v8/test/unittests/interpreter/interpreter-assembler-unittest.cc
Igor Sheludko d7e6fbe5da Define return count and return types in CallInterfaceDescriptor.
Bug: v8:7754, v8:6600
Change-Id: I4db943d4a4a02a14bba670f89661ea98c5e306dd
Reviewed-on: https://chromium-review.googlesource.com/1107919
Commit-Queue: Igor Sheludko <ishell@chromium.org>
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Cr-Commit-Position: refs/heads/master@{#53907}
2018-06-21 09:35:28 +00:00

554 lines
22 KiB
C++

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "test/unittests/interpreter/interpreter-assembler-unittest.h"
#include "src/code-factory.h"
#include "src/compiler/node.h"
#include "src/interface-descriptors.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "test/unittests/compiler/compiler-test-utils.h"
#include "test/unittests/compiler/node-test-utils.h"
using ::testing::_;
using v8::internal::compiler::Node;
namespace c = v8::internal::compiler;
namespace v8 {
namespace internal {
namespace interpreter {
namespace interpreter_assembler_unittest {
InterpreterAssemblerTestState::InterpreterAssemblerTestState(
InterpreterAssemblerTest* test, Bytecode bytecode)
: compiler::CodeAssemblerState(
test->isolate(), test->zone(), InterpreterDispatchDescriptor{},
Code::BYTECODE_HANDLER, Bytecodes::ToString(bytecode),
PoisoningMitigationLevel::kPoisonCriticalOnly) {}
const interpreter::Bytecode kBytecodes[] = {
#define DEFINE_BYTECODE(Name, ...) interpreter::Bytecode::k##Name,
BYTECODE_LIST(DEFINE_BYTECODE)
#undef DEFINE_BYTECODE
};
InterpreterAssemblerTest::InterpreterAssemblerForTest::
~InterpreterAssemblerForTest() {
// Tests don't necessarily read and write accumulator but
// InterpreterAssembler checks accumulator uses.
if (Bytecodes::ReadsAccumulator(bytecode())) {
GetAccumulator();
}
if (Bytecodes::WritesAccumulator(bytecode())) {
SetAccumulator(nullptr);
}
}
Matcher<Node*> InterpreterAssemblerTest::InterpreterAssemblerForTest::IsLoad(
const Matcher<c::LoadRepresentation>& rep_matcher,
const Matcher<Node*>& base_matcher, const Matcher<Node*>& index_matcher,
LoadSensitivity needs_poisoning) {
CHECK_NE(LoadSensitivity::kUnsafe, needs_poisoning);
CHECK_NE(PoisoningMitigationLevel::kPoisonAll, poisoning_level());
if (poisoning_level() == PoisoningMitigationLevel::kPoisonCriticalOnly &&
needs_poisoning == LoadSensitivity::kCritical) {
return ::i::compiler::IsPoisonedLoad(rep_matcher, base_matcher,
index_matcher, _, _);
}
return ::i::compiler::IsLoad(rep_matcher, base_matcher, index_matcher, _, _);
}
Matcher<Node*> InterpreterAssemblerTest::InterpreterAssemblerForTest::IsStore(
const Matcher<c::StoreRepresentation>& rep_matcher,
const Matcher<Node*>& base_matcher, const Matcher<Node*>& index_matcher,
const Matcher<Node*>& value_matcher) {
return ::i::compiler::IsStore(rep_matcher, base_matcher, index_matcher,
value_matcher, _, _);
}
Matcher<Node*> InterpreterAssemblerTest::InterpreterAssemblerForTest::IsWordNot(
const Matcher<Node*>& value_matcher) {
return kPointerSize == 8 ? IsWord64Xor(value_matcher, c::IsInt64Constant(-1))
: IsWord32Xor(value_matcher, c::IsInt32Constant(-1));
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedByteOperand(
int offset, LoadSensitivity needs_poisoning) {
return IsLoad(
MachineType::Uint8(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(offset)),
needs_poisoning);
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedByteOperand(
int offset, LoadSensitivity needs_poisoning) {
return IsLoad(
MachineType::Int8(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(offset)),
needs_poisoning);
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedShortOperand(
int offset, LoadSensitivity needs_poisoning) {
if (TargetSupportsUnalignedAccess()) {
return IsLoad(
MachineType::Uint16(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(offset)),
needs_poisoning);
} else {
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
const int kMsbOffset = 1;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
const int kMsbOffset = 0;
#else
#error "Unknown Architecture"
#endif
Matcher<Node*> bytes[2];
for (int i = 0; i < static_cast<int>(arraysize(bytes)); i++) {
bytes[i] = IsLoad(
MachineType::Uint8(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(offset + kMsbOffset + kStep * i)),
needs_poisoning);
}
return c::IsWord32Or(
c::IsWord32Shl(bytes[0], c::IsInt32Constant(kBitsPerByte)), bytes[1]);
}
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedShortOperand(
int offset, LoadSensitivity needs_poisoning) {
if (TargetSupportsUnalignedAccess()) {
return IsLoad(
MachineType::Int16(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(offset)),
needs_poisoning);
} else {
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
const int kMsbOffset = 1;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
const int kMsbOffset = 0;
#else
#error "Unknown Architecture"
#endif
Matcher<Node*> bytes[2];
for (int i = 0; i < static_cast<int>(arraysize(bytes)); i++) {
bytes[i] = IsLoad(
(i == 0) ? MachineType::Int8() : MachineType::Uint8(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(offset + kMsbOffset + kStep * i)),
needs_poisoning);
}
return c::IsWord32Or(
c::IsWord32Shl(bytes[0], c::IsInt32Constant(kBitsPerByte)), bytes[1]);
}
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedQuadOperand(
int offset, LoadSensitivity needs_poisoning) {
if (TargetSupportsUnalignedAccess()) {
return IsLoad(
MachineType::Uint32(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(offset)),
needs_poisoning);
} else {
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
const int kMsbOffset = 3;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
const int kMsbOffset = 0;
#else
#error "Unknown Architecture"
#endif
Matcher<Node*> bytes[4];
for (int i = 0; i < static_cast<int>(arraysize(bytes)); i++) {
bytes[i] = IsLoad(
MachineType::Uint8(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(offset + kMsbOffset + kStep * i)),
needs_poisoning);
}
return c::IsWord32Or(
c::IsWord32Shl(bytes[0], c::IsInt32Constant(3 * kBitsPerByte)),
c::IsWord32Or(
c::IsWord32Shl(bytes[1], c::IsInt32Constant(2 * kBitsPerByte)),
c::IsWord32Or(
c::IsWord32Shl(bytes[2], c::IsInt32Constant(1 * kBitsPerByte)),
bytes[3])));
}
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedQuadOperand(
int offset, LoadSensitivity needs_poisoning) {
if (TargetSupportsUnalignedAccess()) {
return IsLoad(
MachineType::Int32(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(offset)),
needs_poisoning);
} else {
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
int kMsbOffset = 3;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
int kMsbOffset = 0;
#else
#error "Unknown Architecture"
#endif
Matcher<Node*> bytes[4];
for (int i = 0; i < static_cast<int>(arraysize(bytes)); i++) {
bytes[i] = IsLoad(
(i == 0) ? MachineType::Int8() : MachineType::Uint8(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(offset + kMsbOffset + kStep * i)),
needs_poisoning);
}
return c::IsWord32Or(
c::IsWord32Shl(bytes[0], c::IsInt32Constant(3 * kBitsPerByte)),
c::IsWord32Or(
c::IsWord32Shl(bytes[1], c::IsInt32Constant(2 * kBitsPerByte)),
c::IsWord32Or(
c::IsWord32Shl(bytes[2], c::IsInt32Constant(1 * kBitsPerByte)),
bytes[3])));
}
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsSignedOperand(
int offset, OperandSize operand_size, LoadSensitivity needs_poisoning) {
switch (operand_size) {
case OperandSize::kByte:
return IsSignedByteOperand(offset, needs_poisoning);
case OperandSize::kShort:
return IsSignedShortOperand(offset, needs_poisoning);
case OperandSize::kQuad:
return IsSignedQuadOperand(offset, needs_poisoning);
case OperandSize::kNone:
UNREACHABLE();
}
return nullptr;
}
Matcher<Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsUnsignedOperand(
int offset, OperandSize operand_size, LoadSensitivity needs_poisoning) {
switch (operand_size) {
case OperandSize::kByte:
return IsUnsignedByteOperand(offset, needs_poisoning);
case OperandSize::kShort:
return IsUnsignedShortOperand(offset, needs_poisoning);
case OperandSize::kQuad:
return IsUnsignedQuadOperand(offset, needs_poisoning);
case OperandSize::kNone:
UNREACHABLE();
}
return nullptr;
}
Matcher<compiler::Node*>
InterpreterAssemblerTest::InterpreterAssemblerForTest::IsLoadRegisterOperand(
int offset, OperandSize operand_size) {
Matcher<compiler::Node*> reg_operand = IsChangeInt32ToIntPtr(
IsSignedOperand(offset, operand_size, LoadSensitivity::kSafe));
return IsLoad(
MachineType::AnyTagged(), c::IsLoadParentFramePointer(),
c::IsWordShl(reg_operand, c::IsIntPtrConstant(kPointerSizeLog2)),
LoadSensitivity::kCritical);
}
TARGET_TEST_F(InterpreterAssemblerTest, Jump) {
// If debug code is enabled we emit extra code in Jump.
if (FLAG_debug_code) return;
int jump_offsets[] = {-9710, -77, 0, +3, +97109};
TRACED_FOREACH(int, jump_offset, jump_offsets) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
if (!interpreter::Bytecodes::IsJump(bytecode)) return;
InterpreterAssemblerTestState state(this, bytecode);
InterpreterAssemblerForTest m(&state, bytecode);
Node* tail_call_node = m.Jump(m.IntPtrConstant(jump_offset));
Matcher<Node*> next_bytecode_offset_matcher = c::IsIntPtrAdd(
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeOffset),
c::IsIntPtrConstant(jump_offset));
Matcher<Node*> target_bytecode_matcher =
m.IsLoad(MachineType::Uint8(), _, next_bytecode_offset_matcher);
target_bytecode_matcher =
c::IsChangeUint32ToWord(target_bytecode_matcher);
Matcher<Node*> code_target_matcher = m.IsLoad(
MachineType::Pointer(),
c::IsParameter(InterpreterDispatchDescriptor::kDispatchTable),
c::IsWordShl(target_bytecode_matcher,
c::IsIntPtrConstant(kPointerSizeLog2)));
EXPECT_THAT(
tail_call_node,
c::IsTailCall(
_, code_target_matcher,
c::IsParameter(InterpreterDispatchDescriptor::kAccumulator),
next_bytecode_offset_matcher, _,
c::IsParameter(InterpreterDispatchDescriptor::kDispatchTable), _,
_));
}
}
}
TARGET_TEST_F(InterpreterAssemblerTest, BytecodeOperand) {
static const OperandScale kOperandScales[] = {
OperandScale::kSingle, OperandScale::kDouble, OperandScale::kQuadruple};
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
TRACED_FOREACH(interpreter::OperandScale, operand_scale, kOperandScales) {
InterpreterAssemblerTestState state(this, bytecode);
InterpreterAssemblerForTest m(&state, bytecode, operand_scale);
int number_of_operands =
interpreter::Bytecodes::NumberOfOperands(bytecode);
for (int i = 0; i < number_of_operands; i++) {
int offset = interpreter::Bytecodes::GetOperandOffset(bytecode, i,
operand_scale);
OperandType operand_type =
interpreter::Bytecodes::GetOperandType(bytecode, i);
OperandSize operand_size =
Bytecodes::SizeOfOperand(operand_type, operand_scale);
switch (interpreter::Bytecodes::GetOperandType(bytecode, i)) {
case interpreter::OperandType::kRegCount:
EXPECT_THAT(m.BytecodeOperandCount(i),
m.IsUnsignedOperand(offset, operand_size,
LoadSensitivity::kCritical));
break;
case interpreter::OperandType::kFlag8:
EXPECT_THAT(m.BytecodeOperandFlag(i),
m.IsUnsignedOperand(offset, operand_size,
LoadSensitivity::kCritical));
break;
case interpreter::OperandType::kIdx:
EXPECT_THAT(m.BytecodeOperandIdx(i),
c::IsChangeUint32ToWord(m.IsUnsignedOperand(
offset, operand_size, LoadSensitivity::kCritical)));
break;
case interpreter::OperandType::kNativeContextIndex:
EXPECT_THAT(m.BytecodeOperandNativeContextIndex(i),
c::IsChangeUint32ToWord(m.IsUnsignedOperand(
offset, operand_size, LoadSensitivity::kCritical)));
break;
case interpreter::OperandType::kUImm:
EXPECT_THAT(m.BytecodeOperandUImm(i),
m.IsUnsignedOperand(offset, operand_size,
LoadSensitivity::kCritical));
break;
case interpreter::OperandType::kImm: {
EXPECT_THAT(m.BytecodeOperandImm(i),
m.IsSignedOperand(offset, operand_size,
LoadSensitivity::kCritical));
break;
}
case interpreter::OperandType::kRuntimeId:
EXPECT_THAT(m.BytecodeOperandRuntimeId(i),
m.IsUnsignedOperand(offset, operand_size,
LoadSensitivity::kCritical));
break;
case interpreter::OperandType::kIntrinsicId:
EXPECT_THAT(m.BytecodeOperandIntrinsicId(i),
m.IsUnsignedOperand(offset, operand_size,
LoadSensitivity::kCritical));
break;
case interpreter::OperandType::kRegList:
case interpreter::OperandType::kReg:
case interpreter::OperandType::kRegPair:
case interpreter::OperandType::kRegOut:
case interpreter::OperandType::kRegOutList:
case interpreter::OperandType::kRegOutPair:
case interpreter::OperandType::kRegOutTriple:
EXPECT_THAT(m.LoadRegisterAtOperandIndex(i),
m.IsLoadRegisterOperand(offset, operand_size));
break;
case interpreter::OperandType::kNone:
UNREACHABLE();
break;
}
}
}
}
}
TARGET_TEST_F(InterpreterAssemblerTest, GetContext) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerTestState state(this, bytecode);
InterpreterAssemblerForTest m(&state, bytecode);
EXPECT_THAT(
m.GetContext(),
m.IsLoad(MachineType::AnyTagged(), c::IsLoadParentFramePointer(),
c::IsIntPtrConstant(Register::current_context().ToOperand()
<< kPointerSizeLog2)));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, LoadConstantPoolEntry) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerTestState state(this, bytecode);
InterpreterAssemblerForTest m(&state, bytecode);
{
Node* index = m.IntPtrConstant(2);
Node* load_constant = m.LoadConstantPoolEntry(index);
Matcher<Node*> constant_pool_matcher = m.IsLoad(
MachineType::AnyTagged(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrConstant(BytecodeArray::kConstantPoolOffset -
kHeapObjectTag));
EXPECT_THAT(
load_constant,
m.IsLoad(MachineType::AnyTagged(), constant_pool_matcher,
c::IsIntPtrConstant(FixedArray::OffsetOfElementAt(2) -
kHeapObjectTag),
LoadSensitivity::kCritical));
}
{
Node* index = m.Parameter(2);
Node* load_constant = m.LoadConstantPoolEntry(index);
Matcher<Node*> constant_pool_matcher = m.IsLoad(
MachineType::AnyTagged(),
c::IsParameter(InterpreterDispatchDescriptor::kBytecodeArray),
c::IsIntPtrConstant(BytecodeArray::kConstantPoolOffset -
kHeapObjectTag));
EXPECT_THAT(
load_constant,
m.IsLoad(
MachineType::AnyTagged(), constant_pool_matcher,
c::IsIntPtrAdd(
c::IsIntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag),
c::IsWordShl(index, c::IsIntPtrConstant(kPointerSizeLog2))),
LoadSensitivity::kCritical));
}
}
}
TARGET_TEST_F(InterpreterAssemblerTest, LoadObjectField) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerTestState state(this, bytecode);
InterpreterAssemblerForTest m(&state, bytecode);
Node* object = m.IntPtrConstant(0xDEADBEEF);
int offset = 16;
Node* load_field = m.LoadObjectField(object, offset);
EXPECT_THAT(load_field,
m.IsLoad(MachineType::AnyTagged(), object,
c::IsIntPtrConstant(offset - kHeapObjectTag)));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, CallRuntime2) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerTestState state(this, bytecode);
InterpreterAssemblerForTest m(&state, bytecode);
Node* arg1 = m.Int32Constant(2);
Node* arg2 = m.Int32Constant(3);
Node* context = m.Int32Constant(4);
Node* call_runtime = m.CallRuntime(Runtime::kAdd, context, arg1, arg2);
EXPECT_THAT(call_runtime, c::IsCall(_, _, arg1, arg2, _,
c::IsInt32Constant(2), context, _, _));
}
}
TARGET_TEST_F(InterpreterAssemblerTest, CallRuntime) {
const int kResultSizes[] = {1, 2};
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
TRACED_FOREACH(int, result_size, kResultSizes) {
if (Bytecodes::IsCallRuntime(bytecode)) {
InterpreterAssemblerTestState state(this, bytecode);
InterpreterAssemblerForTest m(&state, bytecode);
Callable builtin =
CodeFactory::InterpreterCEntry(isolate(), result_size);
Node* function_id = m.Int32Constant(0);
InterpreterAssembler::RegListNodePair registers(m.IntPtrConstant(1),
m.Int32Constant(2));
Node* context = m.IntPtrConstant(4);
Matcher<Node*> function_table = c::IsExternalConstant(
ExternalReference::runtime_function_table_address_for_unittests(
isolate()));
Matcher<Node*> function = c::IsIntPtrAdd(
function_table,
c::IsChangeUint32ToWord(c::IsInt32Mul(
function_id, c::IsInt32Constant(sizeof(Runtime::Function)))));
Matcher<Node*> function_entry =
m.IsLoad(MachineType::Pointer(), function,
c::IsIntPtrConstant(offsetof(Runtime::Function, entry)));
Node* call_runtime =
m.CallRuntimeN(function_id, context, registers, result_size);
EXPECT_THAT(
call_runtime,
c::IsCall(_, c::IsHeapConstant(builtin.code()),
registers.reg_count(), registers.base_reg_location(),
function_entry, context, _, _));
}
}
}
}
TARGET_TEST_F(InterpreterAssemblerTest, LoadFeedbackVector) {
TRACED_FOREACH(interpreter::Bytecode, bytecode, kBytecodes) {
InterpreterAssemblerTestState state(this, bytecode);
InterpreterAssemblerForTest m(&state, bytecode);
Node* feedback_vector = m.LoadFeedbackVector();
Matcher<Node*> load_function_matcher =
m.IsLoad(MachineType::AnyTagged(), c::IsLoadParentFramePointer(),
c::IsIntPtrConstant(Register::function_closure().ToOperand()
<< kPointerSizeLog2));
Matcher<Node*> load_vector_cell_matcher = m.IsLoad(
MachineType::AnyTagged(), load_function_matcher,
c::IsIntPtrConstant(JSFunction::kFeedbackCellOffset - kHeapObjectTag));
EXPECT_THAT(
feedback_vector,
m.IsLoad(MachineType::AnyTagged(), load_vector_cell_matcher,
c::IsIntPtrConstant(Cell::kValueOffset - kHeapObjectTag)));
}
}
} // namespace interpreter_assembler_unittest
} // namespace interpreter
} // namespace internal
} // namespace v8