v8/test/cctest/compiler/test-gap-resolver.cc
bbudge 8c8600db2e [turbofan] Rename floating point register / slot methods.
Renames IsDouble* predicates to IsFP*.
Adds specific IsFloat*, IsDouble*, and IsSimd128* predicates.
Adds specific GetFloatRegister, GetDoubleRegister, and
GetSimd128Register methods.

This is mostly a mechanical renaming of IsDouble* to IsFP* methods.

This shouldn't change code generation at all. All fp registers are still
treated as double registers.

LOG=N
BUG=v8:4124

Review-Url: https://codereview.chromium.org/1959763002
Cr-Commit-Position: refs/heads/master@{#36146}
2016-05-10 15:20:28 +00:00

261 lines
7.8 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/gap-resolver.h"
#include "src/base/utils/random-number-generator.h"
#include "test/cctest/cctest.h"
namespace v8 {
namespace internal {
namespace compiler {
// The state of our move interpreter is the mapping of operands to values. Note
// that the actual values don't really matter, all we care about is equality.
class InterpreterState {
public:
void ExecuteInParallel(const ParallelMove* moves) {
InterpreterState copy(*this);
for (const auto m : *moves) {
if (!m->IsRedundant()) write(m->destination(), copy.read(m->source()));
}
}
bool operator==(const InterpreterState& other) const {
return values_ == other.values_;
}
bool operator!=(const InterpreterState& other) const {
return values_ != other.values_;
}
private:
struct Key {
bool is_constant;
bool is_float;
LocationOperand::LocationKind kind;
int index;
bool operator<(const Key& other) const {
if (this->is_constant != other.is_constant) {
return this->is_constant;
}
if (this->is_float != other.is_float) {
return this->is_float;
}
if (this->kind != other.kind) {
return this->kind < other.kind;
}
return this->index < other.index;
}
bool operator==(const Key& other) const {
return this->is_constant == other.is_constant &&
this->kind == other.kind && this->index == other.index;
}
};
// Internally, the state is a normalized permutation of (kind,index) pairs.
typedef Key Value;
typedef std::map<Key, Value> OperandMap;
Value read(const InstructionOperand& op) const {
OperandMap::const_iterator it = values_.find(KeyFor(op));
return (it == values_.end()) ? ValueFor(op) : it->second;
}
void write(const InstructionOperand& op, Value v) {
if (v == ValueFor(op)) {
values_.erase(KeyFor(op));
} else {
values_[KeyFor(op)] = v;
}
}
static Key KeyFor(const InstructionOperand& op) {
bool is_constant = op.IsConstant();
bool is_float = false;
LocationOperand::LocationKind kind;
int index;
if (!is_constant) {
if (op.IsRegister()) {
index = LocationOperand::cast(op).GetRegister().code();
} else if (op.IsFPRegister()) {
index = LocationOperand::cast(op).GetDoubleRegister().code();
} else {
index = LocationOperand::cast(op).index();
}
is_float = IsFloatingPoint(LocationOperand::cast(op).representation());
kind = LocationOperand::cast(op).location_kind();
} else {
index = ConstantOperand::cast(op).virtual_register();
kind = LocationOperand::REGISTER;
}
Key key = {is_constant, is_float, kind, index};
return key;
}
static Value ValueFor(const InstructionOperand& op) { return KeyFor(op); }
static InstructionOperand FromKey(Key key) {
if (key.is_constant) {
return ConstantOperand(key.index);
}
return AllocatedOperand(
key.kind,
v8::internal::compiler::InstructionSequence::DefaultRepresentation(),
key.index);
}
friend std::ostream& operator<<(std::ostream& os,
const InterpreterState& is) {
for (OperandMap::const_iterator it = is.values_.begin();
it != is.values_.end(); ++it) {
if (it != is.values_.begin()) os << " ";
InstructionOperand source = FromKey(it->first);
InstructionOperand destination = FromKey(it->second);
MoveOperands mo(source, destination);
PrintableMoveOperands pmo = {
RegisterConfiguration::ArchDefault(RegisterConfiguration::TURBOFAN),
&mo};
os << pmo;
}
return os;
}
OperandMap values_;
};
// An abstract interpreter for moves, swaps and parallel moves.
class MoveInterpreter : public GapResolver::Assembler {
public:
explicit MoveInterpreter(Zone* zone) : zone_(zone) {}
void AssembleMove(InstructionOperand* source,
InstructionOperand* destination) override {
ParallelMove* moves = new (zone_) ParallelMove(zone_);
moves->AddMove(*source, *destination);
state_.ExecuteInParallel(moves);
}
void AssembleSwap(InstructionOperand* source,
InstructionOperand* destination) override {
ParallelMove* moves = new (zone_) ParallelMove(zone_);
moves->AddMove(*source, *destination);
moves->AddMove(*destination, *source);
state_.ExecuteInParallel(moves);
}
void AssembleParallelMove(const ParallelMove* moves) {
state_.ExecuteInParallel(moves);
}
InterpreterState state() const { return state_; }
private:
Zone* const zone_;
InterpreterState state_;
};
class ParallelMoveCreator : public HandleAndZoneScope {
public:
ParallelMoveCreator() : rng_(CcTest::random_number_generator()) {}
ParallelMove* Create(int size) {
ParallelMove* parallel_move = new (main_zone()) ParallelMove(main_zone());
std::set<InstructionOperand, CompareOperandModuloType> seen;
for (int i = 0; i < size; ++i) {
MoveOperands mo(CreateRandomOperand(true), CreateRandomOperand(false));
if (!mo.IsRedundant() && seen.find(mo.destination()) == seen.end()) {
parallel_move->AddMove(mo.source(), mo.destination());
seen.insert(mo.destination());
}
}
return parallel_move;
}
private:
MachineRepresentation RandomRepresentation() {
int index = rng_->NextInt(3);
switch (index) {
case 0:
return MachineRepresentation::kWord32;
case 1:
return MachineRepresentation::kWord64;
case 2:
return MachineRepresentation::kTagged;
}
UNREACHABLE();
return MachineRepresentation::kNone;
}
MachineRepresentation RandomDoubleRepresentation() {
int index = rng_->NextInt(2);
if (index == 0) return MachineRepresentation::kFloat64;
return MachineRepresentation::kFloat32;
}
InstructionOperand CreateRandomOperand(bool is_source) {
int index = rng_->NextInt(7);
// destination can't be Constant.
switch (rng_->NextInt(is_source ? 7 : 6)) {
case 0:
return AllocatedOperand(LocationOperand::STACK_SLOT,
RandomRepresentation(), index);
case 1:
return AllocatedOperand(LocationOperand::STACK_SLOT,
RandomDoubleRepresentation(), index);
case 2:
return AllocatedOperand(LocationOperand::REGISTER,
RandomRepresentation(), index);
case 3:
return AllocatedOperand(LocationOperand::REGISTER,
RandomDoubleRepresentation(), index);
case 4:
return ExplicitOperand(
LocationOperand::REGISTER, RandomRepresentation(),
RegisterConfiguration::ArchDefault(RegisterConfiguration::TURBOFAN)
->GetAllocatableGeneralCode(1));
case 5:
return ExplicitOperand(
LocationOperand::STACK_SLOT, RandomRepresentation(),
RegisterConfiguration::ArchDefault(RegisterConfiguration::TURBOFAN)
->GetAllocatableGeneralCode(index));
case 6:
return ConstantOperand(index);
}
UNREACHABLE();
return InstructionOperand();
}
private:
v8::base::RandomNumberGenerator* rng_;
};
TEST(FuzzResolver) {
ParallelMoveCreator pmc;
for (int size = 0; size < 20; ++size) {
for (int repeat = 0; repeat < 50; ++repeat) {
ParallelMove* pm = pmc.Create(size);
// Note: The gap resolver modifies the ParallelMove, so interpret first.
MoveInterpreter mi1(pmc.main_zone());
mi1.AssembleParallelMove(pm);
MoveInterpreter mi2(pmc.main_zone());
GapResolver resolver(&mi2);
resolver.Resolve(pm);
CHECK(mi1.state() == mi2.state());
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8