_map_array = native_context->js_array_maps();
|
|
if (!maybe_map_array->IsUndefined()) {
|
|
Object* maybe_transitioned_map =
|
|
FixedArray::cast(maybe_map_array)->get(kind);
|
|
if (!maybe_transitioned_map->IsUndefined()) {
|
|
return Map::cast(maybe_transitioned_map);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
bool Isolate::IsFastArrayConstructorPrototypeChainIntact() {
|
|
Map* root_array_map =
|
|
get_initial_js_array_map(GetInitialFastElementsKind());
|
|
ASSERT(root_array_map != NULL);
|
|
JSObject* initial_array_proto = JSObject::cast(*initial_array_prototype());
|
|
|
|
// Check that the array prototype hasn't been altered WRT empty elements.
|
|
if (root_array_map->prototype() != initial_array_proto) return false;
|
|
if (initial_array_proto->elements() != heap()->empty_fixed_array()) {
|
|
return false;
|
|
}
|
|
|
|
// Check that the object prototype hasn't been altered WRT empty elements.
|
|
JSObject* initial_object_proto = JSObject::cast(*initial_object_prototype());
|
|
Object* root_array_map_proto = initial_array_proto->GetPrototype();
|
|
if (root_array_map_proto != initial_object_proto) return false;
|
|
if (initial_object_proto->elements() != heap()->empty_fixed_array()) {
|
|
return false;
|
|
}
|
|
|
|
return initial_object_proto->GetPrototype()->IsNull();
|
|
}
|
|
|
|
|
|
CodeStubInterfaceDescriptor*
|
|
Isolate::code_stub_interface_descriptor(int index) {
|
|
return code_stub_interface_descriptors_ + index;
|
|
}
|
|
|
|
|
|
#ifdef DEBUG
|
|
#define ISOLATE_FIELD_OFFSET(type, name, ignored) \
|
|
const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_);
|
|
ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
|
|
ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
|
|
#undef ISOLATE_FIELD_OFFSET
|
|
#endif
|
|
|
|
} } // namespace v8::internal
|