v8/src/compilation-cache.cc
yangguo 141cddc720 Move RelocInfo::kNoPosition.
R=mstarzinger@chromium.org
BUG=v8:5117

Review-Url: https://codereview.chromium.org/2109773004
Cr-Commit-Position: refs/heads/master@{#37426}
2016-06-30 09:29:30 +00:00

407 lines
13 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compilation-cache.h"
#include "src/counters.h"
#include "src/factory.h"
#include "src/globals.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
// The number of generations for each sub cache.
static const int kRegExpGenerations = 2;
// Initial size of each compilation cache table allocated.
static const int kInitialCacheSize = 64;
CompilationCache::CompilationCache(Isolate* isolate)
: isolate_(isolate),
script_(isolate, 1),
eval_global_(isolate, 1),
eval_contextual_(isolate, 1),
reg_exp_(isolate, kRegExpGenerations),
enabled_(true) {
CompilationSubCache* subcaches[kSubCacheCount] =
{&script_, &eval_global_, &eval_contextual_, &reg_exp_};
for (int i = 0; i < kSubCacheCount; ++i) {
subcaches_[i] = subcaches[i];
}
}
CompilationCache::~CompilationCache() {}
Handle<CompilationCacheTable> CompilationSubCache::GetTable(int generation) {
DCHECK(generation < generations_);
Handle<CompilationCacheTable> result;
if (tables_[generation]->IsUndefined(isolate())) {
result = CompilationCacheTable::New(isolate(), kInitialCacheSize);
tables_[generation] = *result;
} else {
CompilationCacheTable* table =
CompilationCacheTable::cast(tables_[generation]);
result = Handle<CompilationCacheTable>(table, isolate());
}
return result;
}
void CompilationSubCache::Age() {
// Don't directly age single-generation caches.
if (generations_ == 1) {
if (!tables_[0]->IsUndefined(isolate())) {
CompilationCacheTable::cast(tables_[0])->Age();
}
return;
}
// Age the generations implicitly killing off the oldest.
for (int i = generations_ - 1; i > 0; i--) {
tables_[i] = tables_[i - 1];
}
// Set the first generation as unborn.
tables_[0] = isolate()->heap()->undefined_value();
}
void CompilationSubCache::IterateFunctions(ObjectVisitor* v) {
Object* undefined = isolate()->heap()->undefined_value();
for (int i = 0; i < generations_; i++) {
if (tables_[i] != undefined) {
reinterpret_cast<CompilationCacheTable*>(tables_[i])->IterateElements(v);
}
}
}
void CompilationSubCache::Iterate(ObjectVisitor* v) {
v->VisitPointers(&tables_[0], &tables_[generations_]);
}
void CompilationSubCache::Clear() {
MemsetPointer(tables_, isolate()->heap()->undefined_value(), generations_);
}
void CompilationSubCache::Remove(Handle<SharedFunctionInfo> function_info) {
// Probe the script generation tables. Make sure not to leak handles
// into the caller's handle scope.
{ HandleScope scope(isolate());
for (int generation = 0; generation < generations(); generation++) {
Handle<CompilationCacheTable> table = GetTable(generation);
table->Remove(*function_info);
}
}
}
CompilationCacheScript::CompilationCacheScript(Isolate* isolate,
int generations)
: CompilationSubCache(isolate, generations) {}
// We only re-use a cached function for some script source code if the
// script originates from the same place. This is to avoid issues
// when reporting errors, etc.
bool CompilationCacheScript::HasOrigin(Handle<SharedFunctionInfo> function_info,
Handle<Object> name, int line_offset,
int column_offset,
ScriptOriginOptions resource_options) {
Handle<Script> script =
Handle<Script>(Script::cast(function_info->script()), isolate());
// If the script name isn't set, the boilerplate script should have
// an undefined name to have the same origin.
if (name.is_null()) {
return script->name()->IsUndefined(isolate());
}
// Do the fast bailout checks first.
if (line_offset != script->line_offset()) return false;
if (column_offset != script->column_offset()) return false;
// Check that both names are strings. If not, no match.
if (!name->IsString() || !script->name()->IsString()) return false;
// Are the origin_options same?
if (resource_options.Flags() != script->origin_options().Flags())
return false;
// Compare the two name strings for equality.
return String::Equals(Handle<String>::cast(name),
Handle<String>(String::cast(script->name())));
}
// TODO(245): Need to allow identical code from different contexts to
// be cached in the same script generation. Currently the first use
// will be cached, but subsequent code from different source / line
// won't.
Handle<SharedFunctionInfo> CompilationCacheScript::Lookup(
Handle<String> source, Handle<Object> name, int line_offset,
int column_offset, ScriptOriginOptions resource_options,
Handle<Context> context, LanguageMode language_mode) {
Object* result = NULL;
int generation;
// Probe the script generation tables. Make sure not to leak handles
// into the caller's handle scope.
{ HandleScope scope(isolate());
for (generation = 0; generation < generations(); generation++) {
Handle<CompilationCacheTable> table = GetTable(generation);
Handle<Object> probe = table->Lookup(source, context, language_mode);
if (probe->IsSharedFunctionInfo()) {
Handle<SharedFunctionInfo> function_info =
Handle<SharedFunctionInfo>::cast(probe);
// Break when we've found a suitable shared function info that
// matches the origin.
if (HasOrigin(function_info, name, line_offset, column_offset,
resource_options)) {
result = *function_info;
break;
}
}
}
}
// Once outside the manacles of the handle scope, we need to recheck
// to see if we actually found a cached script. If so, we return a
// handle created in the caller's handle scope.
if (result != NULL) {
Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result),
isolate());
DCHECK(
HasOrigin(shared, name, line_offset, column_offset, resource_options));
// If the script was found in a later generation, we promote it to
// the first generation to let it survive longer in the cache.
if (generation != 0) Put(source, context, language_mode, shared);
isolate()->counters()->compilation_cache_hits()->Increment();
return shared;
} else {
isolate()->counters()->compilation_cache_misses()->Increment();
return Handle<SharedFunctionInfo>::null();
}
}
void CompilationCacheScript::Put(Handle<String> source,
Handle<Context> context,
LanguageMode language_mode,
Handle<SharedFunctionInfo> function_info) {
HandleScope scope(isolate());
Handle<CompilationCacheTable> table = GetFirstTable();
SetFirstTable(CompilationCacheTable::Put(table, source, context,
language_mode, function_info));
}
MaybeHandle<SharedFunctionInfo> CompilationCacheEval::Lookup(
Handle<String> source, Handle<SharedFunctionInfo> outer_info,
LanguageMode language_mode, int scope_position) {
HandleScope scope(isolate());
// Make sure not to leak the table into the surrounding handle
// scope. Otherwise, we risk keeping old tables around even after
// having cleared the cache.
Handle<Object> result = isolate()->factory()->undefined_value();
int generation;
for (generation = 0; generation < generations(); generation++) {
Handle<CompilationCacheTable> table = GetTable(generation);
result =
table->LookupEval(source, outer_info, language_mode, scope_position);
if (result->IsSharedFunctionInfo()) break;
}
if (result->IsSharedFunctionInfo()) {
Handle<SharedFunctionInfo> function_info =
Handle<SharedFunctionInfo>::cast(result);
if (generation != 0) {
Put(source, outer_info, function_info, scope_position);
}
isolate()->counters()->compilation_cache_hits()->Increment();
return scope.CloseAndEscape(function_info);
} else {
isolate()->counters()->compilation_cache_misses()->Increment();
return MaybeHandle<SharedFunctionInfo>();
}
}
void CompilationCacheEval::Put(Handle<String> source,
Handle<SharedFunctionInfo> outer_info,
Handle<SharedFunctionInfo> function_info,
int scope_position) {
HandleScope scope(isolate());
Handle<CompilationCacheTable> table = GetFirstTable();
table = CompilationCacheTable::PutEval(table, source, outer_info,
function_info, scope_position);
SetFirstTable(table);
}
MaybeHandle<FixedArray> CompilationCacheRegExp::Lookup(
Handle<String> source,
JSRegExp::Flags flags) {
HandleScope scope(isolate());
// Make sure not to leak the table into the surrounding handle
// scope. Otherwise, we risk keeping old tables around even after
// having cleared the cache.
Handle<Object> result = isolate()->factory()->undefined_value();
int generation;
for (generation = 0; generation < generations(); generation++) {
Handle<CompilationCacheTable> table = GetTable(generation);
result = table->LookupRegExp(source, flags);
if (result->IsFixedArray()) break;
}
if (result->IsFixedArray()) {
Handle<FixedArray> data = Handle<FixedArray>::cast(result);
if (generation != 0) {
Put(source, flags, data);
}
isolate()->counters()->compilation_cache_hits()->Increment();
return scope.CloseAndEscape(data);
} else {
isolate()->counters()->compilation_cache_misses()->Increment();
return MaybeHandle<FixedArray>();
}
}
void CompilationCacheRegExp::Put(Handle<String> source,
JSRegExp::Flags flags,
Handle<FixedArray> data) {
HandleScope scope(isolate());
Handle<CompilationCacheTable> table = GetFirstTable();
SetFirstTable(CompilationCacheTable::PutRegExp(table, source, flags, data));
}
void CompilationCache::Remove(Handle<SharedFunctionInfo> function_info) {
if (!IsEnabled()) return;
eval_global_.Remove(function_info);
eval_contextual_.Remove(function_info);
script_.Remove(function_info);
}
MaybeHandle<SharedFunctionInfo> CompilationCache::LookupScript(
Handle<String> source, Handle<Object> name, int line_offset,
int column_offset, ScriptOriginOptions resource_options,
Handle<Context> context, LanguageMode language_mode) {
if (!IsEnabled()) return MaybeHandle<SharedFunctionInfo>();
return script_.Lookup(source, name, line_offset, column_offset,
resource_options, context, language_mode);
}
MaybeHandle<SharedFunctionInfo> CompilationCache::LookupEval(
Handle<String> source, Handle<SharedFunctionInfo> outer_info,
Handle<Context> context, LanguageMode language_mode, int scope_position) {
if (!IsEnabled()) return MaybeHandle<SharedFunctionInfo>();
MaybeHandle<SharedFunctionInfo> result;
if (context->IsNativeContext()) {
result =
eval_global_.Lookup(source, outer_info, language_mode, scope_position);
} else {
DCHECK(scope_position != kNoSourcePosition);
result = eval_contextual_.Lookup(source, outer_info, language_mode,
scope_position);
}
return result;
}
MaybeHandle<FixedArray> CompilationCache::LookupRegExp(Handle<String> source,
JSRegExp::Flags flags) {
if (!IsEnabled()) return MaybeHandle<FixedArray>();
return reg_exp_.Lookup(source, flags);
}
void CompilationCache::PutScript(Handle<String> source,
Handle<Context> context,
LanguageMode language_mode,
Handle<SharedFunctionInfo> function_info) {
if (!IsEnabled()) return;
script_.Put(source, context, language_mode, function_info);
}
void CompilationCache::PutEval(Handle<String> source,
Handle<SharedFunctionInfo> outer_info,
Handle<Context> context,
Handle<SharedFunctionInfo> function_info,
int scope_position) {
if (!IsEnabled()) return;
HandleScope scope(isolate());
if (context->IsNativeContext()) {
eval_global_.Put(source, outer_info, function_info, scope_position);
} else {
DCHECK(scope_position != kNoSourcePosition);
eval_contextual_.Put(source, outer_info, function_info, scope_position);
}
}
void CompilationCache::PutRegExp(Handle<String> source,
JSRegExp::Flags flags,
Handle<FixedArray> data) {
if (!IsEnabled()) {
return;
}
reg_exp_.Put(source, flags, data);
}
void CompilationCache::Clear() {
for (int i = 0; i < kSubCacheCount; i++) {
subcaches_[i]->Clear();
}
}
void CompilationCache::Iterate(ObjectVisitor* v) {
for (int i = 0; i < kSubCacheCount; i++) {
subcaches_[i]->Iterate(v);
}
}
void CompilationCache::IterateFunctions(ObjectVisitor* v) {
for (int i = 0; i < kSubCacheCount; i++) {
subcaches_[i]->IterateFunctions(v);
}
}
void CompilationCache::MarkCompactPrologue() {
for (int i = 0; i < kSubCacheCount; i++) {
subcaches_[i]->Age();
}
}
void CompilationCache::Enable() {
enabled_ = true;
}
void CompilationCache::Disable() {
enabled_ = false;
Clear();
}
} // namespace internal
} // namespace v8