38acad676a
Review URL: http://codereview.chromium.org/661245 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@3995 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
937 lines
29 KiB
C++
937 lines
29 KiB
C++
// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
|
// All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// - Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// - Redistribution in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// - Neither the name of Sun Microsystems or the names of contributors may
|
|
// be used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// The original source code covered by the above license above has been
|
|
// modified significantly by Google Inc.
|
|
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
|
|
// A light-weight IA32 Assembler.
|
|
|
|
#ifndef V8_IA32_ASSEMBLER_IA32_H_
|
|
#define V8_IA32_ASSEMBLER_IA32_H_
|
|
|
|
#include "serialize.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
// CPU Registers.
|
|
//
|
|
// 1) We would prefer to use an enum, but enum values are assignment-
|
|
// compatible with int, which has caused code-generation bugs.
|
|
//
|
|
// 2) We would prefer to use a class instead of a struct but we don't like
|
|
// the register initialization to depend on the particular initialization
|
|
// order (which appears to be different on OS X, Linux, and Windows for the
|
|
// installed versions of C++ we tried). Using a struct permits C-style
|
|
// "initialization". Also, the Register objects cannot be const as this
|
|
// forces initialization stubs in MSVC, making us dependent on initialization
|
|
// order.
|
|
//
|
|
// 3) By not using an enum, we are possibly preventing the compiler from
|
|
// doing certain constant folds, which may significantly reduce the
|
|
// code generated for some assembly instructions (because they boil down
|
|
// to a few constants). If this is a problem, we could change the code
|
|
// such that we use an enum in optimized mode, and the struct in debug
|
|
// mode. This way we get the compile-time error checking in debug mode
|
|
// and best performance in optimized code.
|
|
//
|
|
struct Register {
|
|
bool is_valid() const { return 0 <= code_ && code_ < 8; }
|
|
bool is(Register reg) const { return code_ == reg.code_; }
|
|
// eax, ebx, ecx and edx are byte registers, the rest are not.
|
|
bool is_byte_register() const { return code_ <= 3; }
|
|
int code() const {
|
|
ASSERT(is_valid());
|
|
return code_;
|
|
}
|
|
int bit() const {
|
|
ASSERT(is_valid());
|
|
return 1 << code_;
|
|
}
|
|
|
|
// Unfortunately we can't make this private in a struct.
|
|
int code_;
|
|
};
|
|
|
|
const Register eax = { 0 };
|
|
const Register ecx = { 1 };
|
|
const Register edx = { 2 };
|
|
const Register ebx = { 3 };
|
|
const Register esp = { 4 };
|
|
const Register ebp = { 5 };
|
|
const Register esi = { 6 };
|
|
const Register edi = { 7 };
|
|
const Register no_reg = { -1 };
|
|
|
|
|
|
struct XMMRegister {
|
|
bool is_valid() const { return 0 <= code_ && code_ < 8; }
|
|
int code() const {
|
|
ASSERT(is_valid());
|
|
return code_;
|
|
}
|
|
|
|
int code_;
|
|
};
|
|
|
|
const XMMRegister xmm0 = { 0 };
|
|
const XMMRegister xmm1 = { 1 };
|
|
const XMMRegister xmm2 = { 2 };
|
|
const XMMRegister xmm3 = { 3 };
|
|
const XMMRegister xmm4 = { 4 };
|
|
const XMMRegister xmm5 = { 5 };
|
|
const XMMRegister xmm6 = { 6 };
|
|
const XMMRegister xmm7 = { 7 };
|
|
|
|
enum Condition {
|
|
// any value < 0 is considered no_condition
|
|
no_condition = -1,
|
|
|
|
overflow = 0,
|
|
no_overflow = 1,
|
|
below = 2,
|
|
above_equal = 3,
|
|
equal = 4,
|
|
not_equal = 5,
|
|
below_equal = 6,
|
|
above = 7,
|
|
negative = 8,
|
|
positive = 9,
|
|
parity_even = 10,
|
|
parity_odd = 11,
|
|
less = 12,
|
|
greater_equal = 13,
|
|
less_equal = 14,
|
|
greater = 15,
|
|
|
|
// aliases
|
|
carry = below,
|
|
not_carry = above_equal,
|
|
zero = equal,
|
|
not_zero = not_equal,
|
|
sign = negative,
|
|
not_sign = positive
|
|
};
|
|
|
|
|
|
// Returns the equivalent of !cc.
|
|
// Negation of the default no_condition (-1) results in a non-default
|
|
// no_condition value (-2). As long as tests for no_condition check
|
|
// for condition < 0, this will work as expected.
|
|
inline Condition NegateCondition(Condition cc);
|
|
|
|
// Corresponds to transposing the operands of a comparison.
|
|
inline Condition ReverseCondition(Condition cc) {
|
|
switch (cc) {
|
|
case below:
|
|
return above;
|
|
case above:
|
|
return below;
|
|
case above_equal:
|
|
return below_equal;
|
|
case below_equal:
|
|
return above_equal;
|
|
case less:
|
|
return greater;
|
|
case greater:
|
|
return less;
|
|
case greater_equal:
|
|
return less_equal;
|
|
case less_equal:
|
|
return greater_equal;
|
|
default:
|
|
return cc;
|
|
};
|
|
}
|
|
|
|
enum Hint {
|
|
no_hint = 0,
|
|
not_taken = 0x2e,
|
|
taken = 0x3e
|
|
};
|
|
|
|
// The result of negating a hint is as if the corresponding condition
|
|
// were negated by NegateCondition. That is, no_hint is mapped to
|
|
// itself and not_taken and taken are mapped to each other.
|
|
inline Hint NegateHint(Hint hint) {
|
|
return (hint == no_hint)
|
|
? no_hint
|
|
: ((hint == not_taken) ? taken : not_taken);
|
|
}
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Machine instruction Immediates
|
|
|
|
class Immediate BASE_EMBEDDED {
|
|
public:
|
|
inline explicit Immediate(int x);
|
|
inline explicit Immediate(const char* s);
|
|
inline explicit Immediate(const ExternalReference& ext);
|
|
inline explicit Immediate(Handle<Object> handle);
|
|
inline explicit Immediate(Smi* value);
|
|
|
|
static Immediate CodeRelativeOffset(Label* label) {
|
|
return Immediate(label);
|
|
}
|
|
|
|
bool is_zero() const { return x_ == 0 && rmode_ == RelocInfo::NONE; }
|
|
bool is_int8() const {
|
|
return -128 <= x_ && x_ < 128 && rmode_ == RelocInfo::NONE;
|
|
}
|
|
bool is_int16() const {
|
|
return -32768 <= x_ && x_ < 32768 && rmode_ == RelocInfo::NONE;
|
|
}
|
|
|
|
private:
|
|
inline explicit Immediate(Label* value);
|
|
|
|
int x_;
|
|
RelocInfo::Mode rmode_;
|
|
|
|
friend class Assembler;
|
|
};
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Machine instruction Operands
|
|
|
|
enum ScaleFactor {
|
|
times_1 = 0,
|
|
times_2 = 1,
|
|
times_4 = 2,
|
|
times_8 = 3,
|
|
times_int_size = times_4,
|
|
times_half_pointer_size = times_2,
|
|
times_pointer_size = times_4,
|
|
times_twice_pointer_size = times_8
|
|
};
|
|
|
|
|
|
class Operand BASE_EMBEDDED {
|
|
public:
|
|
// reg
|
|
INLINE(explicit Operand(Register reg));
|
|
|
|
// [disp/r]
|
|
INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
|
|
// disp only must always be relocated
|
|
|
|
// [base + disp/r]
|
|
explicit Operand(Register base, int32_t disp,
|
|
RelocInfo::Mode rmode = RelocInfo::NONE);
|
|
|
|
// [base + index*scale + disp/r]
|
|
explicit Operand(Register base,
|
|
Register index,
|
|
ScaleFactor scale,
|
|
int32_t disp,
|
|
RelocInfo::Mode rmode = RelocInfo::NONE);
|
|
|
|
// [index*scale + disp/r]
|
|
explicit Operand(Register index,
|
|
ScaleFactor scale,
|
|
int32_t disp,
|
|
RelocInfo::Mode rmode = RelocInfo::NONE);
|
|
|
|
static Operand StaticVariable(const ExternalReference& ext) {
|
|
return Operand(reinterpret_cast<int32_t>(ext.address()),
|
|
RelocInfo::EXTERNAL_REFERENCE);
|
|
}
|
|
|
|
static Operand StaticArray(Register index,
|
|
ScaleFactor scale,
|
|
const ExternalReference& arr) {
|
|
return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
|
|
RelocInfo::EXTERNAL_REFERENCE);
|
|
}
|
|
|
|
// Returns true if this Operand is a wrapper for the specified register.
|
|
bool is_reg(Register reg) const;
|
|
|
|
private:
|
|
byte buf_[6];
|
|
// The number of bytes in buf_.
|
|
unsigned int len_;
|
|
// Only valid if len_ > 4.
|
|
RelocInfo::Mode rmode_;
|
|
|
|
// Set the ModRM byte without an encoded 'reg' register. The
|
|
// register is encoded later as part of the emit_operand operation.
|
|
inline void set_modrm(int mod, Register rm);
|
|
|
|
inline void set_sib(ScaleFactor scale, Register index, Register base);
|
|
inline void set_disp8(int8_t disp);
|
|
inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
|
|
|
|
friend class Assembler;
|
|
};
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// A Displacement describes the 32bit immediate field of an instruction which
|
|
// may be used together with a Label in order to refer to a yet unknown code
|
|
// position. Displacements stored in the instruction stream are used to describe
|
|
// the instruction and to chain a list of instructions using the same Label.
|
|
// A Displacement contains 2 different fields:
|
|
//
|
|
// next field: position of next displacement in the chain (0 = end of list)
|
|
// type field: instruction type
|
|
//
|
|
// A next value of null (0) indicates the end of a chain (note that there can
|
|
// be no displacement at position zero, because there is always at least one
|
|
// instruction byte before the displacement).
|
|
//
|
|
// Displacement _data field layout
|
|
//
|
|
// |31.....2|1......0|
|
|
// [ next | type |
|
|
|
|
class Displacement BASE_EMBEDDED {
|
|
public:
|
|
enum Type {
|
|
UNCONDITIONAL_JUMP,
|
|
CODE_RELATIVE,
|
|
OTHER
|
|
};
|
|
|
|
int data() const { return data_; }
|
|
Type type() const { return TypeField::decode(data_); }
|
|
void next(Label* L) const {
|
|
int n = NextField::decode(data_);
|
|
n > 0 ? L->link_to(n) : L->Unuse();
|
|
}
|
|
void link_to(Label* L) { init(L, type()); }
|
|
|
|
explicit Displacement(int data) { data_ = data; }
|
|
|
|
Displacement(Label* L, Type type) { init(L, type); }
|
|
|
|
void print() {
|
|
PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
|
|
NextField::decode(data_));
|
|
}
|
|
|
|
private:
|
|
int data_;
|
|
|
|
class TypeField: public BitField<Type, 0, 2> {};
|
|
class NextField: public BitField<int, 2, 32-2> {};
|
|
|
|
void init(Label* L, Type type);
|
|
};
|
|
|
|
|
|
|
|
// CpuFeatures keeps track of which features are supported by the target CPU.
|
|
// Supported features must be enabled by a Scope before use.
|
|
// Example:
|
|
// if (CpuFeatures::IsSupported(SSE2)) {
|
|
// CpuFeatures::Scope fscope(SSE2);
|
|
// // Generate SSE2 floating point code.
|
|
// } else {
|
|
// // Generate standard x87 floating point code.
|
|
// }
|
|
class CpuFeatures : public AllStatic {
|
|
public:
|
|
// Detect features of the target CPU. Set safe defaults if the serializer
|
|
// is enabled (snapshots must be portable).
|
|
static void Probe();
|
|
// Check whether a feature is supported by the target CPU.
|
|
static bool IsSupported(CpuFeature f) {
|
|
if (f == SSE2 && !FLAG_enable_sse2) return false;
|
|
if (f == SSE3 && !FLAG_enable_sse3) return false;
|
|
if (f == CMOV && !FLAG_enable_cmov) return false;
|
|
if (f == RDTSC && !FLAG_enable_rdtsc) return false;
|
|
return (supported_ & (static_cast<uint64_t>(1) << f)) != 0;
|
|
}
|
|
// Check whether a feature is currently enabled.
|
|
static bool IsEnabled(CpuFeature f) {
|
|
return (enabled_ & (static_cast<uint64_t>(1) << f)) != 0;
|
|
}
|
|
// Enable a specified feature within a scope.
|
|
class Scope BASE_EMBEDDED {
|
|
#ifdef DEBUG
|
|
public:
|
|
explicit Scope(CpuFeature f) {
|
|
uint64_t mask = static_cast<uint64_t>(1) << f;
|
|
ASSERT(CpuFeatures::IsSupported(f));
|
|
ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
|
|
old_enabled_ = CpuFeatures::enabled_;
|
|
CpuFeatures::enabled_ |= mask;
|
|
}
|
|
~Scope() { CpuFeatures::enabled_ = old_enabled_; }
|
|
private:
|
|
uint64_t old_enabled_;
|
|
#else
|
|
public:
|
|
explicit Scope(CpuFeature f) {}
|
|
#endif
|
|
};
|
|
private:
|
|
static uint64_t supported_;
|
|
static uint64_t enabled_;
|
|
static uint64_t found_by_runtime_probing_;
|
|
};
|
|
|
|
|
|
class Assembler : public Malloced {
|
|
private:
|
|
// We check before assembling an instruction that there is sufficient
|
|
// space to write an instruction and its relocation information.
|
|
// The relocation writer's position must be kGap bytes above the end of
|
|
// the generated instructions. This leaves enough space for the
|
|
// longest possible ia32 instruction, 15 bytes, and the longest possible
|
|
// relocation information encoding, RelocInfoWriter::kMaxLength == 16.
|
|
// (There is a 15 byte limit on ia32 instruction length that rules out some
|
|
// otherwise valid instructions.)
|
|
// This allows for a single, fast space check per instruction.
|
|
static const int kGap = 32;
|
|
|
|
public:
|
|
// Create an assembler. Instructions and relocation information are emitted
|
|
// into a buffer, with the instructions starting from the beginning and the
|
|
// relocation information starting from the end of the buffer. See CodeDesc
|
|
// for a detailed comment on the layout (globals.h).
|
|
//
|
|
// If the provided buffer is NULL, the assembler allocates and grows its own
|
|
// buffer, and buffer_size determines the initial buffer size. The buffer is
|
|
// owned by the assembler and deallocated upon destruction of the assembler.
|
|
//
|
|
// If the provided buffer is not NULL, the assembler uses the provided buffer
|
|
// for code generation and assumes its size to be buffer_size. If the buffer
|
|
// is too small, a fatal error occurs. No deallocation of the buffer is done
|
|
// upon destruction of the assembler.
|
|
Assembler(void* buffer, int buffer_size);
|
|
~Assembler();
|
|
|
|
// GetCode emits any pending (non-emitted) code and fills the descriptor
|
|
// desc. GetCode() is idempotent; it returns the same result if no other
|
|
// Assembler functions are invoked in between GetCode() calls.
|
|
void GetCode(CodeDesc* desc);
|
|
|
|
// Read/Modify the code target in the branch/call instruction at pc.
|
|
inline static Address target_address_at(Address pc);
|
|
inline static void set_target_address_at(Address pc, Address target);
|
|
|
|
// This sets the branch destination (which is in the instruction on x86).
|
|
// This is for calls and branches within generated code.
|
|
inline static void set_target_at(Address instruction_payload,
|
|
Address target) {
|
|
set_target_address_at(instruction_payload, target);
|
|
}
|
|
|
|
// This sets the branch destination (which is in the instruction on x86).
|
|
// This is for calls and branches to runtime code.
|
|
inline static void set_external_target_at(Address instruction_payload,
|
|
Address target) {
|
|
set_target_address_at(instruction_payload, target);
|
|
}
|
|
|
|
static const int kCallTargetSize = kPointerSize;
|
|
static const int kExternalTargetSize = kPointerSize;
|
|
|
|
// Distance between the address of the code target in the call instruction
|
|
// and the return address
|
|
static const int kCallTargetAddressOffset = kPointerSize;
|
|
// Distance between start of patched return sequence and the emitted address
|
|
// to jump to.
|
|
static const int kPatchReturnSequenceAddressOffset = 1; // JMP imm32.
|
|
|
|
static const int kCallInstructionLength = 5;
|
|
static const int kJSReturnSequenceLength = 6;
|
|
|
|
// ---------------------------------------------------------------------------
|
|
// Code generation
|
|
//
|
|
// - function names correspond one-to-one to ia32 instruction mnemonics
|
|
// - unless specified otherwise, instructions operate on 32bit operands
|
|
// - instructions on 8bit (byte) operands/registers have a trailing '_b'
|
|
// - instructions on 16bit (word) operands/registers have a trailing '_w'
|
|
// - naming conflicts with C++ keywords are resolved via a trailing '_'
|
|
|
|
// NOTE ON INTERFACE: Currently, the interface is not very consistent
|
|
// in the sense that some operations (e.g. mov()) can be called in more
|
|
// the one way to generate the same instruction: The Register argument
|
|
// can in some cases be replaced with an Operand(Register) argument.
|
|
// This should be cleaned up and made more orthogonal. The questions
|
|
// is: should we always use Operands instead of Registers where an
|
|
// Operand is possible, or should we have a Register (overloaded) form
|
|
// instead? We must be careful to make sure that the selected instruction
|
|
// is obvious from the parameters to avoid hard-to-find code generation
|
|
// bugs.
|
|
|
|
// Insert the smallest number of nop instructions
|
|
// possible to align the pc offset to a multiple
|
|
// of m. m must be a power of 2.
|
|
void Align(int m);
|
|
|
|
// Stack
|
|
void pushad();
|
|
void popad();
|
|
|
|
void pushfd();
|
|
void popfd();
|
|
|
|
void push(const Immediate& x);
|
|
void push(Register src);
|
|
void push(const Operand& src);
|
|
void push(Label* label, RelocInfo::Mode relocation_mode);
|
|
|
|
void pop(Register dst);
|
|
void pop(const Operand& dst);
|
|
|
|
void enter(const Immediate& size);
|
|
void leave();
|
|
|
|
// Moves
|
|
void mov_b(Register dst, const Operand& src);
|
|
void mov_b(const Operand& dst, int8_t imm8);
|
|
void mov_b(const Operand& dst, Register src);
|
|
|
|
void mov_w(Register dst, const Operand& src);
|
|
void mov_w(const Operand& dst, Register src);
|
|
|
|
void mov(Register dst, int32_t imm32);
|
|
void mov(Register dst, const Immediate& x);
|
|
void mov(Register dst, Handle<Object> handle);
|
|
void mov(Register dst, const Operand& src);
|
|
void mov(Register dst, Register src);
|
|
void mov(const Operand& dst, const Immediate& x);
|
|
void mov(const Operand& dst, Handle<Object> handle);
|
|
void mov(const Operand& dst, Register src);
|
|
|
|
void movsx_b(Register dst, const Operand& src);
|
|
|
|
void movsx_w(Register dst, const Operand& src);
|
|
|
|
void movzx_b(Register dst, const Operand& src);
|
|
|
|
void movzx_w(Register dst, const Operand& src);
|
|
|
|
// Conditional moves
|
|
void cmov(Condition cc, Register dst, int32_t imm32);
|
|
void cmov(Condition cc, Register dst, Handle<Object> handle);
|
|
void cmov(Condition cc, Register dst, const Operand& src);
|
|
|
|
// Flag management.
|
|
void cld();
|
|
|
|
// Repetitive string instructions.
|
|
void rep_movs();
|
|
void rep_stos();
|
|
|
|
// Exchange two registers
|
|
void xchg(Register dst, Register src);
|
|
|
|
// Arithmetics
|
|
void adc(Register dst, int32_t imm32);
|
|
void adc(Register dst, const Operand& src);
|
|
|
|
void add(Register dst, const Operand& src);
|
|
void add(const Operand& dst, const Immediate& x);
|
|
|
|
void and_(Register dst, int32_t imm32);
|
|
void and_(Register dst, const Operand& src);
|
|
void and_(const Operand& src, Register dst);
|
|
void and_(const Operand& dst, const Immediate& x);
|
|
|
|
void cmpb(const Operand& op, int8_t imm8);
|
|
void cmpb(Register src, const Operand& dst);
|
|
void cmpb(const Operand& dst, Register src);
|
|
void cmpb_al(const Operand& op);
|
|
void cmpw_ax(const Operand& op);
|
|
void cmpw(const Operand& op, Immediate imm16);
|
|
void cmp(Register reg, int32_t imm32);
|
|
void cmp(Register reg, Handle<Object> handle);
|
|
void cmp(Register reg, const Operand& op);
|
|
void cmp(const Operand& op, const Immediate& imm);
|
|
void cmp(const Operand& op, Handle<Object> handle);
|
|
|
|
void dec_b(Register dst);
|
|
|
|
void dec(Register dst);
|
|
void dec(const Operand& dst);
|
|
|
|
void cdq();
|
|
|
|
void idiv(Register src);
|
|
|
|
// Signed multiply instructions.
|
|
void imul(Register src); // edx:eax = eax * src.
|
|
void imul(Register dst, const Operand& src); // dst = dst * src.
|
|
void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
|
|
|
|
void inc(Register dst);
|
|
void inc(const Operand& dst);
|
|
|
|
void lea(Register dst, const Operand& src);
|
|
|
|
// Unsigned multiply instruction.
|
|
void mul(Register src); // edx:eax = eax * reg.
|
|
|
|
void neg(Register dst);
|
|
|
|
void not_(Register dst);
|
|
|
|
void or_(Register dst, int32_t imm32);
|
|
void or_(Register dst, const Operand& src);
|
|
void or_(const Operand& dst, Register src);
|
|
void or_(const Operand& dst, const Immediate& x);
|
|
|
|
void rcl(Register dst, uint8_t imm8);
|
|
|
|
void sar(Register dst, uint8_t imm8);
|
|
void sar_cl(Register dst);
|
|
|
|
void sbb(Register dst, const Operand& src);
|
|
|
|
void shld(Register dst, const Operand& src);
|
|
|
|
void shl(Register dst, uint8_t imm8);
|
|
void shl_cl(Register dst);
|
|
|
|
void shrd(Register dst, const Operand& src);
|
|
|
|
void shr(Register dst, uint8_t imm8);
|
|
void shr_cl(Register dst);
|
|
|
|
void subb(const Operand& dst, int8_t imm8);
|
|
void subb(Register dst, const Operand& src);
|
|
void sub(const Operand& dst, const Immediate& x);
|
|
void sub(Register dst, const Operand& src);
|
|
void sub(const Operand& dst, Register src);
|
|
|
|
void test(Register reg, const Immediate& imm);
|
|
void test(Register reg, const Operand& op);
|
|
void test_b(Register reg, const Operand& op);
|
|
void test(const Operand& op, const Immediate& imm);
|
|
|
|
void xor_(Register dst, int32_t imm32);
|
|
void xor_(Register dst, const Operand& src);
|
|
void xor_(const Operand& src, Register dst);
|
|
void xor_(const Operand& dst, const Immediate& x);
|
|
|
|
// Bit operations.
|
|
void bt(const Operand& dst, Register src);
|
|
void bts(const Operand& dst, Register src);
|
|
|
|
// Miscellaneous
|
|
void hlt();
|
|
void int3();
|
|
void nop();
|
|
void rdtsc();
|
|
void ret(int imm16);
|
|
|
|
// Label operations & relative jumps (PPUM Appendix D)
|
|
//
|
|
// Takes a branch opcode (cc) and a label (L) and generates
|
|
// either a backward branch or a forward branch and links it
|
|
// to the label fixup chain. Usage:
|
|
//
|
|
// Label L; // unbound label
|
|
// j(cc, &L); // forward branch to unbound label
|
|
// bind(&L); // bind label to the current pc
|
|
// j(cc, &L); // backward branch to bound label
|
|
// bind(&L); // illegal: a label may be bound only once
|
|
//
|
|
// Note: The same Label can be used for forward and backward branches
|
|
// but it may be bound only once.
|
|
|
|
void bind(Label* L); // binds an unbound label L to the current code position
|
|
|
|
// Calls
|
|
void call(Label* L);
|
|
void call(byte* entry, RelocInfo::Mode rmode);
|
|
void call(const Operand& adr);
|
|
void call(const ExternalReference& target);
|
|
void call(Handle<Code> code, RelocInfo::Mode rmode);
|
|
|
|
// Jumps
|
|
void jmp(Label* L); // unconditional jump to L
|
|
void jmp(byte* entry, RelocInfo::Mode rmode);
|
|
void jmp(const Operand& adr);
|
|
void jmp(Handle<Code> code, RelocInfo::Mode rmode);
|
|
|
|
// Conditional jumps
|
|
void j(Condition cc, Label* L, Hint hint = no_hint);
|
|
void j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint = no_hint);
|
|
void j(Condition cc, Handle<Code> code, Hint hint = no_hint);
|
|
|
|
// Floating-point operations
|
|
void fld(int i);
|
|
void fstp(int i);
|
|
|
|
void fld1();
|
|
void fldz();
|
|
void fldpi();
|
|
|
|
void fld_s(const Operand& adr);
|
|
void fld_d(const Operand& adr);
|
|
|
|
void fstp_s(const Operand& adr);
|
|
void fstp_d(const Operand& adr);
|
|
void fst_d(const Operand& adr);
|
|
|
|
void fild_s(const Operand& adr);
|
|
void fild_d(const Operand& adr);
|
|
|
|
void fist_s(const Operand& adr);
|
|
|
|
void fistp_s(const Operand& adr);
|
|
void fistp_d(const Operand& adr);
|
|
|
|
void fisttp_s(const Operand& adr);
|
|
void fisttp_d(const Operand& adr);
|
|
|
|
void fabs();
|
|
void fchs();
|
|
void fcos();
|
|
void fsin();
|
|
|
|
void fadd(int i);
|
|
void fsub(int i);
|
|
void fmul(int i);
|
|
void fdiv(int i);
|
|
|
|
void fisub_s(const Operand& adr);
|
|
|
|
void faddp(int i = 1);
|
|
void fsubp(int i = 1);
|
|
void fsubrp(int i = 1);
|
|
void fmulp(int i = 1);
|
|
void fdivp(int i = 1);
|
|
void fprem();
|
|
void fprem1();
|
|
|
|
void fxch(int i = 1);
|
|
void fincstp();
|
|
void ffree(int i = 0);
|
|
|
|
void ftst();
|
|
void fucomp(int i);
|
|
void fucompp();
|
|
void fucomi(int i);
|
|
void fucomip();
|
|
void fcompp();
|
|
void fnstsw_ax();
|
|
void fwait();
|
|
void fnclex();
|
|
|
|
void frndint();
|
|
|
|
void sahf();
|
|
void setcc(Condition cc, Register reg);
|
|
|
|
void cpuid();
|
|
|
|
// SSE2 instructions
|
|
void cvttss2si(Register dst, const Operand& src);
|
|
void cvttsd2si(Register dst, const Operand& src);
|
|
|
|
void cvtsi2sd(XMMRegister dst, const Operand& src);
|
|
void cvtss2sd(XMMRegister dst, XMMRegister src);
|
|
|
|
void addsd(XMMRegister dst, XMMRegister src);
|
|
void subsd(XMMRegister dst, XMMRegister src);
|
|
void mulsd(XMMRegister dst, XMMRegister src);
|
|
void divsd(XMMRegister dst, XMMRegister src);
|
|
void xorpd(XMMRegister dst, XMMRegister src);
|
|
void sqrtsd(XMMRegister dst, XMMRegister src);
|
|
|
|
void comisd(XMMRegister dst, XMMRegister src);
|
|
void ucomisd(XMMRegister dst, XMMRegister src);
|
|
|
|
void movdqa(XMMRegister dst, const Operand& src);
|
|
void movdqa(const Operand& dst, XMMRegister src);
|
|
void movdqu(XMMRegister dst, const Operand& src);
|
|
void movdqu(const Operand& dst, XMMRegister src);
|
|
|
|
// Use either movsd or movlpd.
|
|
void movdbl(XMMRegister dst, const Operand& src);
|
|
void movdbl(const Operand& dst, XMMRegister src);
|
|
|
|
void movd(XMMRegister dst, const Operand& src);
|
|
void movsd(XMMRegister dst, XMMRegister src);
|
|
|
|
void pxor(XMMRegister dst, XMMRegister src);
|
|
void ptest(XMMRegister dst, XMMRegister src);
|
|
|
|
// Debugging
|
|
void Print();
|
|
|
|
// Check the code size generated from label to here.
|
|
int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
|
|
|
|
// Mark address of the ExitJSFrame code.
|
|
void RecordJSReturn();
|
|
|
|
// Record a comment relocation entry that can be used by a disassembler.
|
|
// Use --debug_code to enable.
|
|
void RecordComment(const char* msg);
|
|
|
|
void RecordPosition(int pos);
|
|
void RecordStatementPosition(int pos);
|
|
void WriteRecordedPositions();
|
|
|
|
// Writes a single word of data in the code stream.
|
|
// Used for inline tables, e.g., jump-tables.
|
|
void dd(uint32_t data, RelocInfo::Mode reloc_info);
|
|
|
|
int pc_offset() const { return pc_ - buffer_; }
|
|
int current_statement_position() const { return current_statement_position_; }
|
|
int current_position() const { return current_position_; }
|
|
|
|
// Check if there is less than kGap bytes available in the buffer.
|
|
// If this is the case, we need to grow the buffer before emitting
|
|
// an instruction or relocation information.
|
|
inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
|
|
|
|
// Get the number of bytes available in the buffer.
|
|
inline int available_space() const { return reloc_info_writer.pos() - pc_; }
|
|
|
|
// Avoid overflows for displacements etc.
|
|
static const int kMaximalBufferSize = 512*MB;
|
|
static const int kMinimalBufferSize = 4*KB;
|
|
|
|
protected:
|
|
void movsd(XMMRegister dst, const Operand& src);
|
|
void movsd(const Operand& dst, XMMRegister src);
|
|
|
|
void emit_sse_operand(XMMRegister reg, const Operand& adr);
|
|
void emit_sse_operand(XMMRegister dst, XMMRegister src);
|
|
|
|
|
|
private:
|
|
byte* addr_at(int pos) { return buffer_ + pos; }
|
|
byte byte_at(int pos) { return buffer_[pos]; }
|
|
uint32_t long_at(int pos) {
|
|
return *reinterpret_cast<uint32_t*>(addr_at(pos));
|
|
}
|
|
void long_at_put(int pos, uint32_t x) {
|
|
*reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
|
|
}
|
|
|
|
// code emission
|
|
void GrowBuffer();
|
|
inline void emit(uint32_t x);
|
|
inline void emit(Handle<Object> handle);
|
|
inline void emit(uint32_t x, RelocInfo::Mode rmode);
|
|
inline void emit(const Immediate& x);
|
|
inline void emit_w(const Immediate& x);
|
|
|
|
// Emit the code-object-relative offset of the label's position
|
|
inline void emit_code_relative_offset(Label* label);
|
|
|
|
// instruction generation
|
|
void emit_arith_b(int op1, int op2, Register dst, int imm8);
|
|
|
|
// Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
|
|
// with a given destination expression and an immediate operand. It attempts
|
|
// to use the shortest encoding possible.
|
|
// sel specifies the /n in the modrm byte (see the Intel PRM).
|
|
void emit_arith(int sel, Operand dst, const Immediate& x);
|
|
|
|
void emit_operand(Register reg, const Operand& adr);
|
|
|
|
void emit_farith(int b1, int b2, int i);
|
|
|
|
// labels
|
|
void print(Label* L);
|
|
void bind_to(Label* L, int pos);
|
|
void link_to(Label* L, Label* appendix);
|
|
|
|
// displacements
|
|
inline Displacement disp_at(Label* L);
|
|
inline void disp_at_put(Label* L, Displacement disp);
|
|
inline void emit_disp(Label* L, Displacement::Type type);
|
|
|
|
// record reloc info for current pc_
|
|
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
|
|
|
|
friend class CodePatcher;
|
|
friend class EnsureSpace;
|
|
|
|
// Code buffer:
|
|
// The buffer into which code and relocation info are generated.
|
|
byte* buffer_;
|
|
int buffer_size_;
|
|
// True if the assembler owns the buffer, false if buffer is external.
|
|
bool own_buffer_;
|
|
// A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
|
|
static byte* spare_buffer_;
|
|
|
|
// code generation
|
|
byte* pc_; // the program counter; moves forward
|
|
RelocInfoWriter reloc_info_writer;
|
|
|
|
// push-pop elimination
|
|
byte* last_pc_;
|
|
|
|
// source position information
|
|
int current_statement_position_;
|
|
int current_position_;
|
|
int written_statement_position_;
|
|
int written_position_;
|
|
};
|
|
|
|
|
|
// Helper class that ensures that there is enough space for generating
|
|
// instructions and relocation information. The constructor makes
|
|
// sure that there is enough space and (in debug mode) the destructor
|
|
// checks that we did not generate too much.
|
|
class EnsureSpace BASE_EMBEDDED {
|
|
public:
|
|
explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
|
|
if (assembler_->overflow()) assembler_->GrowBuffer();
|
|
#ifdef DEBUG
|
|
space_before_ = assembler_->available_space();
|
|
#endif
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
~EnsureSpace() {
|
|
int bytes_generated = space_before_ - assembler_->available_space();
|
|
ASSERT(bytes_generated < assembler_->kGap);
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
Assembler* assembler_;
|
|
#ifdef DEBUG
|
|
int space_before_;
|
|
#endif
|
|
};
|
|
|
|
} } // namespace v8::internal
|
|
|
|
#endif // V8_IA32_ASSEMBLER_IA32_H_
|