v8/src/s390/macro-assembler-s390.cc
bjaideep d5f253cc58 s390: preserve src register in MovIntToFloat
The conversion instr was being called twice and
the src register was not restored after the shift.

R=joransiu@ca.ibm.com, jyan@ca.ibm.com, michael_dawson@ca.ibm.com
BUG=
LOG=N

Review-Url: https://codereview.chromium.org/2527873003
Cr-Commit-Position: refs/heads/master@{#41269}
2016-11-24 15:06:47 +00:00

5193 lines
162 KiB
C++

// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <assert.h> // For assert
#include <limits.h> // For LONG_MIN, LONG_MAX.
#if V8_TARGET_ARCH_S390
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/register-configuration.h"
#include "src/runtime/runtime.h"
#include "src/s390/macro-assembler-s390.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size,
CodeObjectRequired create_code_object)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
has_frame_(false) {
if (create_code_object == CodeObjectRequired::kYes) {
code_object_ =
Handle<Object>::New(isolate()->heap()->undefined_value(), isolate());
}
}
void MacroAssembler::Jump(Register target) { b(target); }
void MacroAssembler::JumpToJSEntry(Register target) {
Move(ip, target);
Jump(ip);
}
void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
Condition cond, CRegister) {
Label skip;
if (cond != al) b(NegateCondition(cond), &skip);
DCHECK(rmode == RelocInfo::CODE_TARGET || rmode == RelocInfo::RUNTIME_ENTRY);
mov(ip, Operand(target, rmode));
b(ip);
bind(&skip);
}
void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond,
CRegister cr) {
DCHECK(!RelocInfo::IsCodeTarget(rmode));
Jump(reinterpret_cast<intptr_t>(target), rmode, cond, cr);
}
void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
Condition cond) {
DCHECK(RelocInfo::IsCodeTarget(rmode));
jump(code, rmode, cond);
}
int MacroAssembler::CallSize(Register target) { return 2; } // BASR
void MacroAssembler::Call(Register target) {
Label start;
bind(&start);
// Branch to target via indirect branch
basr(r14, target);
DCHECK_EQ(CallSize(target), SizeOfCodeGeneratedSince(&start));
}
void MacroAssembler::CallJSEntry(Register target) {
DCHECK(target.is(ip));
Call(target);
}
int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode,
Condition cond) {
// S390 Assembler::move sequence is IILF / IIHF
int size;
#if V8_TARGET_ARCH_S390X
size = 14; // IILF + IIHF + BASR
#else
size = 8; // IILF + BASR
#endif
return size;
}
int MacroAssembler::CallSizeNotPredictableCodeSize(Address target,
RelocInfo::Mode rmode,
Condition cond) {
// S390 Assembler::move sequence is IILF / IIHF
int size;
#if V8_TARGET_ARCH_S390X
size = 14; // IILF + IIHF + BASR
#else
size = 8; // IILF + BASR
#endif
return size;
}
void MacroAssembler::Call(Address target, RelocInfo::Mode rmode,
Condition cond) {
DCHECK(cond == al);
#ifdef DEBUG
// Check the expected size before generating code to ensure we assume the same
// constant pool availability (e.g., whether constant pool is full or not).
int expected_size = CallSize(target, rmode, cond);
Label start;
bind(&start);
#endif
mov(ip, Operand(reinterpret_cast<intptr_t>(target), rmode));
basr(r14, ip);
DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
}
int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode,
TypeFeedbackId ast_id, Condition cond) {
return 6; // BRASL
}
void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
TypeFeedbackId ast_id, Condition cond) {
DCHECK(RelocInfo::IsCodeTarget(rmode) && cond == al);
#ifdef DEBUG
// Check the expected size before generating code to ensure we assume the same
// constant pool availability (e.g., whether constant pool is full or not).
int expected_size = CallSize(code, rmode, ast_id, cond);
Label start;
bind(&start);
#endif
call(code, rmode, ast_id);
DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
}
void MacroAssembler::Drop(int count) {
if (count > 0) {
int total = count * kPointerSize;
if (is_uint12(total)) {
la(sp, MemOperand(sp, total));
} else if (is_int20(total)) {
lay(sp, MemOperand(sp, total));
} else {
AddP(sp, Operand(total));
}
}
}
void MacroAssembler::Drop(Register count, Register scratch) {
ShiftLeftP(scratch, count, Operand(kPointerSizeLog2));
AddP(sp, sp, scratch);
}
void MacroAssembler::Call(Label* target) { b(r14, target); }
void MacroAssembler::Push(Handle<Object> handle) {
mov(r0, Operand(handle));
push(r0);
}
void MacroAssembler::Move(Register dst, Handle<Object> value) {
mov(dst, Operand(value));
}
void MacroAssembler::Move(Register dst, Register src, Condition cond) {
if (!dst.is(src)) {
LoadRR(dst, src);
}
}
void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) {
if (!dst.is(src)) {
ldr(dst, src);
}
}
void MacroAssembler::MultiPush(RegList regs, Register location) {
int16_t num_to_push = NumberOfBitsSet(regs);
int16_t stack_offset = num_to_push * kPointerSize;
SubP(location, location, Operand(stack_offset));
for (int16_t i = Register::kNumRegisters - 1; i >= 0; i--) {
if ((regs & (1 << i)) != 0) {
stack_offset -= kPointerSize;
StoreP(ToRegister(i), MemOperand(location, stack_offset));
}
}
}
void MacroAssembler::MultiPop(RegList regs, Register location) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < Register::kNumRegisters; i++) {
if ((regs & (1 << i)) != 0) {
LoadP(ToRegister(i), MemOperand(location, stack_offset));
stack_offset += kPointerSize;
}
}
AddP(location, location, Operand(stack_offset));
}
void MacroAssembler::MultiPushDoubles(RegList dregs, Register location) {
int16_t num_to_push = NumberOfBitsSet(dregs);
int16_t stack_offset = num_to_push * kDoubleSize;
SubP(location, location, Operand(stack_offset));
for (int16_t i = DoubleRegister::kNumRegisters - 1; i >= 0; i--) {
if ((dregs & (1 << i)) != 0) {
DoubleRegister dreg = DoubleRegister::from_code(i);
stack_offset -= kDoubleSize;
StoreDouble(dreg, MemOperand(location, stack_offset));
}
}
}
void MacroAssembler::MultiPopDoubles(RegList dregs, Register location) {
int16_t stack_offset = 0;
for (int16_t i = 0; i < DoubleRegister::kNumRegisters; i++) {
if ((dregs & (1 << i)) != 0) {
DoubleRegister dreg = DoubleRegister::from_code(i);
LoadDouble(dreg, MemOperand(location, stack_offset));
stack_offset += kDoubleSize;
}
}
AddP(location, location, Operand(stack_offset));
}
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index,
Condition) {
LoadP(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), r0);
}
void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index,
Condition) {
DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
StoreP(source, MemOperand(kRootRegister, index << kPointerSizeLog2));
}
void MacroAssembler::InNewSpace(Register object, Register scratch,
Condition cond, Label* branch) {
DCHECK(cond == eq || cond == ne);
CheckPageFlag(object, scratch, MemoryChunk::kIsInNewSpaceMask, cond, branch);
}
void MacroAssembler::RecordWriteField(
Register object, int offset, Register value, Register dst,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action, SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
DCHECK(IsAligned(offset, kPointerSize));
lay(dst, MemOperand(object, offset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
AndP(r0, dst, Operand((1 << kPointerSizeLog2) - 1));
beq(&ok, Label::kNear);
stop("Unaligned cell in write barrier");
bind(&ok);
}
RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(value, Operand(bit_cast<intptr_t>(kZapValue + 4)));
mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 8)));
}
}
// Will clobber 4 registers: object, map, dst, ip. The
// register 'object' contains a heap object pointer.
void MacroAssembler::RecordWriteForMap(Register object, Register map,
Register dst,
LinkRegisterStatus lr_status,
SaveFPRegsMode fp_mode) {
if (emit_debug_code()) {
LoadP(dst, FieldMemOperand(map, HeapObject::kMapOffset));
CmpP(dst, Operand(isolate()->factory()->meta_map()));
Check(eq, kWrongAddressOrValuePassedToRecordWrite);
}
if (!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
CmpP(map, FieldMemOperand(object, HeapObject::kMapOffset));
Check(eq, kWrongAddressOrValuePassedToRecordWrite);
}
Label done;
// A single check of the map's pages interesting flag suffices, since it is
// only set during incremental collection, and then it's also guaranteed that
// the from object's page's interesting flag is also set. This optimization
// relies on the fact that maps can never be in new space.
CheckPageFlag(map,
map, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
lay(dst, MemOperand(object, HeapObject::kMapOffset - kHeapObjectTag));
if (emit_debug_code()) {
Label ok;
AndP(r0, dst, Operand((1 << kPointerSizeLog2) - 1));
beq(&ok, Label::kNear);
stop("Unaligned cell in write barrier");
bind(&ok);
}
// Record the actual write.
if (lr_status == kLRHasNotBeenSaved) {
push(r14);
}
RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
fp_mode);
CallStub(&stub);
if (lr_status == kLRHasNotBeenSaved) {
pop(r14);
}
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, dst);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 12)));
mov(map, Operand(bit_cast<intptr_t>(kZapValue + 16)));
}
}
// Will clobber 4 registers: object, address, scratch, ip. The
// register 'object' contains a heap object pointer. The heap object
// tag is shifted away.
void MacroAssembler::RecordWrite(
Register object, Register address, Register value,
LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action, SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
DCHECK(!object.is(value));
if (emit_debug_code()) {
CmpP(value, MemOperand(address));
Check(eq, kWrongAddressOrValuePassedToRecordWrite);
}
if (remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) {
return;
}
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
}
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done);
// Record the actual write.
if (lr_status == kLRHasNotBeenSaved) {
push(r14);
}
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
fp_mode);
CallStub(&stub);
if (lr_status == kLRHasNotBeenSaved) {
pop(r14);
}
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip,
value);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
mov(address, Operand(bit_cast<intptr_t>(kZapValue + 12)));
mov(value, Operand(bit_cast<intptr_t>(kZapValue + 16)));
}
}
void MacroAssembler::RecordWriteCodeEntryField(Register js_function,
Register code_entry,
Register scratch) {
const int offset = JSFunction::kCodeEntryOffset;
// Since a code entry (value) is always in old space, we don't need to update
// remembered set. If incremental marking is off, there is nothing for us to
// do.
if (!FLAG_incremental_marking) return;
DCHECK(js_function.is(r3));
DCHECK(code_entry.is(r6));
DCHECK(scratch.is(r7));
AssertNotSmi(js_function);
if (emit_debug_code()) {
AddP(scratch, js_function, Operand(offset - kHeapObjectTag));
LoadP(ip, MemOperand(scratch));
CmpP(ip, code_entry);
Check(eq, kWrongAddressOrValuePassedToRecordWrite);
}
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis and stores into young gen.
Label done;
CheckPageFlag(code_entry, scratch,
MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
CheckPageFlag(js_function, scratch,
MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done);
const Register dst = scratch;
AddP(dst, js_function, Operand(offset - kHeapObjectTag));
// Save caller-saved registers. js_function and code_entry are in the
// caller-saved register list.
DCHECK(kJSCallerSaved & js_function.bit());
// DCHECK(kJSCallerSaved & code_entry.bit());
MultiPush(kJSCallerSaved | code_entry.bit() | r14.bit());
int argument_count = 3;
PrepareCallCFunction(argument_count, code_entry);
LoadRR(r2, js_function);
LoadRR(r3, dst);
mov(r4, Operand(ExternalReference::isolate_address(isolate())));
{
AllowExternalCallThatCantCauseGC scope(this);
CallCFunction(
ExternalReference::incremental_marking_record_write_code_entry_function(
isolate()),
argument_count);
}
// Restore caller-saved registers (including js_function and code_entry).
MultiPop(kJSCallerSaved | code_entry.bit() | r14.bit());
bind(&done);
}
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
Register address, Register scratch,
SaveFPRegsMode fp_mode,
RememberedSetFinalAction and_then) {
Label done;
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok);
stop("Remembered set pointer is in new space");
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
mov(ip, Operand(store_buffer));
LoadP(scratch, MemOperand(ip));
// Store pointer to buffer and increment buffer top.
StoreP(address, MemOperand(scratch));
AddP(scratch, Operand(kPointerSize));
// Write back new top of buffer.
StoreP(scratch, MemOperand(ip));
// Call stub on end of buffer.
// Check for end of buffer.
AndP(scratch, Operand(StoreBuffer::kStoreBufferMask));
if (and_then == kFallThroughAtEnd) {
bne(&done, Label::kNear);
} else {
DCHECK(and_then == kReturnAtEnd);
bne(&done, Label::kNear);
}
push(r14);
StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
CallStub(&store_buffer_overflow);
pop(r14);
bind(&done);
if (and_then == kReturnAtEnd) {
Ret();
}
}
void MacroAssembler::PushCommonFrame(Register marker_reg) {
int fp_delta = 0;
CleanseP(r14);
if (marker_reg.is_valid()) {
Push(r14, fp, marker_reg);
fp_delta = 1;
} else {
Push(r14, fp);
fp_delta = 0;
}
la(fp, MemOperand(sp, fp_delta * kPointerSize));
}
void MacroAssembler::PopCommonFrame(Register marker_reg) {
if (marker_reg.is_valid()) {
Pop(r14, fp, marker_reg);
} else {
Pop(r14, fp);
}
}
void MacroAssembler::PushStandardFrame(Register function_reg) {
int fp_delta = 0;
CleanseP(r14);
if (function_reg.is_valid()) {
Push(r14, fp, cp, function_reg);
fp_delta = 2;
} else {
Push(r14, fp, cp);
fp_delta = 1;
}
la(fp, MemOperand(sp, fp_delta * kPointerSize));
}
void MacroAssembler::RestoreFrameStateForTailCall() {
// if (FLAG_enable_embedded_constant_pool) {
// LoadP(kConstantPoolRegister,
// MemOperand(fp, StandardFrameConstants::kConstantPoolOffset));
// set_constant_pool_available(false);
// }
DCHECK(!FLAG_enable_embedded_constant_pool);
LoadP(r14, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
}
const RegList MacroAssembler::kSafepointSavedRegisters = Register::kAllocatable;
const int MacroAssembler::kNumSafepointSavedRegisters =
Register::kNumAllocatable;
// Push and pop all registers that can hold pointers.
void MacroAssembler::PushSafepointRegisters() {
// Safepoints expect a block of kNumSafepointRegisters values on the
// stack, so adjust the stack for unsaved registers.
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
DCHECK(num_unsaved >= 0);
if (num_unsaved > 0) {
lay(sp, MemOperand(sp, -(num_unsaved * kPointerSize)));
}
MultiPush(kSafepointSavedRegisters);
}
void MacroAssembler::PopSafepointRegisters() {
const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
MultiPop(kSafepointSavedRegisters);
if (num_unsaved > 0) {
la(sp, MemOperand(sp, num_unsaved * kPointerSize));
}
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
StoreP(src, SafepointRegisterSlot(dst));
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
LoadP(dst, SafepointRegisterSlot(src));
}
int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
// The registers are pushed starting with the highest encoding,
// which means that lowest encodings are closest to the stack pointer.
RegList regs = kSafepointSavedRegisters;
int index = 0;
DCHECK(reg_code >= 0 && reg_code < kNumRegisters);
for (int16_t i = 0; i < reg_code; i++) {
if ((regs & (1 << i)) != 0) {
index++;
}
}
return index;
}
MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
// General purpose registers are pushed last on the stack.
const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
int doubles_size = config->num_allocatable_double_registers() * kDoubleSize;
int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
return MemOperand(sp, doubles_size + register_offset);
}
void MacroAssembler::CanonicalizeNaN(const DoubleRegister dst,
const DoubleRegister src) {
// Turn potential sNaN into qNaN
if (!dst.is(src)) ldr(dst, src);
lzdr(kDoubleRegZero);
sdbr(dst, kDoubleRegZero);
}
void MacroAssembler::ConvertIntToDouble(Register src, DoubleRegister dst) {
cdfbr(dst, src);
}
void MacroAssembler::ConvertUnsignedIntToDouble(Register src,
DoubleRegister dst) {
if (CpuFeatures::IsSupported(FLOATING_POINT_EXT)) {
cdlfbr(Condition(5), Condition(0), dst, src);
} else {
// zero-extend src
llgfr(src, src);
// convert to double
cdgbr(dst, src);
}
}
void MacroAssembler::ConvertIntToFloat(Register src, DoubleRegister dst) {
cefbr(Condition(4), dst, src);
}
void MacroAssembler::ConvertUnsignedIntToFloat(Register src,
DoubleRegister dst) {
celfbr(Condition(4), Condition(0), dst, src);
}
#if V8_TARGET_ARCH_S390X
void MacroAssembler::ConvertInt64ToDouble(Register src,
DoubleRegister double_dst) {
cdgbr(double_dst, src);
}
void MacroAssembler::ConvertUnsignedInt64ToFloat(Register src,
DoubleRegister double_dst) {
celgbr(Condition(0), Condition(0), double_dst, src);
}
void MacroAssembler::ConvertUnsignedInt64ToDouble(Register src,
DoubleRegister double_dst) {
cdlgbr(Condition(0), Condition(0), double_dst, src);
}
void MacroAssembler::ConvertInt64ToFloat(Register src,
DoubleRegister double_dst) {
cegbr(double_dst, src);
}
#endif
void MacroAssembler::ConvertFloat32ToInt64(const DoubleRegister double_input,
#if !V8_TARGET_ARCH_S390X
const Register dst_hi,
#endif
const Register dst,
const DoubleRegister double_dst,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
break;
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
break;
}
cgebr(m, dst, double_input);
ldgr(double_dst, dst);
#if !V8_TARGET_ARCH_S390X
srlg(dst_hi, dst, Operand(32));
#endif
}
void MacroAssembler::ConvertDoubleToInt64(const DoubleRegister double_input,
#if !V8_TARGET_ARCH_S390X
const Register dst_hi,
#endif
const Register dst,
const DoubleRegister double_dst,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
break;
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
break;
}
cgdbr(m, dst, double_input);
ldgr(double_dst, dst);
#if !V8_TARGET_ARCH_S390X
srlg(dst_hi, dst, Operand(32));
#endif
}
void MacroAssembler::ConvertFloat32ToInt32(const DoubleRegister double_input,
const Register dst,
const DoubleRegister double_dst,
FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
m = Condition(4);
break;
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
break;
}
cfebr(m, dst, double_input);
Label done;
b(Condition(0xe), &done, Label::kNear); // special case
LoadImmP(dst, Operand::Zero());
bind(&done);
ldgr(double_dst, dst);
}
void MacroAssembler::ConvertFloat32ToUnsignedInt32(
const DoubleRegister double_input, const Register dst,
const DoubleRegister double_dst, FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
break;
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
break;
}
clfebr(m, Condition(0), dst, double_input);
Label done;
b(Condition(0xe), &done, Label::kNear); // special case
LoadImmP(dst, Operand::Zero());
bind(&done);
ldgr(double_dst, dst);
}
#if V8_TARGET_ARCH_S390X
void MacroAssembler::ConvertFloat32ToUnsignedInt64(
const DoubleRegister double_input, const Register dst,
const DoubleRegister double_dst, FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
break;
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
break;
}
clgebr(m, Condition(0), dst, double_input);
ldgr(double_dst, dst);
}
void MacroAssembler::ConvertDoubleToUnsignedInt64(
const DoubleRegister double_input, const Register dst,
const DoubleRegister double_dst, FPRoundingMode rounding_mode) {
Condition m = Condition(0);
switch (rounding_mode) {
case kRoundToZero:
m = Condition(5);
break;
case kRoundToNearest:
UNIMPLEMENTED();
break;
case kRoundToPlusInf:
m = Condition(6);
break;
case kRoundToMinusInf:
m = Condition(7);
break;
default:
UNIMPLEMENTED();
break;
}
clgdbr(m, Condition(0), dst, double_input);
ldgr(double_dst, dst);
}
#endif
#if !V8_TARGET_ARCH_S390X
void MacroAssembler::ShiftLeftPair(Register dst_low, Register dst_high,
Register src_low, Register src_high,
Register scratch, Register shift) {
LoadRR(r0, src_high);
LoadRR(r1, src_low);
sldl(r0, shift, Operand::Zero());
LoadRR(dst_high, r0);
LoadRR(dst_low, r1);
}
void MacroAssembler::ShiftLeftPair(Register dst_low, Register dst_high,
Register src_low, Register src_high,
uint32_t shift) {
LoadRR(r0, src_high);
LoadRR(r1, src_low);
sldl(r0, r0, Operand(shift));
LoadRR(dst_high, r0);
LoadRR(dst_low, r1);
}
void MacroAssembler::ShiftRightPair(Register dst_low, Register dst_high,
Register src_low, Register src_high,
Register scratch, Register shift) {
LoadRR(r0, src_high);
LoadRR(r1, src_low);
srdl(r0, shift, Operand::Zero());
LoadRR(dst_high, r0);
LoadRR(dst_low, r1);
}
void MacroAssembler::ShiftRightPair(Register dst_low, Register dst_high,
Register src_low, Register src_high,
uint32_t shift) {
LoadRR(r0, src_high);
LoadRR(r1, src_low);
srdl(r0, r0, Operand(shift));
LoadRR(dst_high, r0);
LoadRR(dst_low, r1);
}
void MacroAssembler::ShiftRightArithPair(Register dst_low, Register dst_high,
Register src_low, Register src_high,
Register scratch, Register shift) {
LoadRR(r0, src_high);
LoadRR(r1, src_low);
srda(r0, shift, Operand::Zero());
LoadRR(dst_high, r0);
LoadRR(dst_low, r1);
}
void MacroAssembler::ShiftRightArithPair(Register dst_low, Register dst_high,
Register src_low, Register src_high,
uint32_t shift) {
LoadRR(r0, src_high);
LoadRR(r1, src_low);
srda(r0, r0, Operand(shift));
LoadRR(dst_high, r0);
LoadRR(dst_low, r1);
}
#endif
void MacroAssembler::MovDoubleToInt64(Register dst, DoubleRegister src) {
lgdr(dst, src);
}
void MacroAssembler::MovInt64ToDouble(DoubleRegister dst, Register src) {
ldgr(dst, src);
}
void MacroAssembler::StubPrologue(StackFrame::Type type, Register base,
int prologue_offset) {
{
ConstantPoolUnavailableScope constant_pool_unavailable(this);
LoadSmiLiteral(r1, Smi::FromInt(type));
PushCommonFrame(r1);
}
}
void MacroAssembler::Prologue(bool code_pre_aging, Register base,
int prologue_offset) {
DCHECK(!base.is(no_reg));
{
PredictableCodeSizeScope predictible_code_size_scope(
this, kNoCodeAgeSequenceLength);
// The following instructions must remain together and unmodified
// for code aging to work properly.
if (code_pre_aging) {
// Pre-age the code.
// This matches the code found in PatchPlatformCodeAge()
Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start());
nop();
CleanseP(r14);
Push(r14);
mov(r2, Operand(target));
Call(r2);
for (int i = 0; i < kNoCodeAgeSequenceLength - kCodeAgingSequenceLength;
i += 2) {
// TODO(joransiu): Create nop function to pad
// (kNoCodeAgeSequenceLength - kCodeAgingSequenceLength) bytes.
nop(); // 2-byte nops().
}
} else {
// This matches the code found in GetNoCodeAgeSequence()
PushStandardFrame(r3);
}
}
}
void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) {
LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
LoadP(vector, FieldMemOperand(vector, JSFunction::kLiteralsOffset));
LoadP(vector, FieldMemOperand(vector, LiteralsArray::kFeedbackVectorOffset));
}
void MacroAssembler::EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg) {
// We create a stack frame with:
// Return Addr <-- old sp
// Old FP <-- new fp
// CP
// type
// CodeObject <-- new sp
LoadSmiLiteral(ip, Smi::FromInt(type));
PushCommonFrame(ip);
if (type == StackFrame::INTERNAL) {
mov(r0, Operand(CodeObject()));
push(r0);
}
}
int MacroAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) {
// Drop the execution stack down to the frame pointer and restore
// the caller frame pointer, return address and constant pool pointer.
LoadP(r14, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
lay(r1, MemOperand(
fp, StandardFrameConstants::kCallerSPOffset + stack_adjustment));
LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
LoadRR(sp, r1);
int frame_ends = pc_offset();
return frame_ends;
}
void MacroAssembler::EnterBuiltinFrame(Register context, Register target,
Register argc) {
CleanseP(r14);
Push(r14, fp, context, target);
la(fp, MemOperand(sp, 2 * kPointerSize));
Push(argc);
}
void MacroAssembler::LeaveBuiltinFrame(Register context, Register target,
Register argc) {
Pop(argc);
Pop(r14, fp, context, target);
}
// ExitFrame layout (probably wrongish.. needs updating)
//
// SP -> previousSP
// LK reserved
// code
// sp_on_exit (for debug?)
// oldSP->prev SP
// LK
// <parameters on stack>
// Prior to calling EnterExitFrame, we've got a bunch of parameters
// on the stack that we need to wrap a real frame around.. so first
// we reserve a slot for LK and push the previous SP which is captured
// in the fp register (r11)
// Then - we buy a new frame
// r14
// oldFP <- newFP
// SP
// Code
// Floats
// gaps
// Args
// ABIRes <- newSP
void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space,
StackFrame::Type frame_type) {
DCHECK(frame_type == StackFrame::EXIT ||
frame_type == StackFrame::BUILTIN_EXIT);
// Set up the frame structure on the stack.
DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
DCHECK(stack_space > 0);
// This is an opportunity to build a frame to wrap
// all of the pushes that have happened inside of V8
// since we were called from C code
CleanseP(r14);
LoadSmiLiteral(r1, Smi::FromInt(frame_type));
PushCommonFrame(r1);
// Reserve room for saved entry sp and code object.
lay(sp, MemOperand(fp, -ExitFrameConstants::kFixedFrameSizeFromFp));
if (emit_debug_code()) {
StoreP(MemOperand(fp, ExitFrameConstants::kSPOffset), Operand::Zero(), r1);
}
mov(r1, Operand(CodeObject()));
StoreP(r1, MemOperand(fp, ExitFrameConstants::kCodeOffset));
// Save the frame pointer and the context in top.
mov(r1, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
StoreP(fp, MemOperand(r1));
mov(r1, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
StoreP(cp, MemOperand(r1));
// Optionally save all volatile double registers.
if (save_doubles) {
MultiPushDoubles(kCallerSavedDoubles);
// Note that d0 will be accessible at
// fp - ExitFrameConstants::kFrameSize -
// kNumCallerSavedDoubles * kDoubleSize,
// since the sp slot and code slot were pushed after the fp.
}
lay(sp, MemOperand(sp, -stack_space * kPointerSize));
// Allocate and align the frame preparing for calling the runtime
// function.
const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
if (frame_alignment > 0) {
DCHECK(frame_alignment == 8);
ClearRightImm(sp, sp, Operand(3)); // equivalent to &= -8
}
lay(sp, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
StoreP(MemOperand(sp), Operand::Zero(), r0);
// Set the exit frame sp value to point just before the return address
// location.
lay(r1, MemOperand(sp, kStackFrameSPSlot * kPointerSize));
StoreP(r1, MemOperand(fp, ExitFrameConstants::kSPOffset));
}
void MacroAssembler::InitializeNewString(Register string, Register length,
Heap::RootListIndex map_index,
Register scratch1, Register scratch2) {
SmiTag(scratch1, length);
LoadRoot(scratch2, map_index);
StoreP(scratch1, FieldMemOperand(string, String::kLengthOffset));
StoreP(FieldMemOperand(string, String::kHashFieldSlot),
Operand(String::kEmptyHashField), scratch1);
StoreP(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
}
int MacroAssembler::ActivationFrameAlignment() {
#if !defined(USE_SIMULATOR)
// Running on the real platform. Use the alignment as mandated by the local
// environment.
// Note: This will break if we ever start generating snapshots on one S390
// platform for another S390 platform with a different alignment.
return base::OS::ActivationFrameAlignment();
#else // Simulated
// If we are using the simulator then we should always align to the expected
// alignment. As the simulator is used to generate snapshots we do not know
// if the target platform will need alignment, so this is controlled from a
// flag.
return FLAG_sim_stack_alignment;
#endif
}
void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count,
bool restore_context,
bool argument_count_is_length) {
// Optionally restore all double registers.
if (save_doubles) {
// Calculate the stack location of the saved doubles and restore them.
const int kNumRegs = kNumCallerSavedDoubles;
lay(r5, MemOperand(fp, -(ExitFrameConstants::kFixedFrameSizeFromFp +
kNumRegs * kDoubleSize)));
MultiPopDoubles(kCallerSavedDoubles, r5);
}
// Clear top frame.
mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
StoreP(MemOperand(ip), Operand(0, kRelocInfo_NONEPTR), r0);
// Restore current context from top and clear it in debug mode.
if (restore_context) {
mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
LoadP(cp, MemOperand(ip));
}
#ifdef DEBUG
mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
StoreP(MemOperand(ip), Operand(0, kRelocInfo_NONEPTR), r0);
#endif
// Tear down the exit frame, pop the arguments, and return.
LeaveFrame(StackFrame::EXIT);
if (argument_count.is_valid()) {
if (!argument_count_is_length) {
ShiftLeftP(argument_count, argument_count, Operand(kPointerSizeLog2));
}
la(sp, MemOperand(sp, argument_count));
}
}
void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) {
Move(dst, d0);
}
void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) {
Move(dst, d0);
}
void MacroAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg,
Register scratch0, Register scratch1) {
#if DEBUG
if (callee_args_count.is_reg()) {
DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
scratch1));
} else {
DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
}
#endif
// Calculate the end of destination area where we will put the arguments
// after we drop current frame. We AddP kPointerSize to count the receiver
// argument which is not included into formal parameters count.
Register dst_reg = scratch0;
ShiftLeftP(dst_reg, caller_args_count_reg, Operand(kPointerSizeLog2));
AddP(dst_reg, fp, dst_reg);
AddP(dst_reg, dst_reg,
Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize));
Register src_reg = caller_args_count_reg;
// Calculate the end of source area. +kPointerSize is for the receiver.
if (callee_args_count.is_reg()) {
ShiftLeftP(src_reg, callee_args_count.reg(), Operand(kPointerSizeLog2));
AddP(src_reg, sp, src_reg);
AddP(src_reg, src_reg, Operand(kPointerSize));
} else {
mov(src_reg, Operand((callee_args_count.immediate() + 1) * kPointerSize));
AddP(src_reg, src_reg, sp);
}
if (FLAG_debug_code) {
CmpLogicalP(src_reg, dst_reg);
Check(lt, kStackAccessBelowStackPointer);
}
// Restore caller's frame pointer and return address now as they will be
// overwritten by the copying loop.
RestoreFrameStateForTailCall();
// Now copy callee arguments to the caller frame going backwards to avoid
// callee arguments corruption (source and destination areas could overlap).
// Both src_reg and dst_reg are pointing to the word after the one to copy,
// so they must be pre-decremented in the loop.
Register tmp_reg = scratch1;
Label loop;
if (callee_args_count.is_reg()) {
AddP(tmp_reg, callee_args_count.reg(), Operand(1)); // +1 for receiver
} else {
mov(tmp_reg, Operand(callee_args_count.immediate() + 1));
}
LoadRR(r1, tmp_reg);
bind(&loop);
LoadP(tmp_reg, MemOperand(src_reg, -kPointerSize));
StoreP(tmp_reg, MemOperand(dst_reg, -kPointerSize));
lay(src_reg, MemOperand(src_reg, -kPointerSize));
lay(dst_reg, MemOperand(dst_reg, -kPointerSize));
BranchOnCount(r1, &loop);
// Leave current frame.
LoadRR(sp, dst_reg);
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual, Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
bool definitely_matches = false;
*definitely_mismatches = false;
Label regular_invoke;
// Check whether the expected and actual arguments count match. If not,
// setup registers according to contract with ArgumentsAdaptorTrampoline:
// r2: actual arguments count
// r3: function (passed through to callee)
// r4: expected arguments count
// The code below is made a lot easier because the calling code already sets
// up actual and expected registers according to the contract if values are
// passed in registers.
// ARM has some sanity checks as per below, considering add them for S390
// DCHECK(actual.is_immediate() || actual.reg().is(r2));
// DCHECK(expected.is_immediate() || expected.reg().is(r4));
if (expected.is_immediate()) {
DCHECK(actual.is_immediate());
mov(r2, Operand(actual.immediate()));
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
if (expected.immediate() == sentinel) {
// Don't worry about adapting arguments for builtins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
*definitely_mismatches = true;
mov(r4, Operand(expected.immediate()));
}
}
} else {
if (actual.is_immediate()) {
mov(r2, Operand(actual.immediate()));
CmpPH(expected.reg(), Operand(actual.immediate()));
beq(&regular_invoke);
} else {
CmpP(expected.reg(), actual.reg());
beq(&regular_invoke);
}
}
if (!definitely_matches) {
Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor));
Call(adaptor);
call_wrapper.AfterCall();
if (!*definitely_mismatches) {
b(done);
}
} else {
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&regular_invoke);
}
}
void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual) {
Label skip_flooding;
ExternalReference last_step_action =
ExternalReference::debug_last_step_action_address(isolate());
STATIC_ASSERT(StepFrame > StepIn);
mov(r6, Operand(last_step_action));
LoadB(r6, MemOperand(r6));
CmpP(r6, Operand(StepIn));
blt(&skip_flooding);
{
FrameScope frame(this,
has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
if (expected.is_reg()) {
SmiTag(expected.reg());
Push(expected.reg());
}
if (actual.is_reg()) {
SmiTag(actual.reg());
Push(actual.reg());
}
if (new_target.is_valid()) {
Push(new_target);
}
Push(fun, fun);
CallRuntime(Runtime::kDebugPrepareStepInIfStepping);
Pop(fun);
if (new_target.is_valid()) {
Pop(new_target);
}
if (actual.is_reg()) {
Pop(actual.reg());
SmiUntag(actual.reg());
}
if (expected.is_reg()) {
Pop(expected.reg());
SmiUntag(expected.reg());
}
}
bind(&skip_flooding);
}
void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
DCHECK(function.is(r3));
DCHECK_IMPLIES(new_target.is_valid(), new_target.is(r5));
if (call_wrapper.NeedsDebugStepCheck()) {
FloodFunctionIfStepping(function, new_target, expected, actual);
}
// Clear the new.target register if not given.
if (!new_target.is_valid()) {
LoadRoot(r5, Heap::kUndefinedValueRootIndex);
}
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected, actual, &done, &definitely_mismatches, flag,
call_wrapper);
if (!definitely_mismatches) {
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
Register code = ip;
LoadP(code, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
CallJSEntry(code);
call_wrapper.AfterCall();
} else {
DCHECK(flag == JUMP_FUNCTION);
JumpToJSEntry(code);
}
// Continue here if InvokePrologue does handle the invocation due to
// mismatched parameter counts.
bind(&done);
}
}
void MacroAssembler::InvokeFunction(Register fun, Register new_target,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
// Contract with called JS functions requires that function is passed in r3.
DCHECK(fun.is(r3));
Register expected_reg = r4;
Register temp_reg = r6;
LoadP(temp_reg, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
LoadW(expected_reg,
FieldMemOperand(temp_reg,
SharedFunctionInfo::kFormalParameterCountOffset));
#if !defined(V8_TARGET_ARCH_S390X)
SmiUntag(expected_reg);
#endif
ParameterCount expected(expected_reg);
InvokeFunctionCode(fun, new_target, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Register function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
// Contract with called JS functions requires that function is passed in r3.
DCHECK(function.is(r3));
// Get the function and setup the context.
LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset));
InvokeFunctionCode(r3, no_reg, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
Move(r3, function);
InvokeFunction(r3, expected, actual, flag, call_wrapper);
}
void MacroAssembler::IsObjectJSStringType(Register object, Register scratch,
Label* fail) {
DCHECK(kNotStringTag != 0);
LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
LoadlB(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
mov(r0, Operand(kIsNotStringMask));
AndP(r0, scratch);
bne(fail);
}
void MacroAssembler::IsObjectNameType(Register object, Register scratch,
Label* fail) {
LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
LoadlB(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
CmpP(scratch, Operand(LAST_NAME_TYPE));
bgt(fail);
}
void MacroAssembler::DebugBreak() {
LoadImmP(r2, Operand::Zero());
mov(r3,
Operand(ExternalReference(Runtime::kHandleDebuggerStatement, isolate())));
CEntryStub ces(isolate(), 1);
DCHECK(AllowThisStubCall(&ces));
Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT);
}
void MacroAssembler::PushStackHandler() {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
// Link the current handler as the next handler.
mov(r7, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
// Buy the full stack frame for 5 slots.
lay(sp, MemOperand(sp, -StackHandlerConstants::kSize));
// Copy the old handler into the next handler slot.
mvc(MemOperand(sp, StackHandlerConstants::kNextOffset), MemOperand(r7),
kPointerSize);
// Set this new handler as the current one.
StoreP(sp, MemOperand(r7));
}
void MacroAssembler::PopStackHandler() {
STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
// Pop the Next Handler into r3 and store it into Handler Address reference.
Pop(r3);
mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
StoreP(r3, MemOperand(ip));
}
// Compute the hash code from the untagged key. This must be kept in sync with
// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
// code-stub-hydrogen.cc
void MacroAssembler::GetNumberHash(Register t0, Register scratch) {
// First of all we assign the hash seed to scratch.
LoadRoot(scratch, Heap::kHashSeedRootIndex);
SmiUntag(scratch);
// Xor original key with a seed.
XorP(t0, scratch);
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
LoadRR(scratch, t0);
NotP(scratch);
sll(t0, Operand(15));
AddP(t0, scratch, t0);
// hash = hash ^ (hash >> 12);
ShiftRight(scratch, t0, Operand(12));
XorP(t0, scratch);
// hash = hash + (hash << 2);
ShiftLeft(scratch, t0, Operand(2));
AddP(t0, t0, scratch);
// hash = hash ^ (hash >> 4);
ShiftRight(scratch, t0, Operand(4));
XorP(t0, scratch);
// hash = hash * 2057;
LoadRR(r0, t0);
ShiftLeft(scratch, t0, Operand(3));
AddP(t0, t0, scratch);
ShiftLeft(scratch, r0, Operand(11));
AddP(t0, t0, scratch);
// hash = hash ^ (hash >> 16);
ShiftRight(scratch, t0, Operand(16));
XorP(t0, scratch);
// hash & 0x3fffffff
ExtractBitRange(t0, t0, 29, 0);
}
void MacroAssembler::Allocate(int object_size, Register result,
Register scratch1, Register scratch2,
Label* gc_required, AllocationFlags flags) {
DCHECK(object_size <= kMaxRegularHeapObjectSize);
DCHECK((flags & ALLOCATION_FOLDED) == 0);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
LoadImmP(result, Operand(0x7091));
LoadImmP(scratch1, Operand(0x7191));
LoadImmP(scratch2, Operand(0x7291));
}
b(gc_required);
return;
}
DCHECK(!AreAliased(result, scratch1, scratch2, ip));
// Make object size into bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
object_size *= kPointerSize;
}
DCHECK_EQ(0, static_cast<int>(object_size & kObjectAlignmentMask));
// Check relative positions of allocation top and limit addresses.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address());
intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address());
DCHECK((limit - top) == kPointerSize);
// Set up allocation top address register.
Register top_address = scratch1;
// This code stores a temporary value in ip. This is OK, as the code below
// does not need ip for implicit literal generation.
Register alloc_limit = ip;
Register result_end = scratch2;
mov(top_address, Operand(allocation_top));
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into ip.
LoadP(result, MemOperand(top_address));
LoadP(alloc_limit, MemOperand(top_address, kPointerSize));
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry.
LoadP(alloc_limit, MemOperand(top_address));
CmpP(result, alloc_limit);
Check(eq, kUnexpectedAllocationTop);
}
// Load allocation limit. Result already contains allocation top.
LoadP(alloc_limit, MemOperand(top_address, limit - top));
}
if ((flags & DOUBLE_ALIGNMENT) != 0) {
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
#if V8_TARGET_ARCH_S390X
STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
#else
STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
AndP(result_end, result, Operand(kDoubleAlignmentMask));
Label aligned;
beq(&aligned, Label::kNear);
if ((flags & PRETENURE) != 0) {
CmpLogicalP(result, alloc_limit);
bge(gc_required);
}
mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map()));
StoreW(result_end, MemOperand(result));
AddP(result, result, Operand(kDoubleSize / 2));
bind(&aligned);
#endif
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top.
SubP(r0, alloc_limit, result);
if (is_int16(object_size)) {
CmpP(r0, Operand(object_size));
blt(gc_required);
AddP(result_end, result, Operand(object_size));
} else {
mov(result_end, Operand(object_size));
CmpP(r0, result_end);
blt(gc_required);
AddP(result_end, result, result_end);
}
if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
// The top pointer is not updated for allocation folding dominators.
StoreP(result_end, MemOperand(top_address));
}
// Tag object.
AddP(result, result, Operand(kHeapObjectTag));
}
void MacroAssembler::Allocate(Register object_size, Register result,
Register result_end, Register scratch,
Label* gc_required, AllocationFlags flags) {
DCHECK((flags & ALLOCATION_FOLDED) == 0);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
LoadImmP(result, Operand(0x7091));
LoadImmP(scratch, Operand(0x7191));
LoadImmP(result_end, Operand(0x7291));
}
b(gc_required);
return;
}
// |object_size| and |result_end| may overlap if the DOUBLE_ALIGNMENT flag
// is not specified. Other registers must not overlap.
DCHECK(!AreAliased(object_size, result, scratch, ip));
DCHECK(!AreAliased(result_end, result, scratch, ip));
DCHECK((flags & DOUBLE_ALIGNMENT) == 0 || !object_size.is(result_end));
// Check relative positions of allocation top and limit addresses.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address());
intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address());
DCHECK((limit - top) == kPointerSize);
// Set up allocation top address and allocation limit registers.
Register top_address = scratch;
// This code stores a temporary value in ip. This is OK, as the code below
// does not need ip for implicit literal generation.
Register alloc_limit = ip;
mov(top_address, Operand(allocation_top));
if ((flags & RESULT_CONTAINS_TOP) == 0) {
// Load allocation top into result and allocation limit into alloc_limit..
LoadP(result, MemOperand(top_address));
LoadP(alloc_limit, MemOperand(top_address, kPointerSize));
} else {
if (emit_debug_code()) {
// Assert that result actually contains top on entry.
LoadP(alloc_limit, MemOperand(top_address));
CmpP(result, alloc_limit);
Check(eq, kUnexpectedAllocationTop);
}
// Load allocation limit. Result already contains allocation top.
LoadP(alloc_limit, MemOperand(top_address, limit - top));
}
if ((flags & DOUBLE_ALIGNMENT) != 0) {
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
#if V8_TARGET_ARCH_S390X
STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
#else
STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
AndP(result_end, result, Operand(kDoubleAlignmentMask));
Label aligned;
beq(&aligned, Label::kNear);
if ((flags & PRETENURE) != 0) {
CmpLogicalP(result, alloc_limit);
bge(gc_required);
}
mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map()));
StoreW(result_end, MemOperand(result));
AddP(result, result, Operand(kDoubleSize / 2));
bind(&aligned);
#endif
}
// Calculate new top and bail out if new space is exhausted. Use result
// to calculate the new top. Object size may be in words so a shift is
// required to get the number of bytes.
SubP(r0, alloc_limit, result);
if ((flags & SIZE_IN_WORDS) != 0) {
ShiftLeftP(result_end, object_size, Operand(kPointerSizeLog2));
CmpP(r0, result_end);
blt(gc_required);
AddP(result_end, result, result_end);
} else {
CmpP(r0, object_size);
blt(gc_required);
AddP(result_end, result, object_size);
}
// Update allocation top. result temporarily holds the new top.
if (emit_debug_code()) {
AndP(r0, result_end, Operand(kObjectAlignmentMask));
Check(eq, kUnalignedAllocationInNewSpace, cr0);
}
if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
// The top pointer is not updated for allocation folding dominators.
StoreP(result_end, MemOperand(top_address));
}
// Tag object.
AddP(result, result, Operand(kHeapObjectTag));
}
void MacroAssembler::FastAllocate(Register object_size, Register result,
Register result_end, Register scratch,
AllocationFlags flags) {
// |object_size| and |result_end| may overlap if the DOUBLE_ALIGNMENT flag
// is not specified. Other registers must not overlap.
DCHECK(!AreAliased(object_size, result, scratch, ip));
DCHECK(!AreAliased(result_end, result, scratch, ip));
DCHECK((flags & DOUBLE_ALIGNMENT) == 0 || !object_size.is(result_end));
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
Register top_address = scratch;
mov(top_address, Operand(allocation_top));
LoadP(result, MemOperand(top_address));
if ((flags & DOUBLE_ALIGNMENT) != 0) {
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
#if V8_TARGET_ARCH_S390X
STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
#else
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
AndP(result_end, result, Operand(kDoubleAlignmentMask));
Label aligned;
beq(&aligned, Label::kNear);
mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map()));
StoreW(result_end, MemOperand(result));
AddP(result, result, Operand(kDoubleSize / 2));
bind(&aligned);
#endif
}
// Calculate new top using result. Object size may be in words so a shift is
// required to get the number of bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
ShiftLeftP(result_end, object_size, Operand(kPointerSizeLog2));
AddP(result_end, result, result_end);
} else {
AddP(result_end, result, object_size);
}
// Update allocation top. result temporarily holds the new top.
if (emit_debug_code()) {
AndP(r0, result_end, Operand(kObjectAlignmentMask));
Check(eq, kUnalignedAllocationInNewSpace, cr0);
}
StoreP(result_end, MemOperand(top_address));
// Tag object.
AddP(result, result, Operand(kHeapObjectTag));
}
void MacroAssembler::FastAllocate(int object_size, Register result,
Register scratch1, Register scratch2,
AllocationFlags flags) {
DCHECK(object_size <= kMaxRegularHeapObjectSize);
DCHECK(!AreAliased(result, scratch1, scratch2, ip));
// Make object size into bytes.
if ((flags & SIZE_IN_WORDS) != 0) {
object_size *= kPointerSize;
}
DCHECK_EQ(0, object_size & kObjectAlignmentMask);
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
// Set up allocation top address register.
Register top_address = scratch1;
Register result_end = scratch2;
mov(top_address, Operand(allocation_top));
LoadP(result, MemOperand(top_address));
if ((flags & DOUBLE_ALIGNMENT) != 0) {
// Align the next allocation. Storing the filler map without checking top is
// safe in new-space because the limit of the heap is aligned there.
#if V8_TARGET_ARCH_S390X
STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
#else
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
AndP(result_end, result, Operand(kDoubleAlignmentMask));
Label aligned;
beq(&aligned, Label::kNear);
mov(result_end, Operand(isolate()->factory()->one_pointer_filler_map()));
StoreW(result_end, MemOperand(result));
AddP(result, result, Operand(kDoubleSize / 2));
bind(&aligned);
#endif
}
// Calculate new top using result.
AddP(result_end, result, Operand(object_size));
// The top pointer is not updated for allocation folding dominators.
StoreP(result_end, MemOperand(top_address));
// Tag object.
AddP(result, result, Operand(kHeapObjectTag));
}
void MacroAssembler::AllocateTwoByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
ShiftLeftP(scratch1, length, Operand(1)); // Length in bytes, not chars.
AddP(scratch1, Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
AndP(scratch1, Operand(~kObjectAlignmentMask));
// Allocate two-byte string in new space.
Allocate(scratch1, result, scratch2, scratch3, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map, length and hash field.
InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1,
scratch2);
}
void MacroAssembler::AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
DCHECK(kCharSize == 1);
AddP(scratch1, length,
Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize));
AndP(scratch1, Operand(~kObjectAlignmentMask));
// Allocate one-byte string in new space.
Allocate(scratch1, result, scratch2, scratch3, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map, length and hash field.
InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
scratch1, scratch2);
}
void MacroAssembler::AllocateTwoByteConsString(Register result, Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1,
scratch2);
}
void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
scratch1, scratch2);
}
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1,
scratch2);
}
void MacroAssembler::AllocateOneByteSlicedString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
scratch1, scratch2);
}
void MacroAssembler::CompareObjectType(Register object, Register map,
Register type_reg, InstanceType type) {
const Register temp = type_reg.is(no_reg) ? r0 : type_reg;
LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(map, temp, type);
}
void MacroAssembler::CompareInstanceType(Register map, Register type_reg,
InstanceType type) {
STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
STATIC_ASSERT(LAST_TYPE < 256);
LoadlB(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
CmpP(type_reg, Operand(type));
}
void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) {
CmpP(obj, MemOperand(kRootRegister, index << kPointerSizeLog2));
}
void MacroAssembler::SmiToDouble(DoubleRegister value, Register smi) {
SmiUntag(ip, smi);
ConvertIntToDouble(ip, value);
}
void MacroAssembler::CompareMap(Register obj, Register scratch, Handle<Map> map,
Label* early_success) {
LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
CompareMap(obj, map, early_success);
}
void MacroAssembler::CompareMap(Register obj_map, Handle<Map> map,
Label* early_success) {
mov(r0, Operand(map));
CmpP(r0, FieldMemOperand(obj_map, HeapObject::kMapOffset));
}
void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map,
Label* fail, SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
Label success;
CompareMap(obj, scratch, map, &success);
bne(fail);
bind(&success);
}
void MacroAssembler::CheckMap(Register obj, Register scratch,
Heap::RootListIndex index, Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
CompareRoot(scratch, index);
bne(fail);
}
void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
Register scratch2, Handle<WeakCell> cell,
Handle<Code> success,
SmiCheckType smi_check_type) {
Label fail;
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, &fail);
}
LoadP(scratch1, FieldMemOperand(obj, HeapObject::kMapOffset));
CmpWeakValue(scratch1, cell, scratch2);
Jump(success, RelocInfo::CODE_TARGET, eq);
bind(&fail);
}
void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
Register scratch, CRegister) {
mov(scratch, Operand(cell));
CmpP(value, FieldMemOperand(scratch, WeakCell::kValueOffset));
}
void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
mov(value, Operand(cell));
LoadP(value, FieldMemOperand(value, WeakCell::kValueOffset));
}
void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
Label* miss) {
GetWeakValue(value, cell);
JumpIfSmi(value, miss);
}
void MacroAssembler::GetMapConstructor(Register result, Register map,
Register temp, Register temp2) {
Label done, loop;
LoadP(result, FieldMemOperand(map, Map::kConstructorOrBackPointerOffset));
bind(&loop);
JumpIfSmi(result, &done);
CompareObjectType(result, temp, temp2, MAP_TYPE);
bne(&done);
LoadP(result, FieldMemOperand(result, Map::kConstructorOrBackPointerOffset));
b(&loop);
bind(&done);
}
void MacroAssembler::TryGetFunctionPrototype(Register function, Register result,
Register scratch, Label* miss) {
// Get the prototype or initial map from the function.
LoadP(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
CompareRoot(result, Heap::kTheHoleValueRootIndex);
beq(miss);
// If the function does not have an initial map, we're done.
Label done;
CompareObjectType(result, scratch, scratch, MAP_TYPE);
bne(&done, Label::kNear);
// Get the prototype from the initial map.
LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
// All done.
bind(&done);
}
void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id,
Condition cond) {
DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond);
}
void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
}
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
return has_frame_ || !stub->SometimesSetsUpAFrame();
}
void MacroAssembler::TestDoubleIsInt32(DoubleRegister double_input,
Register scratch1, Register scratch2,
DoubleRegister double_scratch) {
TryDoubleToInt32Exact(scratch1, double_input, scratch2, double_scratch);
}
void MacroAssembler::TestDoubleIsMinusZero(DoubleRegister input,
Register scratch1,
Register scratch2) {
lgdr(scratch1, input);
#if V8_TARGET_ARCH_S390X
llihf(scratch2, Operand(0x80000000)); // scratch2 = 0x80000000_00000000
CmpP(scratch1, scratch2);
#else
Label done;
CmpP(scratch1, Operand::Zero());
bne(&done, Label::kNear);
srlg(scratch1, scratch1, Operand(32));
CmpP(scratch1, Operand(HeapNumber::kSignMask));
bind(&done);
#endif
}
void MacroAssembler::TestDoubleSign(DoubleRegister input, Register scratch) {
lgdr(scratch, input);
cgfi(scratch, Operand::Zero());
}
void MacroAssembler::TestHeapNumberSign(Register input, Register scratch) {
LoadlW(scratch, FieldMemOperand(input, HeapNumber::kValueOffset +
Register::kExponentOffset));
Cmp32(scratch, Operand::Zero());
}
void MacroAssembler::TryDoubleToInt32Exact(Register result,
DoubleRegister double_input,
Register scratch,
DoubleRegister double_scratch) {
Label done;
DCHECK(!double_input.is(double_scratch));
ConvertDoubleToInt64(double_input,
#if !V8_TARGET_ARCH_S390X
scratch,
#endif
result, double_scratch);
#if V8_TARGET_ARCH_S390X
TestIfInt32(result, r0);
#else
TestIfInt32(scratch, result, r0);
#endif
bne(&done);
// convert back and compare
lgdr(scratch, double_scratch);
cdfbr(double_scratch, scratch);
cdbr(double_scratch, double_input);
bind(&done);
}
void MacroAssembler::TryInt32Floor(Register result, DoubleRegister double_input,
Register input_high, Register scratch,
DoubleRegister double_scratch, Label* done,
Label* exact) {
DCHECK(!result.is(input_high));
DCHECK(!double_input.is(double_scratch));
Label exception;
// Move high word into input_high
lay(sp, MemOperand(sp, -kDoubleSize));
StoreDouble(double_input, MemOperand(sp));
LoadlW(input_high, MemOperand(sp, Register::kExponentOffset));
la(sp, MemOperand(sp, kDoubleSize));
// Test for NaN/Inf
ExtractBitMask(result, input_high, HeapNumber::kExponentMask);
CmpLogicalP(result, Operand(0x7ff));
beq(&exception);
// Convert (rounding to -Inf)
ConvertDoubleToInt64(double_input,
#if !V8_TARGET_ARCH_S390X
scratch,
#endif
result, double_scratch, kRoundToMinusInf);
// Test for overflow
#if V8_TARGET_ARCH_S390X
TestIfInt32(result, r0);
#else
TestIfInt32(scratch, result, r0);
#endif
bne(&exception);
// Test for exactness
lgdr(scratch, double_scratch);
cdfbr(double_scratch, scratch);
cdbr(double_scratch, double_input);
beq(exact);
b(done);
bind(&exception);
}
void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
DoubleRegister double_input,
Label* done) {
DoubleRegister double_scratch = kScratchDoubleReg;
#if !V8_TARGET_ARCH_S390X
Register scratch = ip;
#endif
ConvertDoubleToInt64(double_input,
#if !V8_TARGET_ARCH_S390X
scratch,
#endif
result, double_scratch);
// Test for overflow
#if V8_TARGET_ARCH_S390X
TestIfInt32(result, r0);
#else
TestIfInt32(scratch, result, r0);
#endif
beq(done);
}
void MacroAssembler::TruncateDoubleToI(Register result,
DoubleRegister double_input) {
Label done;
TryInlineTruncateDoubleToI(result, double_input, &done);
// If we fell through then inline version didn't succeed - call stub instead.
push(r14);
// Put input on stack.
lay(sp, MemOperand(sp, -kDoubleSize));
StoreDouble(double_input, MemOperand(sp));
DoubleToIStub stub(isolate(), sp, result, 0, true, true);
CallStub(&stub);
la(sp, MemOperand(sp, kDoubleSize));
pop(r14);
bind(&done);
}
void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) {
Label done;
DoubleRegister double_scratch = kScratchDoubleReg;
DCHECK(!result.is(object));
LoadDouble(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
TryInlineTruncateDoubleToI(result, double_scratch, &done);
// If we fell through then inline version didn't succeed - call stub instead.
push(r14);
DoubleToIStub stub(isolate(), object, result,
HeapNumber::kValueOffset - kHeapObjectTag, true, true);
CallStub(&stub);
pop(r14);
bind(&done);
}
void MacroAssembler::TruncateNumberToI(Register object, Register result,
Register heap_number_map,
Register scratch1, Label* not_number) {
Label done;
DCHECK(!result.is(object));
UntagAndJumpIfSmi(result, object, &done);
JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
TruncateHeapNumberToI(result, object);
bind(&done);
}
void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src,
int num_least_bits) {
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
// We rotate by kSmiShift amount, and extract the num_least_bits
risbg(dst, src, Operand(64 - num_least_bits), Operand(63),
Operand(64 - kSmiShift), true);
} else {
SmiUntag(dst, src);
AndP(dst, Operand((1 << num_least_bits) - 1));
}
}
void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src,
int num_least_bits) {
AndP(dst, src, Operand((1 << num_least_bits) - 1));
}
void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles) {
// All parameters are on the stack. r2 has the return value after call.
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
mov(r2, Operand(num_arguments));
mov(r3, Operand(ExternalReference(f, isolate())));
CEntryStub stub(isolate(),
#if V8_TARGET_ARCH_S390X
f->result_size,
#else
1,
#endif
save_doubles);
CallStub(&stub);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments) {
mov(r2, Operand(num_arguments));
mov(r3, Operand(ext));
CEntryStub stub(isolate(), 1);
CallStub(&stub);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
DCHECK_EQ(1, function->result_size);
if (function->nargs >= 0) {
mov(r2, Operand(function->nargs));
}
JumpToExternalReference(ExternalReference(fid, isolate()));
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
bool builtin_exit_frame) {
mov(r3, Operand(builtin));
CEntryStub stub(isolate(), 1, kDontSaveFPRegs, kArgvOnStack,
builtin_exit_frame);
Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch1, Operand(value));
mov(scratch2, Operand(ExternalReference(counter)));
StoreW(scratch1, MemOperand(scratch2));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
DCHECK(value > 0 && is_int8(value));
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch1, Operand(ExternalReference(counter)));
// @TODO(john.yan): can be optimized by asi()
LoadW(scratch2, MemOperand(scratch1));
AddP(scratch2, Operand(value));
StoreW(scratch2, MemOperand(scratch1));
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2) {
DCHECK(value > 0 && is_int8(value));
if (FLAG_native_code_counters && counter->Enabled()) {
mov(scratch1, Operand(ExternalReference(counter)));
// @TODO(john.yan): can be optimized by asi()
LoadW(scratch2, MemOperand(scratch1));
AddP(scratch2, Operand(-value));
StoreW(scratch2, MemOperand(scratch1));
}
}
void MacroAssembler::Assert(Condition cond, BailoutReason reason,
CRegister cr) {
if (emit_debug_code()) Check(cond, reason, cr);
}
void MacroAssembler::AssertFastElements(Register elements) {
if (emit_debug_code()) {
DCHECK(!elements.is(r0));
Label ok;
push(elements);
LoadP(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
CompareRoot(elements, Heap::kFixedArrayMapRootIndex);
beq(&ok, Label::kNear);
CompareRoot(elements, Heap::kFixedDoubleArrayMapRootIndex);
beq(&ok, Label::kNear);
CompareRoot(elements, Heap::kFixedCOWArrayMapRootIndex);
beq(&ok, Label::kNear);
Abort(kJSObjectWithFastElementsMapHasSlowElements);
bind(&ok);
pop(elements);
}
}
void MacroAssembler::Check(Condition cond, BailoutReason reason, CRegister cr) {
Label L;
b(cond, &L);
Abort(reason);
// will not return here
bind(&L);
}
void MacroAssembler::Abort(BailoutReason reason) {
Label abort_start;
bind(&abort_start);
#ifdef DEBUG
const char* msg = GetBailoutReason(reason);
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
if (FLAG_trap_on_abort) {
stop(msg);
return;
}
#endif
// Check if Abort() has already been initialized.
DCHECK(isolate()->builtins()->Abort()->IsHeapObject());
LoadSmiLiteral(r3, Smi::FromInt(static_cast<int>(reason)));
// Disable stub call restrictions to always allow calls to abort.
if (!has_frame_) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
} else {
Call(isolate()->builtins()->Abort(), RelocInfo::CODE_TARGET);
}
// will not return here
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
LoadP(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
LoadP(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in esi).
LoadRR(dst, cp);
}
}
void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
LoadP(dst, NativeContextMemOperand());
LoadP(dst, ContextMemOperand(dst, index));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map,
Register scratch) {
// Load the initial map. The global functions all have initial maps.
LoadP(map,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
b(&ok);
bind(&fail);
Abort(kGlobalFunctionsMustHaveInitialMap);
bind(&ok);
}
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
Register reg, Register scratch, Label* not_power_of_two_or_zero) {
SubP(scratch, reg, Operand(1));
CmpP(scratch, Operand::Zero());
blt(not_power_of_two_or_zero);
AndP(r0, reg, scratch /*, SetRC*/); // Should be okay to remove rc
bne(not_power_of_two_or_zero /*, cr0*/);
}
void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
Register scratch,
Label* zero_and_neg,
Label* not_power_of_two) {
SubP(scratch, reg, Operand(1));
CmpP(scratch, Operand::Zero());
blt(zero_and_neg);
AndP(r0, reg, scratch /*, SetRC*/); // Should be okay to remove rc
bne(not_power_of_two /*, cr0*/);
}
#if !V8_TARGET_ARCH_S390X
void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
DCHECK(!reg.is(overflow));
LoadRR(overflow, reg); // Save original value.
SmiTag(reg);
XorP(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0.
LoadAndTestRR(overflow, overflow);
}
void MacroAssembler::SmiTagCheckOverflow(Register dst, Register src,
Register overflow) {
if (dst.is(src)) {
// Fall back to slower case.
SmiTagCheckOverflow(dst, overflow);
} else {
DCHECK(!dst.is(src));
DCHECK(!dst.is(overflow));
DCHECK(!src.is(overflow));
SmiTag(dst, src);
XorP(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0.
LoadAndTestRR(overflow, overflow);
}
}
#endif
void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2,
Label* on_not_both_smi) {
STATIC_ASSERT(kSmiTag == 0);
OrP(r0, reg1, reg2 /*, LeaveRC*/); // should be okay to remove LeaveRC
JumpIfNotSmi(r0, on_not_both_smi);
}
void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src,
Label* smi_case) {
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
// this won't work if src == dst
DCHECK(src.code() != dst.code());
SmiUntag(dst, src);
TestIfSmi(src);
beq(smi_case);
}
void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2,
Label* on_either_smi) {
STATIC_ASSERT(kSmiTag == 0);
JumpIfSmi(reg1, on_either_smi);
JumpIfSmi(reg2, on_either_smi);
}
void MacroAssembler::AssertNotNumber(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
TestIfSmi(object);
Check(ne, kOperandIsANumber, cr0);
push(object);
CompareObjectType(object, object, object, HEAP_NUMBER_TYPE);
pop(object);
Check(ne, kOperandIsANumber);
}
}
void MacroAssembler::AssertNotSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
TestIfSmi(object);
Check(ne, kOperandIsASmi, cr0);
}
}
void MacroAssembler::AssertSmi(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
TestIfSmi(object);
Check(eq, kOperandIsNotSmi, cr0);
}
}
void MacroAssembler::AssertString(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
TestIfSmi(object);
Check(ne, kOperandIsASmiAndNotAString, cr0);
push(object);
LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
pop(object);
Check(lt, kOperandIsNotAString);
}
}
void MacroAssembler::AssertName(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
TestIfSmi(object);
Check(ne, kOperandIsASmiAndNotAName, cr0);
push(object);
LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset));
CompareInstanceType(object, object, LAST_NAME_TYPE);
pop(object);
Check(le, kOperandIsNotAName);
}
}
void MacroAssembler::AssertFunction(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
TestIfSmi(object);
Check(ne, kOperandIsASmiAndNotAFunction, cr0);
push(object);
CompareObjectType(object, object, object, JS_FUNCTION_TYPE);
pop(object);
Check(eq, kOperandIsNotAFunction);
}
}
void MacroAssembler::AssertBoundFunction(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
TestIfSmi(object);
Check(ne, kOperandIsASmiAndNotABoundFunction, cr0);
push(object);
CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE);
pop(object);
Check(eq, kOperandIsNotABoundFunction);
}
}
void MacroAssembler::AssertGeneratorObject(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
TestIfSmi(object);
Check(ne, kOperandIsASmiAndNotAGeneratorObject, cr0);
push(object);
CompareObjectType(object, object, object, JS_GENERATOR_OBJECT_TYPE);
pop(object);
Check(eq, kOperandIsNotAGeneratorObject);
}
}
void MacroAssembler::AssertReceiver(Register object) {
if (emit_debug_code()) {
STATIC_ASSERT(kSmiTag == 0);
TestIfSmi(object);
Check(ne, kOperandIsASmiAndNotAReceiver, cr0);
push(object);
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
CompareObjectType(object, object, object, FIRST_JS_RECEIVER_TYPE);
pop(object);
Check(ge, kOperandIsNotAReceiver);
}
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
Register scratch) {
if (emit_debug_code()) {
Label done_checking;
AssertNotSmi(object);
CompareRoot(object, Heap::kUndefinedValueRootIndex);
beq(&done_checking, Label::kNear);
LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
Assert(eq, kExpectedUndefinedOrCell);
bind(&done_checking);
}
}
void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
if (emit_debug_code()) {
CompareRoot(reg, index);
Check(eq, kHeapNumberMapRegisterClobbered);
}
}
void MacroAssembler::JumpIfNotHeapNumber(Register object,
Register heap_number_map,
Register scratch,
Label* on_not_heap_number) {
LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
CmpP(scratch, heap_number_map);
bne(on_not_heap_number);
}
void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
Register first, Register second, Register scratch1, Register scratch2,
Label* failure) {
// Test that both first and second are sequential one-byte strings.
// Assume that they are non-smis.
LoadP(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
LoadP(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
LoadlB(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
LoadlB(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
scratch2, failure);
}
void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* failure) {
// Check that neither is a smi.
AndP(scratch1, first, second);
JumpIfSmi(scratch1, failure);
JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
scratch2, failure);
}
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
Label* not_unique_name) {
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
Label succeed;
AndP(r0, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
beq(&succeed, Label::kNear);
CmpP(reg, Operand(SYMBOL_TYPE));
bne(not_unique_name);
bind(&succeed);
}
// Allocates a heap number or jumps to the need_gc label if the young space
// is full and a scavenge is needed.
void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1,
Register scratch2,
Register heap_number_map,
Label* gc_required,
MutableMode mode) {
// Allocate an object in the heap for the heap number and tag it as a heap
// object.
Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
Heap::RootListIndex map_index = mode == MUTABLE
? Heap::kMutableHeapNumberMapRootIndex
: Heap::kHeapNumberMapRootIndex;
AssertIsRoot(heap_number_map, map_index);
// Store heap number map in the allocated object.
StoreP(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
}
void MacroAssembler::AllocateHeapNumberWithValue(
Register result, DoubleRegister value, Register scratch1, Register scratch2,
Register heap_number_map, Label* gc_required) {
AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
StoreDouble(value, FieldMemOperand(result, HeapNumber::kValueOffset));
}
void MacroAssembler::AllocateJSValue(Register result, Register constructor,
Register value, Register scratch1,
Register scratch2, Label* gc_required) {
DCHECK(!result.is(constructor));
DCHECK(!result.is(scratch1));
DCHECK(!result.is(scratch2));
DCHECK(!result.is(value));
// Allocate JSValue in new space.
Allocate(JSValue::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
// Initialize the JSValue.
LoadGlobalFunctionInitialMap(constructor, scratch1, scratch2);
StoreP(scratch1, FieldMemOperand(result, HeapObject::kMapOffset), r0);
LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
StoreP(scratch1, FieldMemOperand(result, JSObject::kPropertiesOffset), r0);
StoreP(scratch1, FieldMemOperand(result, JSObject::kElementsOffset), r0);
StoreP(value, FieldMemOperand(result, JSValue::kValueOffset), r0);
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
}
void MacroAssembler::InitializeNFieldsWithFiller(Register current_address,
Register count,
Register filler) {
Label loop;
bind(&loop);
StoreP(filler, MemOperand(current_address));
AddP(current_address, current_address, Operand(kPointerSize));
BranchOnCount(r1, &loop);
}
void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
Register end_address,
Register filler) {
Label done;
DCHECK(!filler.is(r1));
DCHECK(!current_address.is(r1));
DCHECK(!end_address.is(r1));
SubP(r1, end_address, current_address /*, LeaveOE, SetRC*/);
beq(&done, Label::kNear);
ShiftRightP(r1, r1, Operand(kPointerSizeLog2));
InitializeNFieldsWithFiller(current_address, r1, filler);
bind(&done);
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first, Register second, Register scratch1, Register scratch2,
Label* failure) {
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
if (!scratch1.is(first)) LoadRR(scratch1, first);
if (!scratch2.is(second)) LoadRR(scratch2, second);
nilf(scratch1, Operand(kFlatOneByteStringMask));
CmpP(scratch1, Operand(kFlatOneByteStringTag));
bne(failure);
nilf(scratch2, Operand(kFlatOneByteStringMask));
CmpP(scratch2, Operand(kFlatOneByteStringTag));
bne(failure);
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
Register scratch,
Label* failure) {
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
if (!scratch.is(type)) LoadRR(scratch, type);
nilf(scratch, Operand(kFlatOneByteStringMask));
CmpP(scratch, Operand(kFlatOneByteStringTag));
bne(failure);
}
static const int kRegisterPassedArguments = 5;
int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
int num_double_arguments) {
int stack_passed_words = 0;
if (num_double_arguments > DoubleRegister::kNumRegisters) {
stack_passed_words +=
2 * (num_double_arguments - DoubleRegister::kNumRegisters);
}
// Up to five simple arguments are passed in registers r2..r6
if (num_reg_arguments > kRegisterPassedArguments) {
stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
}
return stack_passed_words;
}
void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index,
Register value,
uint32_t encoding_mask) {
Label is_object;
TestIfSmi(string);
Check(ne, kNonObject, cr0);
LoadP(ip, FieldMemOperand(string, HeapObject::kMapOffset));
LoadlB(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset));
AndP(ip, Operand(kStringRepresentationMask | kStringEncodingMask));
CmpP(ip, Operand(encoding_mask));
Check(eq, kUnexpectedStringType);
// The index is assumed to be untagged coming in, tag it to compare with the
// string length without using a temp register, it is restored at the end of
// this function.
#if !V8_TARGET_ARCH_S390X
Label index_tag_ok, index_tag_bad;
JumpIfNotSmiCandidate(index, r0, &index_tag_bad);
#endif
SmiTag(index, index);
#if !V8_TARGET_ARCH_S390X
b(&index_tag_ok);
bind(&index_tag_bad);
Abort(kIndexIsTooLarge);
bind(&index_tag_ok);
#endif
LoadP(ip, FieldMemOperand(string, String::kLengthOffset));
CmpP(index, ip);
Check(lt, kIndexIsTooLarge);
DCHECK(Smi::kZero == 0);
CmpP(index, Operand::Zero());
Check(ge, kIndexIsNegative);
SmiUntag(index, index);
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
int num_double_arguments,
Register scratch) {
int frame_alignment = ActivationFrameAlignment();
int stack_passed_arguments =
CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
int stack_space = kNumRequiredStackFrameSlots;
if (frame_alignment > kPointerSize) {
// Make stack end at alignment and make room for stack arguments
// -- preserving original value of sp.
LoadRR(scratch, sp);
lay(sp, MemOperand(sp, -(stack_passed_arguments + 1) * kPointerSize));
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
StoreP(scratch, MemOperand(sp, (stack_passed_arguments)*kPointerSize));
} else {
stack_space += stack_passed_arguments;
}
lay(sp, MemOperand(sp, -(stack_space)*kPointerSize));
}
void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
Register scratch) {
PrepareCallCFunction(num_reg_arguments, 0, scratch);
}
void MacroAssembler::MovToFloatParameter(DoubleRegister src) { Move(d0, src); }
void MacroAssembler::MovToFloatResult(DoubleRegister src) { Move(d0, src); }
void MacroAssembler::MovToFloatParameters(DoubleRegister src1,
DoubleRegister src2) {
if (src2.is(d0)) {
DCHECK(!src1.is(d2));
Move(d2, src2);
Move(d0, src1);
} else {
Move(d0, src1);
Move(d2, src2);
}
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_reg_arguments,
int num_double_arguments) {
mov(ip, Operand(function));
CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments);
}
void MacroAssembler::CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments) {
CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void MacroAssembler::CallCFunction(Register function, int num_arguments) {
CallCFunction(function, num_arguments, 0);
}
void MacroAssembler::CallCFunctionHelper(Register function,
int num_reg_arguments,
int num_double_arguments) {
DCHECK(has_frame());
// Just call directly. The function called cannot cause a GC, or
// allow preemption, so the return address in the link register
// stays correct.
Register dest = function;
if (ABI_CALL_VIA_IP) {
Move(ip, function);
dest = ip;
}
Call(dest);
int stack_passed_arguments =
CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
if (ActivationFrameAlignment() > kPointerSize) {
// Load the original stack pointer (pre-alignment) from the stack
LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
} else {
la(sp, MemOperand(sp, stack_space * kPointerSize));
}
}
void MacroAssembler::CheckPageFlag(
Register object,
Register scratch, // scratch may be same register as object
int mask, Condition cc, Label* condition_met) {
DCHECK(cc == ne || cc == eq);
ClearRightImm(scratch, object, Operand(kPageSizeBits));
if (base::bits::IsPowerOfTwo32(mask)) {
// If it's a power of two, we can use Test-Under-Mask Memory-Imm form
// which allows testing of a single byte in memory.
int32_t byte_offset = 4;
uint32_t shifted_mask = mask;
// Determine the byte offset to be tested
if (mask <= 0x80) {
byte_offset = kPointerSize - 1;
} else if (mask < 0x8000) {
byte_offset = kPointerSize - 2;
shifted_mask = mask >> 8;
} else if (mask < 0x800000) {
byte_offset = kPointerSize - 3;
shifted_mask = mask >> 16;
} else {
byte_offset = kPointerSize - 4;
shifted_mask = mask >> 24;
}
#if V8_TARGET_LITTLE_ENDIAN
// Reverse the byte_offset if emulating on little endian platform
byte_offset = kPointerSize - byte_offset - 1;
#endif
tm(MemOperand(scratch, MemoryChunk::kFlagsOffset + byte_offset),
Operand(shifted_mask));
} else {
LoadP(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
AndP(r0, scratch, Operand(mask));
}
// Should be okay to remove rc
if (cc == ne) {
bne(condition_met);
}
if (cc == eq) {
beq(condition_met);
}
}
void MacroAssembler::JumpIfBlack(Register object, Register scratch0,
Register scratch1, Label* on_black) {
HasColor(object, scratch0, scratch1, on_black, 1, 1); // kBlackBitPattern.
DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
}
void MacroAssembler::HasColor(Register object, Register bitmap_scratch,
Register mask_scratch, Label* has_color,
int first_bit, int second_bit) {
DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg));
GetMarkBits(object, bitmap_scratch, mask_scratch);
Label other_color, word_boundary;
LoadlW(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
// Test the first bit
AndP(r0, ip, mask_scratch /*, SetRC*/); // Should be okay to remove rc
b(first_bit == 1 ? eq : ne, &other_color, Label::kNear);
// Shift left 1
// May need to load the next cell
sll(mask_scratch, Operand(1) /*, SetRC*/);
LoadAndTest32(mask_scratch, mask_scratch);
beq(&word_boundary, Label::kNear);
// Test the second bit
AndP(r0, ip, mask_scratch /*, SetRC*/); // Should be okay to remove rc
b(second_bit == 1 ? ne : eq, has_color);
b(&other_color, Label::kNear);
bind(&word_boundary);
LoadlW(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kIntSize));
AndP(r0, ip, Operand(1));
b(second_bit == 1 ? ne : eq, has_color);
bind(&other_color);
}
void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg,
Register mask_reg) {
DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
LoadRR(bitmap_reg, addr_reg);
nilf(bitmap_reg, Operand(~Page::kPageAlignmentMask));
const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
ExtractBitRange(mask_reg, addr_reg, kLowBits - 1, kPointerSizeLog2);
ExtractBitRange(ip, addr_reg, kPageSizeBits - 1, kLowBits);
ShiftLeftP(ip, ip, Operand(Bitmap::kBytesPerCellLog2));
AddP(bitmap_reg, ip);
LoadRR(ip, mask_reg); // Have to do some funky reg shuffling as
// 31-bit shift left clobbers on s390.
LoadImmP(mask_reg, Operand(1));
ShiftLeftP(mask_reg, mask_reg, ip);
}
void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
Register mask_scratch, Register load_scratch,
Label* value_is_white) {
DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ip));
GetMarkBits(value, bitmap_scratch, mask_scratch);
// If the value is black or grey we don't need to do anything.
DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
// Since both black and grey have a 1 in the first position and white does
// not have a 1 there we only need to check one bit.
LoadlW(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
LoadRR(r0, load_scratch);
AndP(r0, mask_scratch);
beq(value_is_white);
}
// Saturate a value into 8-bit unsigned integer
// if input_value < 0, output_value is 0
// if input_value > 255, output_value is 255
// otherwise output_value is the input_value
void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
int satval = (1 << 8) - 1;
Label done, negative_label, overflow_label;
CmpP(input_reg, Operand::Zero());
blt(&negative_label);
CmpP(input_reg, Operand(satval));
bgt(&overflow_label);
if (!output_reg.is(input_reg)) {
LoadRR(output_reg, input_reg);
}
b(&done);
bind(&negative_label);
LoadImmP(output_reg, Operand::Zero()); // set to 0 if negative
b(&done);
bind(&overflow_label); // set to satval if > satval
LoadImmP(output_reg, Operand(satval));
bind(&done);
}
void MacroAssembler::ClampDoubleToUint8(Register result_reg,
DoubleRegister input_reg,
DoubleRegister double_scratch) {
Label above_zero;
Label done;
Label in_bounds;
LoadDoubleLiteral(double_scratch, 0.0, result_reg);
cdbr(input_reg, double_scratch);
bgt(&above_zero, Label::kNear);
// Double value is less than zero, NaN or Inf, return 0.
LoadIntLiteral(result_reg, 0);
b(&done, Label::kNear);
// Double value is >= 255, return 255.
bind(&above_zero);
LoadDoubleLiteral(double_scratch, 255.0, result_reg);
cdbr(input_reg, double_scratch);
ble(&in_bounds, Label::kNear);
LoadIntLiteral(result_reg, 255);
b(&done, Label::kNear);
// In 0-255 range, round and truncate.
bind(&in_bounds);
// round to nearest (default rounding mode)
cfdbr(ROUND_TO_NEAREST_WITH_TIES_TO_EVEN, result_reg, input_reg);
bind(&done);
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
LoadP(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
}
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
LoadlW(dst, FieldMemOperand(map, Map::kBitField3Offset));
DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
}
void MacroAssembler::EnumLength(Register dst, Register map) {
STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
LoadW(dst, FieldMemOperand(map, Map::kBitField3Offset));
And(dst, Operand(Map::EnumLengthBits::kMask));
SmiTag(dst);
}
void MacroAssembler::LoadAccessor(Register dst, Register holder,
int accessor_index,
AccessorComponent accessor) {
LoadP(dst, FieldMemOperand(holder, HeapObject::kMapOffset));
LoadInstanceDescriptors(dst, dst);
LoadP(dst,
FieldMemOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
const int getterOffset = AccessorPair::kGetterOffset;
const int setterOffset = AccessorPair::kSetterOffset;
int offset = ((accessor == ACCESSOR_GETTER) ? getterOffset : setterOffset);
LoadP(dst, FieldMemOperand(dst, offset));
}
void MacroAssembler::CheckEnumCache(Label* call_runtime) {
Register null_value = r7;
Register empty_fixed_array_value = r8;
LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
Label next, start;
LoadRR(r4, r2);
// Check if the enum length field is properly initialized, indicating that
// there is an enum cache.
LoadP(r3, FieldMemOperand(r4, HeapObject::kMapOffset));
EnumLength(r5, r3);
CmpSmiLiteral(r5, Smi::FromInt(kInvalidEnumCacheSentinel), r0);
beq(call_runtime);
LoadRoot(null_value, Heap::kNullValueRootIndex);
b(&start, Label::kNear);
bind(&next);
LoadP(r3, FieldMemOperand(r4, HeapObject::kMapOffset));
// For all objects but the receiver, check that the cache is empty.
EnumLength(r5, r3);
CmpSmiLiteral(r5, Smi::kZero, r0);
bne(call_runtime);
bind(&start);
// Check that there are no elements. Register r4 contains the current JS
// object we've reached through the prototype chain.
Label no_elements;
LoadP(r4, FieldMemOperand(r4, JSObject::kElementsOffset));
CmpP(r4, empty_fixed_array_value);
beq(&no_elements, Label::kNear);
// Second chance, the object may be using the empty slow element dictionary.
CompareRoot(r5, Heap::kEmptySlowElementDictionaryRootIndex);
bne(call_runtime);
bind(&no_elements);
LoadP(r4, FieldMemOperand(r3, Map::kPrototypeOffset));
CmpP(r4, null_value);
bne(&next);
}
////////////////////////////////////////////////////////////////////////////////
//
// New MacroAssembler Interfaces added for S390
//
////////////////////////////////////////////////////////////////////////////////
// Primarily used for loading constants
// This should really move to be in macro-assembler as it
// is really a pseudo instruction
// Some usages of this intend for a FIXED_SEQUENCE to be used
// @TODO - break this dependency so we can optimize mov() in general
// and only use the generic version when we require a fixed sequence
void MacroAssembler::LoadRepresentation(Register dst, const MemOperand& mem,
Representation r, Register scratch) {
DCHECK(!r.IsDouble());
if (r.IsInteger8()) {
LoadB(dst, mem);
lgbr(dst, dst);
} else if (r.IsUInteger8()) {
LoadlB(dst, mem);
} else if (r.IsInteger16()) {
LoadHalfWordP(dst, mem, scratch);
lghr(dst, dst);
} else if (r.IsUInteger16()) {
LoadHalfWordP(dst, mem, scratch);
#if V8_TARGET_ARCH_S390X
} else if (r.IsInteger32()) {
LoadW(dst, mem, scratch);
#endif
} else {
LoadP(dst, mem, scratch);
}
}
void MacroAssembler::StoreRepresentation(Register src, const MemOperand& mem,
Representation r, Register scratch) {
DCHECK(!r.IsDouble());
if (r.IsInteger8() || r.IsUInteger8()) {
StoreByte(src, mem, scratch);
} else if (r.IsInteger16() || r.IsUInteger16()) {
StoreHalfWord(src, mem, scratch);
#if V8_TARGET_ARCH_S390X
} else if (r.IsInteger32()) {
StoreW(src, mem, scratch);
#endif
} else {
if (r.IsHeapObject()) {
AssertNotSmi(src);
} else if (r.IsSmi()) {
AssertSmi(src);
}
StoreP(src, mem, scratch);
}
}
void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver_reg,
Register scratch_reg,
Register scratch2_reg,
Label* no_memento_found) {
Label map_check;
Label top_check;
ExternalReference new_space_allocation_top_adr =
ExternalReference::new_space_allocation_top_address(isolate());
const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag;
const int kMementoLastWordOffset =
kMementoMapOffset + AllocationMemento::kSize - kPointerSize;
DCHECK(!AreAliased(receiver_reg, scratch_reg));
// Bail out if the object is not in new space.
JumpIfNotInNewSpace(receiver_reg, scratch_reg, no_memento_found);
DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
// If the object is in new space, we need to check whether it is on the same
// page as the current top.
AddP(scratch_reg, receiver_reg, Operand(kMementoLastWordOffset));
mov(ip, Operand(new_space_allocation_top_adr));
LoadP(ip, MemOperand(ip));
XorP(r0, scratch_reg, ip);
AndP(r0, r0, Operand(~Page::kPageAlignmentMask));
beq(&top_check, Label::kNear);
// The object is on a different page than allocation top. Bail out if the
// object sits on the page boundary as no memento can follow and we cannot
// touch the memory following it.
XorP(r0, scratch_reg, receiver_reg);
AndP(r0, r0, Operand(~Page::kPageAlignmentMask));
bne(no_memento_found);
// Continue with the actual map check.
b(&map_check, Label::kNear);
// If top is on the same page as the current object, we need to check whether
// we are below top.
bind(&top_check);
CmpP(scratch_reg, ip);
bge(no_memento_found);
// Memento map check.
bind(&map_check);
LoadP(scratch_reg, MemOperand(receiver_reg, kMementoMapOffset));
CmpP(scratch_reg, Operand(isolate()->factory()->allocation_memento_map()));
}
Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3,
Register reg4, Register reg5,
Register reg6) {
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
for (int i = 0; i < config->num_allocatable_general_registers(); ++i) {
int code = config->GetAllocatableGeneralCode(i);
Register candidate = Register::from_code(code);
if (regs & candidate.bit()) continue;
return candidate;
}
UNREACHABLE();
return no_reg;
}
void MacroAssembler::mov(Register dst, const Operand& src) {
if (src.rmode_ != kRelocInfo_NONEPTR) {
// some form of relocation needed
RecordRelocInfo(src.rmode_, src.imm_);
}
#if V8_TARGET_ARCH_S390X
int64_t value = src.immediate();
int32_t hi_32 = static_cast<int64_t>(value) >> 32;
int32_t lo_32 = static_cast<int32_t>(value);
iihf(dst, Operand(hi_32));
iilf(dst, Operand(lo_32));
#else
int value = src.immediate();
iilf(dst, Operand(value));
#endif
}
void MacroAssembler::Mul32(Register dst, const MemOperand& src1) {
if (is_uint12(src1.offset())) {
ms(dst, src1);
} else if (is_int20(src1.offset())) {
msy(dst, src1);
} else {
UNIMPLEMENTED();
}
}
void MacroAssembler::Mul32(Register dst, Register src1) { msr(dst, src1); }
void MacroAssembler::Mul32(Register dst, const Operand& src1) {
msfi(dst, src1);
}
void MacroAssembler::Mul64(Register dst, const MemOperand& src1) {
if (is_int20(src1.offset())) {
msg(dst, src1);
} else {
UNIMPLEMENTED();
}
}
void MacroAssembler::Mul64(Register dst, Register src1) { msgr(dst, src1); }
void MacroAssembler::Mul64(Register dst, const Operand& src1) {
msgfi(dst, src1);
}
void MacroAssembler::Mul(Register dst, Register src1, Register src2) {
if (dst.is(src2)) {
MulP(dst, src1);
} else if (dst.is(src1)) {
MulP(dst, src2);
} else {
Move(dst, src1);
MulP(dst, src2);
}
}
void MacroAssembler::DivP(Register dividend, Register divider) {
// have to make sure the src and dst are reg pairs
DCHECK(dividend.code() % 2 == 0);
#if V8_TARGET_ARCH_S390X
dsgr(dividend, divider);
#else
dr(dividend, divider);
#endif
}
void MacroAssembler::MulP(Register dst, const Operand& opnd) {
#if V8_TARGET_ARCH_S390X
msgfi(dst, opnd);
#else
msfi(dst, opnd);
#endif
}
void MacroAssembler::MulP(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
msgr(dst, src);
#else
msr(dst, src);
#endif
}
void MacroAssembler::MulP(Register dst, const MemOperand& opnd) {
#if V8_TARGET_ARCH_S390X
if (is_uint16(opnd.offset())) {
ms(dst, opnd);
} else if (is_int20(opnd.offset())) {
msy(dst, opnd);
} else {
UNIMPLEMENTED();
}
#else
if (is_int20(opnd.offset())) {
msg(dst, opnd);
} else {
UNIMPLEMENTED();
}
#endif
}
//----------------------------------------------------------------------------
// Add Instructions
//----------------------------------------------------------------------------
// Add 32-bit (Register dst = Register dst + Immediate opnd)
void MacroAssembler::Add32(Register dst, const Operand& opnd) {
if (is_int16(opnd.immediate()))
ahi(dst, opnd);
else
afi(dst, opnd);
}
// Add Pointer Size (Register dst = Register dst + Immediate opnd)
void MacroAssembler::AddP(Register dst, const Operand& opnd) {
#if V8_TARGET_ARCH_S390X
if (is_int16(opnd.immediate()))
aghi(dst, opnd);
else
agfi(dst, opnd);
#else
Add32(dst, opnd);
#endif
}
// Add 32-bit (Register dst = Register src + Immediate opnd)
void MacroAssembler::Add32(Register dst, Register src, const Operand& opnd) {
if (!dst.is(src)) {
if (CpuFeatures::IsSupported(DISTINCT_OPS) && is_int16(opnd.immediate())) {
ahik(dst, src, opnd);
return;
}
lr(dst, src);
}
Add32(dst, opnd);
}
// Add Pointer Size (Register dst = Register src + Immediate opnd)
void MacroAssembler::AddP(Register dst, Register src, const Operand& opnd) {
if (!dst.is(src)) {
if (CpuFeatures::IsSupported(DISTINCT_OPS) && is_int16(opnd.immediate())) {
AddPImm_RRI(dst, src, opnd);
return;
}
LoadRR(dst, src);
}
AddP(dst, opnd);
}
// Add 32-bit (Register dst = Register dst + Register src)
void MacroAssembler::Add32(Register dst, Register src) { ar(dst, src); }
// Add Pointer Size (Register dst = Register dst + Register src)
void MacroAssembler::AddP(Register dst, Register src) { AddRR(dst, src); }
// Add Pointer Size with src extension
// (Register dst(ptr) = Register dst (ptr) + Register src (32 | 32->64))
// src is treated as a 32-bit signed integer, which is sign extended to
// 64-bit if necessary.
void MacroAssembler::AddP_ExtendSrc(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
agfr(dst, src);
#else
ar(dst, src);
#endif
}
// Add 32-bit (Register dst = Register src1 + Register src2)
void MacroAssembler::Add32(Register dst, Register src1, Register src2) {
if (!dst.is(src1) && !dst.is(src2)) {
// We prefer to generate AR/AGR, over the non clobbering ARK/AGRK
// as AR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ark(dst, src1, src2);
return;
} else {
lr(dst, src1);
}
} else if (dst.is(src2)) {
src2 = src1;
}
ar(dst, src2);
}
// Add Pointer Size (Register dst = Register src1 + Register src2)
void MacroAssembler::AddP(Register dst, Register src1, Register src2) {
if (!dst.is(src1) && !dst.is(src2)) {
// We prefer to generate AR/AGR, over the non clobbering ARK/AGRK
// as AR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
AddP_RRR(dst, src1, src2);
return;
} else {
LoadRR(dst, src1);
}
} else if (dst.is(src2)) {
src2 = src1;
}
AddRR(dst, src2);
}
// Add Pointer Size with src extension
// (Register dst (ptr) = Register dst (ptr) + Register src1 (ptr) +
// Register src2 (32 | 32->64))
// src is treated as a 32-bit signed integer, which is sign extended to
// 64-bit if necessary.
void MacroAssembler::AddP_ExtendSrc(Register dst, Register src1,
Register src2) {
#if V8_TARGET_ARCH_S390X
if (dst.is(src2)) {
// The source we need to sign extend is the same as result.
lgfr(dst, src2);
agr(dst, src1);
} else {
if (!dst.is(src1)) LoadRR(dst, src1);
agfr(dst, src2);
}
#else
AddP(dst, src1, src2);
#endif
}
// Add 32-bit (Register-Memory)
void MacroAssembler::Add32(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
a(dst, opnd);
else
ay(dst, opnd);
}
// Add Pointer Size (Register-Memory)
void MacroAssembler::AddP(Register dst, const MemOperand& opnd) {
#if V8_TARGET_ARCH_S390X
DCHECK(is_int20(opnd.offset()));
ag(dst, opnd);
#else
Add32(dst, opnd);
#endif
}
// Add Pointer Size with src extension
// (Register dst (ptr) = Register dst (ptr) + Mem opnd (32 | 32->64))
// src is treated as a 32-bit signed integer, which is sign extended to
// 64-bit if necessary.
void MacroAssembler::AddP_ExtendSrc(Register dst, const MemOperand& opnd) {
#if V8_TARGET_ARCH_S390X
DCHECK(is_int20(opnd.offset()));
agf(dst, opnd);
#else
Add32(dst, opnd);
#endif
}
// Add 32-bit (Memory - Immediate)
void MacroAssembler::Add32(const MemOperand& opnd, const Operand& imm) {
DCHECK(is_int8(imm.immediate()));
DCHECK(is_int20(opnd.offset()));
DCHECK(CpuFeatures::IsSupported(GENERAL_INSTR_EXT));
asi(opnd, imm);
}
// Add Pointer-sized (Memory - Immediate)
void MacroAssembler::AddP(const MemOperand& opnd, const Operand& imm) {
DCHECK(is_int8(imm.immediate()));
DCHECK(is_int20(opnd.offset()));
DCHECK(CpuFeatures::IsSupported(GENERAL_INSTR_EXT));
#if V8_TARGET_ARCH_S390X
agsi(opnd, imm);
#else
asi(opnd, imm);
#endif
}
//----------------------------------------------------------------------------
// Add Logical Instructions
//----------------------------------------------------------------------------
// Add Logical With Carry 32-bit (Register dst = Register src1 + Register src2)
void MacroAssembler::AddLogicalWithCarry32(Register dst, Register src1,
Register src2) {
if (!dst.is(src2) && !dst.is(src1)) {
lr(dst, src1);
alcr(dst, src2);
} else if (!dst.is(src2)) {
// dst == src1
DCHECK(dst.is(src1));
alcr(dst, src2);
} else {
// dst == src2
DCHECK(dst.is(src2));
alcr(dst, src1);
}
}
// Add Logical 32-bit (Register dst = Register src1 + Register src2)
void MacroAssembler::AddLogical32(Register dst, Register src1, Register src2) {
if (!dst.is(src2) && !dst.is(src1)) {
lr(dst, src1);
alr(dst, src2);
} else if (!dst.is(src2)) {
// dst == src1
DCHECK(dst.is(src1));
alr(dst, src2);
} else {
// dst == src2
DCHECK(dst.is(src2));
alr(dst, src1);
}
}
// Add Logical 32-bit (Register dst = Register dst + Immediate opnd)
void MacroAssembler::AddLogical(Register dst, const Operand& imm) {
alfi(dst, imm);
}
// Add Logical Pointer Size (Register dst = Register dst + Immediate opnd)
void MacroAssembler::AddLogicalP(Register dst, const Operand& imm) {
#ifdef V8_TARGET_ARCH_S390X
algfi(dst, imm);
#else
AddLogical(dst, imm);
#endif
}
// Add Logical 32-bit (Register-Memory)
void MacroAssembler::AddLogical(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
al_z(dst, opnd);
else
aly(dst, opnd);
}
// Add Logical Pointer Size (Register-Memory)
void MacroAssembler::AddLogicalP(Register dst, const MemOperand& opnd) {
#if V8_TARGET_ARCH_S390X
DCHECK(is_int20(opnd.offset()));
alg(dst, opnd);
#else
AddLogical(dst, opnd);
#endif
}
//----------------------------------------------------------------------------
// Subtract Instructions
//----------------------------------------------------------------------------
// Subtract Logical With Carry 32-bit (Register dst = Register src1 - Register
// src2)
void MacroAssembler::SubLogicalWithBorrow32(Register dst, Register src1,
Register src2) {
if (!dst.is(src2) && !dst.is(src1)) {
lr(dst, src1);
slbr(dst, src2);
} else if (!dst.is(src2)) {
// dst == src1
DCHECK(dst.is(src1));
slbr(dst, src2);
} else {
// dst == src2
DCHECK(dst.is(src2));
lr(r0, dst);
SubLogicalWithBorrow32(dst, src1, r0);
}
}
// Subtract Logical 32-bit (Register dst = Register src1 - Register src2)
void MacroAssembler::SubLogical32(Register dst, Register src1, Register src2) {
if (!dst.is(src2) && !dst.is(src1)) {
lr(dst, src1);
slr(dst, src2);
} else if (!dst.is(src2)) {
// dst == src1
DCHECK(dst.is(src1));
slr(dst, src2);
} else {
// dst == src2
DCHECK(dst.is(src2));
lr(r0, dst);
SubLogical32(dst, src1, r0);
}
}
// Subtract 32-bit (Register dst = Register dst - Immediate opnd)
void MacroAssembler::Sub32(Register dst, const Operand& imm) {
Add32(dst, Operand(-(imm.imm_)));
}
// Subtract Pointer Size (Register dst = Register dst - Immediate opnd)
void MacroAssembler::SubP(Register dst, const Operand& imm) {
AddP(dst, Operand(-(imm.imm_)));
}
// Subtract 32-bit (Register dst = Register src - Immediate opnd)
void MacroAssembler::Sub32(Register dst, Register src, const Operand& imm) {
Add32(dst, src, Operand(-(imm.imm_)));
}
// Subtract Pointer Sized (Register dst = Register src - Immediate opnd)
void MacroAssembler::SubP(Register dst, Register src, const Operand& imm) {
AddP(dst, src, Operand(-(imm.imm_)));
}
// Subtract 32-bit (Register dst = Register dst - Register src)
void MacroAssembler::Sub32(Register dst, Register src) { sr(dst, src); }
// Subtract Pointer Size (Register dst = Register dst - Register src)
void MacroAssembler::SubP(Register dst, Register src) { SubRR(dst, src); }
// Subtract Pointer Size with src extension
// (Register dst(ptr) = Register dst (ptr) - Register src (32 | 32->64))
// src is treated as a 32-bit signed integer, which is sign extended to
// 64-bit if necessary.
void MacroAssembler::SubP_ExtendSrc(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
sgfr(dst, src);
#else
sr(dst, src);
#endif
}
// Subtract 32-bit (Register = Register - Register)
void MacroAssembler::Sub32(Register dst, Register src1, Register src2) {
// Use non-clobbering version if possible
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
srk(dst, src1, src2);
return;
}
if (!dst.is(src1) && !dst.is(src2)) lr(dst, src1);
// In scenario where we have dst = src - dst, we need to swap and negate
if (!dst.is(src1) && dst.is(src2)) {
Label done;
lcr(dst, dst); // dst = -dst
b(overflow, &done);
ar(dst, src1); // dst = dst + src
bind(&done);
} else {
sr(dst, src2);
}
}
// Subtract Pointer Sized (Register = Register - Register)
void MacroAssembler::SubP(Register dst, Register src1, Register src2) {
// Use non-clobbering version if possible
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
SubP_RRR(dst, src1, src2);
return;
}
if (!dst.is(src1) && !dst.is(src2)) LoadRR(dst, src1);
// In scenario where we have dst = src - dst, we need to swap and negate
if (!dst.is(src1) && dst.is(src2)) {
Label done;
LoadComplementRR(dst, dst); // dst = -dst
b(overflow, &done);
AddP(dst, src1); // dst = dst + src
bind(&done);
} else {
SubP(dst, src2);
}
}
// Subtract Pointer Size with src extension
// (Register dst(ptr) = Register dst (ptr) - Register src (32 | 32->64))
// src is treated as a 32-bit signed integer, which is sign extended to
// 64-bit if necessary.
void MacroAssembler::SubP_ExtendSrc(Register dst, Register src1,
Register src2) {
#if V8_TARGET_ARCH_S390X
if (!dst.is(src1) && !dst.is(src2)) LoadRR(dst, src1);
// In scenario where we have dst = src - dst, we need to swap and negate
if (!dst.is(src1) && dst.is(src2)) {
lgfr(dst, dst); // Sign extend this operand first.
LoadComplementRR(dst, dst); // dst = -dst
AddP(dst, src1); // dst = -dst + src
} else {
sgfr(dst, src2);
}
#else
SubP(dst, src1, src2);
#endif
}
// Subtract 32-bit (Register-Memory)
void MacroAssembler::Sub32(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
s(dst, opnd);
else
sy(dst, opnd);
}
// Subtract Pointer Sized (Register - Memory)
void MacroAssembler::SubP(Register dst, const MemOperand& opnd) {
#if V8_TARGET_ARCH_S390X
sg(dst, opnd);
#else
Sub32(dst, opnd);
#endif
}
void MacroAssembler::MovIntToFloat(DoubleRegister dst, Register src) {
sllg(r0, src, Operand(32));
ldgr(dst, r0);
}
void MacroAssembler::MovFloatToInt(Register dst, DoubleRegister src) {
lgdr(dst, src);
srlg(dst, dst, Operand(32));
}
void MacroAssembler::SubP_ExtendSrc(Register dst, const MemOperand& opnd) {
#if V8_TARGET_ARCH_S390X
DCHECK(is_int20(opnd.offset()));
sgf(dst, opnd);
#else
Sub32(dst, opnd);
#endif
}
//----------------------------------------------------------------------------
// Subtract Logical Instructions
//----------------------------------------------------------------------------
// Subtract Logical 32-bit (Register - Memory)
void MacroAssembler::SubLogical(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
sl(dst, opnd);
else
sly(dst, opnd);
}
// Subtract Logical Pointer Sized (Register - Memory)
void MacroAssembler::SubLogicalP(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
#if V8_TARGET_ARCH_S390X
slgf(dst, opnd);
#else
SubLogical(dst, opnd);
#endif
}
// Subtract Logical Pointer Size with src extension
// (Register dst (ptr) = Register dst (ptr) - Mem opnd (32 | 32->64))
// src is treated as a 32-bit signed integer, which is sign extended to
// 64-bit if necessary.
void MacroAssembler::SubLogicalP_ExtendSrc(Register dst,
const MemOperand& opnd) {
#if V8_TARGET_ARCH_S390X
DCHECK(is_int20(opnd.offset()));
slgf(dst, opnd);
#else
SubLogical(dst, opnd);
#endif
}
//----------------------------------------------------------------------------
// Bitwise Operations
//----------------------------------------------------------------------------
// AND 32-bit - dst = dst & src
void MacroAssembler::And(Register dst, Register src) { nr(dst, src); }
// AND Pointer Size - dst = dst & src
void MacroAssembler::AndP(Register dst, Register src) { AndRR(dst, src); }
// Non-clobbering AND 32-bit - dst = src1 & src1
void MacroAssembler::And(Register dst, Register src1, Register src2) {
if (!dst.is(src1) && !dst.is(src2)) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
nrk(dst, src1, src2);
return;
} else {
lr(dst, src1);
}
} else if (dst.is(src2)) {
src2 = src1;
}
And(dst, src2);
}
// Non-clobbering AND pointer size - dst = src1 & src1
void MacroAssembler::AndP(Register dst, Register src1, Register src2) {
if (!dst.is(src1) && !dst.is(src2)) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
AndP_RRR(dst, src1, src2);
return;
} else {
LoadRR(dst, src1);
}
} else if (dst.is(src2)) {
src2 = src1;
}
AndP(dst, src2);
}
// AND 32-bit (Reg - Mem)
void MacroAssembler::And(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
n(dst, opnd);
else
ny(dst, opnd);
}
// AND Pointer Size (Reg - Mem)
void MacroAssembler::AndP(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
#if V8_TARGET_ARCH_S390X
ng(dst, opnd);
#else
And(dst, opnd);
#endif
}
// AND 32-bit - dst = dst & imm
void MacroAssembler::And(Register dst, const Operand& opnd) { nilf(dst, opnd); }
// AND Pointer Size - dst = dst & imm
void MacroAssembler::AndP(Register dst, const Operand& opnd) {
#if V8_TARGET_ARCH_S390X
intptr_t value = opnd.imm_;
if (value >> 32 != -1) {
// this may not work b/c condition code won't be set correctly
nihf(dst, Operand(value >> 32));
}
nilf(dst, Operand(value & 0xFFFFFFFF));
#else
And(dst, opnd);
#endif
}
// AND 32-bit - dst = src & imm
void MacroAssembler::And(Register dst, Register src, const Operand& opnd) {
if (!dst.is(src)) lr(dst, src);
nilf(dst, opnd);
}
// AND Pointer Size - dst = src & imm
void MacroAssembler::AndP(Register dst, Register src, const Operand& opnd) {
// Try to exploit RISBG first
intptr_t value = opnd.imm_;
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
intptr_t shifted_value = value;
int trailing_zeros = 0;
// We start checking how many trailing zeros are left at the end.
while ((0 != shifted_value) && (0 == (shifted_value & 1))) {
trailing_zeros++;
shifted_value >>= 1;
}
// If temp (value with right-most set of zeros shifted out) is 1 less
// than power of 2, we have consecutive bits of 1.
// Special case: If shift_value is zero, we cannot use RISBG, as it requires
// selection of at least 1 bit.
if ((0 != shifted_value) && base::bits::IsPowerOfTwo64(shifted_value + 1)) {
int startBit =
base::bits::CountLeadingZeros64(shifted_value) - trailing_zeros;
int endBit = 63 - trailing_zeros;
// Start: startBit, End: endBit, Shift = 0, true = zero unselected bits.
risbg(dst, src, Operand(startBit), Operand(endBit), Operand::Zero(),
true);
return;
} else if (-1 == shifted_value) {
// A Special case in which all top bits up to MSB are 1's. In this case,
// we can set startBit to be 0.
int endBit = 63 - trailing_zeros;
risbg(dst, src, Operand::Zero(), Operand(endBit), Operand::Zero(), true);
return;
}
}
// If we are &'ing zero, we can just whack the dst register and skip copy
if (!dst.is(src) && (0 != value)) LoadRR(dst, src);
AndP(dst, opnd);
}
// OR 32-bit - dst = dst & src
void MacroAssembler::Or(Register dst, Register src) { or_z(dst, src); }
// OR Pointer Size - dst = dst & src
void MacroAssembler::OrP(Register dst, Register src) { OrRR(dst, src); }
// Non-clobbering OR 32-bit - dst = src1 & src1
void MacroAssembler::Or(Register dst, Register src1, Register src2) {
if (!dst.is(src1) && !dst.is(src2)) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
ork(dst, src1, src2);
return;
} else {
lr(dst, src1);
}
} else if (dst.is(src2)) {
src2 = src1;
}
Or(dst, src2);
}
// Non-clobbering OR pointer size - dst = src1 & src1
void MacroAssembler::OrP(Register dst, Register src1, Register src2) {
if (!dst.is(src1) && !dst.is(src2)) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
OrP_RRR(dst, src1, src2);
return;
} else {
LoadRR(dst, src1);
}
} else if (dst.is(src2)) {
src2 = src1;
}
OrP(dst, src2);
}
// OR 32-bit (Reg - Mem)
void MacroAssembler::Or(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
o(dst, opnd);
else
oy(dst, opnd);
}
// OR Pointer Size (Reg - Mem)
void MacroAssembler::OrP(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
#if V8_TARGET_ARCH_S390X
og(dst, opnd);
#else
Or(dst, opnd);
#endif
}
// OR 32-bit - dst = dst & imm
void MacroAssembler::Or(Register dst, const Operand& opnd) { oilf(dst, opnd); }
// OR Pointer Size - dst = dst & imm
void MacroAssembler::OrP(Register dst, const Operand& opnd) {
#if V8_TARGET_ARCH_S390X
intptr_t value = opnd.imm_;
if (value >> 32 != 0) {
// this may not work b/c condition code won't be set correctly
oihf(dst, Operand(value >> 32));
}
oilf(dst, Operand(value & 0xFFFFFFFF));
#else
Or(dst, opnd);
#endif
}
// OR 32-bit - dst = src & imm
void MacroAssembler::Or(Register dst, Register src, const Operand& opnd) {
if (!dst.is(src)) lr(dst, src);
oilf(dst, opnd);
}
// OR Pointer Size - dst = src & imm
void MacroAssembler::OrP(Register dst, Register src, const Operand& opnd) {
if (!dst.is(src)) LoadRR(dst, src);
OrP(dst, opnd);
}
// XOR 32-bit - dst = dst & src
void MacroAssembler::Xor(Register dst, Register src) { xr(dst, src); }
// XOR Pointer Size - dst = dst & src
void MacroAssembler::XorP(Register dst, Register src) { XorRR(dst, src); }
// Non-clobbering XOR 32-bit - dst = src1 & src1
void MacroAssembler::Xor(Register dst, Register src1, Register src2) {
if (!dst.is(src1) && !dst.is(src2)) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
xrk(dst, src1, src2);
return;
} else {
lr(dst, src1);
}
} else if (dst.is(src2)) {
src2 = src1;
}
Xor(dst, src2);
}
// Non-clobbering XOR pointer size - dst = src1 & src1
void MacroAssembler::XorP(Register dst, Register src1, Register src2) {
if (!dst.is(src1) && !dst.is(src2)) {
// We prefer to generate XR/XGR, over the non clobbering XRK/XRK
// as XR is a smaller instruction
if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
XorP_RRR(dst, src1, src2);
return;
} else {
LoadRR(dst, src1);
}
} else if (dst.is(src2)) {
src2 = src1;
}
XorP(dst, src2);
}
// XOR 32-bit (Reg - Mem)
void MacroAssembler::Xor(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
x(dst, opnd);
else
xy(dst, opnd);
}
// XOR Pointer Size (Reg - Mem)
void MacroAssembler::XorP(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
#if V8_TARGET_ARCH_S390X
xg(dst, opnd);
#else
Xor(dst, opnd);
#endif
}
// XOR 32-bit - dst = dst & imm
void MacroAssembler::Xor(Register dst, const Operand& opnd) { xilf(dst, opnd); }
// XOR Pointer Size - dst = dst & imm
void MacroAssembler::XorP(Register dst, const Operand& opnd) {
#if V8_TARGET_ARCH_S390X
intptr_t value = opnd.imm_;
xihf(dst, Operand(value >> 32));
xilf(dst, Operand(value & 0xFFFFFFFF));
#else
Xor(dst, opnd);
#endif
}
// XOR 32-bit - dst = src & imm
void MacroAssembler::Xor(Register dst, Register src, const Operand& opnd) {
if (!dst.is(src)) lr(dst, src);
xilf(dst, opnd);
}
// XOR Pointer Size - dst = src & imm
void MacroAssembler::XorP(Register dst, Register src, const Operand& opnd) {
if (!dst.is(src)) LoadRR(dst, src);
XorP(dst, opnd);
}
void MacroAssembler::Not32(Register dst, Register src) {
if (!src.is(no_reg) && !src.is(dst)) lr(dst, src);
xilf(dst, Operand(0xFFFFFFFF));
}
void MacroAssembler::Not64(Register dst, Register src) {
if (!src.is(no_reg) && !src.is(dst)) lgr(dst, src);
xihf(dst, Operand(0xFFFFFFFF));
xilf(dst, Operand(0xFFFFFFFF));
}
void MacroAssembler::NotP(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
Not64(dst, src);
#else
Not32(dst, src);
#endif
}
// works the same as mov
void MacroAssembler::Load(Register dst, const Operand& opnd) {
intptr_t value = opnd.immediate();
if (is_int16(value)) {
#if V8_TARGET_ARCH_S390X
lghi(dst, opnd);
#else
lhi(dst, opnd);
#endif
} else {
#if V8_TARGET_ARCH_S390X
llilf(dst, opnd);
#else
iilf(dst, opnd);
#endif
}
}
void MacroAssembler::Load(Register dst, const MemOperand& opnd) {
DCHECK(is_int20(opnd.offset()));
#if V8_TARGET_ARCH_S390X
lgf(dst, opnd); // 64<-32
#else
if (is_uint12(opnd.offset())) {
l(dst, opnd);
} else {
ly(dst, opnd);
}
#endif
}
//-----------------------------------------------------------------------------
// Compare Helpers
//-----------------------------------------------------------------------------
// Compare 32-bit Register vs Register
void MacroAssembler::Cmp32(Register src1, Register src2) { cr_z(src1, src2); }
// Compare Pointer Sized Register vs Register
void MacroAssembler::CmpP(Register src1, Register src2) {
#if V8_TARGET_ARCH_S390X
cgr(src1, src2);
#else
Cmp32(src1, src2);
#endif
}
// Compare 32-bit Register vs Immediate
// This helper will set up proper relocation entries if required.
void MacroAssembler::Cmp32(Register dst, const Operand& opnd) {
if (opnd.rmode_ == kRelocInfo_NONEPTR) {
intptr_t value = opnd.immediate();
if (is_int16(value))
chi(dst, opnd);
else
cfi(dst, opnd);
} else {
// Need to generate relocation record here
RecordRelocInfo(opnd.rmode_, opnd.imm_);
cfi(dst, opnd);
}
}
// Compare Pointer Sized Register vs Immediate
// This helper will set up proper relocation entries if required.
void MacroAssembler::CmpP(Register dst, const Operand& opnd) {
#if V8_TARGET_ARCH_S390X
if (opnd.rmode_ == kRelocInfo_NONEPTR) {
cgfi(dst, opnd);
} else {
mov(r0, opnd); // Need to generate 64-bit relocation
cgr(dst, r0);
}
#else
Cmp32(dst, opnd);
#endif
}
// Compare 32-bit Register vs Memory
void MacroAssembler::Cmp32(Register dst, const MemOperand& opnd) {
// make sure offset is within 20 bit range
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
c(dst, opnd);
else
cy(dst, opnd);
}
// Compare Pointer Size Register vs Memory
void MacroAssembler::CmpP(Register dst, const MemOperand& opnd) {
// make sure offset is within 20 bit range
DCHECK(is_int20(opnd.offset()));
#if V8_TARGET_ARCH_S390X
cg(dst, opnd);
#else
Cmp32(dst, opnd);
#endif
}
//-----------------------------------------------------------------------------
// Compare Logical Helpers
//-----------------------------------------------------------------------------
// Compare Logical 32-bit Register vs Register
void MacroAssembler::CmpLogical32(Register dst, Register src) { clr(dst, src); }
// Compare Logical Pointer Sized Register vs Register
void MacroAssembler::CmpLogicalP(Register dst, Register src) {
#ifdef V8_TARGET_ARCH_S390X
clgr(dst, src);
#else
CmpLogical32(dst, src);
#endif
}
// Compare Logical 32-bit Register vs Immediate
void MacroAssembler::CmpLogical32(Register dst, const Operand& opnd) {
clfi(dst, opnd);
}
// Compare Logical Pointer Sized Register vs Immediate
void MacroAssembler::CmpLogicalP(Register dst, const Operand& opnd) {
#if V8_TARGET_ARCH_S390X
DCHECK(static_cast<uint32_t>(opnd.immediate() >> 32) == 0);
clgfi(dst, opnd);
#else
CmpLogical32(dst, opnd);
#endif
}
// Compare Logical 32-bit Register vs Memory
void MacroAssembler::CmpLogical32(Register dst, const MemOperand& opnd) {
// make sure offset is within 20 bit range
DCHECK(is_int20(opnd.offset()));
if (is_uint12(opnd.offset()))
cl(dst, opnd);
else
cly(dst, opnd);
}
// Compare Logical Pointer Sized Register vs Memory
void MacroAssembler::CmpLogicalP(Register dst, const MemOperand& opnd) {
// make sure offset is within 20 bit range
DCHECK(is_int20(opnd.offset()));
#if V8_TARGET_ARCH_S390X
clg(dst, opnd);
#else
CmpLogical32(dst, opnd);
#endif
}
// Compare Logical Byte (Mem - Imm)
void MacroAssembler::CmpLogicalByte(const MemOperand& mem, const Operand& imm) {
DCHECK(is_uint8(imm.immediate()));
if (is_uint12(mem.offset()))
cli(mem, imm);
else
cliy(mem, imm);
}
void MacroAssembler::Branch(Condition c, const Operand& opnd) {
intptr_t value = opnd.immediate();
if (is_int16(value))
brc(c, opnd);
else
brcl(c, opnd);
}
// Branch On Count. Decrement R1, and branch if R1 != 0.
void MacroAssembler::BranchOnCount(Register r1, Label* l) {
int32_t offset = branch_offset(l);
if (is_int16(offset)) {
#if V8_TARGET_ARCH_S390X
brctg(r1, Operand(offset));
#else
brct(r1, Operand(offset));
#endif
} else {
AddP(r1, Operand(-1));
Branch(ne, Operand(offset));
}
}
void MacroAssembler::LoadIntLiteral(Register dst, int value) {
Load(dst, Operand(value));
}
void MacroAssembler::LoadSmiLiteral(Register dst, Smi* smi) {
intptr_t value = reinterpret_cast<intptr_t>(smi);
#if V8_TARGET_ARCH_S390X
DCHECK((value & 0xffffffff) == 0);
// The smi value is loaded in upper 32-bits. Lower 32-bit are zeros.
llihf(dst, Operand(value >> 32));
#else
llilf(dst, Operand(value));
#endif
}
void MacroAssembler::LoadDoubleLiteral(DoubleRegister result, uint64_t value,
Register scratch) {
uint32_t hi_32 = value >> 32;
uint32_t lo_32 = static_cast<uint32_t>(value);
// Load the 64-bit value into a GPR, then transfer it to FPR via LDGR
iihf(scratch, Operand(hi_32));
iilf(scratch, Operand(lo_32));
ldgr(result, scratch);
}
void MacroAssembler::LoadDoubleLiteral(DoubleRegister result, double value,
Register scratch) {
uint64_t int_val = bit_cast<uint64_t, double>(value);
LoadDoubleLiteral(result, int_val, scratch);
}
void MacroAssembler::LoadFloat32Literal(DoubleRegister result, float value,
Register scratch) {
uint32_t hi_32 = bit_cast<uint32_t>(value);
uint32_t lo_32 = 0;
// Load the 64-bit value into a GPR, then transfer it to FPR via LDGR
iihf(scratch, Operand(hi_32));
iilf(scratch, Operand(lo_32));
ldgr(result, scratch);
}
void MacroAssembler::CmpSmiLiteral(Register src1, Smi* smi, Register scratch) {
#if V8_TARGET_ARCH_S390X
LoadSmiLiteral(scratch, smi);
cgr(src1, scratch);
#else
// CFI takes 32-bit immediate.
cfi(src1, Operand(smi));
#endif
}
void MacroAssembler::CmpLogicalSmiLiteral(Register src1, Smi* smi,
Register scratch) {
#if V8_TARGET_ARCH_S390X
LoadSmiLiteral(scratch, smi);
clgr(src1, scratch);
#else
// CLFI takes 32-bit immediate
clfi(src1, Operand(smi));
#endif
}
void MacroAssembler::AddSmiLiteral(Register dst, Register src, Smi* smi,
Register scratch) {
#if V8_TARGET_ARCH_S390X
LoadSmiLiteral(scratch, smi);
AddP(dst, src, scratch);
#else
AddP(dst, src, Operand(reinterpret_cast<intptr_t>(smi)));
#endif
}
void MacroAssembler::SubSmiLiteral(Register dst, Register src, Smi* smi,
Register scratch) {
#if V8_TARGET_ARCH_S390X
LoadSmiLiteral(scratch, smi);
SubP(dst, src, scratch);
#else
AddP(dst, src, Operand(-(reinterpret_cast<intptr_t>(smi))));
#endif
}
void MacroAssembler::AndSmiLiteral(Register dst, Register src, Smi* smi) {
if (!dst.is(src)) LoadRR(dst, src);
#if V8_TARGET_ARCH_S390X
DCHECK((reinterpret_cast<intptr_t>(smi) & 0xffffffff) == 0);
int value = static_cast<int>(reinterpret_cast<intptr_t>(smi) >> 32);
nihf(dst, Operand(value));
#else
nilf(dst, Operand(reinterpret_cast<int>(smi)));
#endif
}
// Load a "pointer" sized value from the memory location
void MacroAssembler::LoadP(Register dst, const MemOperand& mem,
Register scratch) {
int offset = mem.offset();
if (!scratch.is(no_reg) && !is_int20(offset)) {
/* cannot use d-form */
LoadIntLiteral(scratch, offset);
#if V8_TARGET_ARCH_S390X
lg(dst, MemOperand(mem.rb(), scratch));
#else
l(dst, MemOperand(mem.rb(), scratch));
#endif
} else {
#if V8_TARGET_ARCH_S390X
lg(dst, mem);
#else
if (is_uint12(offset)) {
l(dst, mem);
} else {
ly(dst, mem);
}
#endif
}
}
// Store a "pointer" sized value to the memory location
void MacroAssembler::StoreP(Register src, const MemOperand& mem,
Register scratch) {
if (!is_int20(mem.offset())) {
DCHECK(!scratch.is(no_reg));
DCHECK(!scratch.is(r0));
LoadIntLiteral(scratch, mem.offset());
#if V8_TARGET_ARCH_S390X
stg(src, MemOperand(mem.rb(), scratch));
#else
st(src, MemOperand(mem.rb(), scratch));
#endif
} else {
#if V8_TARGET_ARCH_S390X
stg(src, mem);
#else
// StoreW will try to generate ST if offset fits, otherwise
// it'll generate STY.
StoreW(src, mem);
#endif
}
}
// Store a "pointer" sized constant to the memory location
void MacroAssembler::StoreP(const MemOperand& mem, const Operand& opnd,
Register scratch) {
// Relocations not supported
DCHECK(opnd.rmode_ == kRelocInfo_NONEPTR);
// Try to use MVGHI/MVHI
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_uint12(mem.offset()) &&
mem.getIndexRegister().is(r0) && is_int16(opnd.imm_)) {
#if V8_TARGET_ARCH_S390X
mvghi(mem, opnd);
#else
mvhi(mem, opnd);
#endif
} else {
LoadImmP(scratch, opnd);
StoreP(scratch, mem);
}
}
void MacroAssembler::LoadMultipleP(Register dst1, Register dst2,
const MemOperand& mem) {
#if V8_TARGET_ARCH_S390X
DCHECK(is_int20(mem.offset()));
lmg(dst1, dst2, mem);
#else
if (is_uint12(mem.offset())) {
lm(dst1, dst2, mem);
} else {
DCHECK(is_int20(mem.offset()));
lmy(dst1, dst2, mem);
}
#endif
}
void MacroAssembler::StoreMultipleP(Register src1, Register src2,
const MemOperand& mem) {
#if V8_TARGET_ARCH_S390X
DCHECK(is_int20(mem.offset()));
stmg(src1, src2, mem);
#else
if (is_uint12(mem.offset())) {
stm(src1, src2, mem);
} else {
DCHECK(is_int20(mem.offset()));
stmy(src1, src2, mem);
}
#endif
}
void MacroAssembler::LoadMultipleW(Register dst1, Register dst2,
const MemOperand& mem) {
if (is_uint12(mem.offset())) {
lm(dst1, dst2, mem);
} else {
DCHECK(is_int20(mem.offset()));
lmy(dst1, dst2, mem);
}
}
void MacroAssembler::StoreMultipleW(Register src1, Register src2,
const MemOperand& mem) {
if (is_uint12(mem.offset())) {
stm(src1, src2, mem);
} else {
DCHECK(is_int20(mem.offset()));
stmy(src1, src2, mem);
}
}
// Load 32-bits and sign extend if necessary.
void MacroAssembler::LoadW(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
lgfr(dst, src);
#else
if (!dst.is(src)) lr(dst, src);
#endif
}
// Load 32-bits and sign extend if necessary.
void MacroAssembler::LoadW(Register dst, const MemOperand& mem,
Register scratch) {
int offset = mem.offset();
if (!is_int20(offset)) {
DCHECK(!scratch.is(no_reg));
LoadIntLiteral(scratch, offset);
#if V8_TARGET_ARCH_S390X
lgf(dst, MemOperand(mem.rb(), scratch));
#else
l(dst, MemOperand(mem.rb(), scratch));
#endif
} else {
#if V8_TARGET_ARCH_S390X
lgf(dst, mem);
#else
if (is_uint12(offset)) {
l(dst, mem);
} else {
ly(dst, mem);
}
#endif
}
}
// Load 32-bits and zero extend if necessary.
void MacroAssembler::LoadlW(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
llgfr(dst, src);
#else
if (!dst.is(src)) lr(dst, src);
#endif
}
// Variable length depending on whether offset fits into immediate field
// MemOperand of RX or RXY format
void MacroAssembler::LoadlW(Register dst, const MemOperand& mem,
Register scratch) {
Register base = mem.rb();
int offset = mem.offset();
#if V8_TARGET_ARCH_S390X
if (is_int20(offset)) {
llgf(dst, mem);
} else if (!scratch.is(no_reg)) {
// Materialize offset into scratch register.
LoadIntLiteral(scratch, offset);
llgf(dst, MemOperand(base, scratch));
} else {
DCHECK(false);
}
#else
bool use_RXform = false;
bool use_RXYform = false;
if (is_uint12(offset)) {
// RX-format supports unsigned 12-bits offset.
use_RXform = true;
} else if (is_int20(offset)) {
// RXY-format supports signed 20-bits offset.
use_RXYform = true;
} else if (!scratch.is(no_reg)) {
// Materialize offset into scratch register.
LoadIntLiteral(scratch, offset);
} else {
DCHECK(false);
}
if (use_RXform) {
l(dst, mem);
} else if (use_RXYform) {
ly(dst, mem);
} else {
ly(dst, MemOperand(base, scratch));
}
#endif
}
void MacroAssembler::LoadLogicalHalfWordP(Register dst, const MemOperand& mem) {
#if V8_TARGET_ARCH_S390X
llgh(dst, mem);
#else
llh(dst, mem);
#endif
}
void MacroAssembler::LoadLogicalHalfWordP(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
llghr(dst, src);
#else
llhr(dst, src);
#endif
}
void MacroAssembler::LoadB(Register dst, const MemOperand& mem) {
#if V8_TARGET_ARCH_S390X
lgb(dst, mem);
#else
lb(dst, mem);
#endif
}
void MacroAssembler::LoadB(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
lgbr(dst, src);
#else
lbr(dst, src);
#endif
}
void MacroAssembler::LoadlB(Register dst, const MemOperand& mem) {
#if V8_TARGET_ARCH_S390X
llgc(dst, mem);
#else
llc(dst, mem);
#endif
}
void MacroAssembler::LoadLogicalReversedWordP(Register dst,
const MemOperand& mem) {
lrv(dst, mem);
LoadlW(dst, dst);
}
void MacroAssembler::LoadLogicalReversedHalfWordP(Register dst,
const MemOperand& mem) {
lrvh(dst, mem);
LoadLogicalHalfWordP(dst, dst);
}
// Load And Test (Reg <- Reg)
void MacroAssembler::LoadAndTest32(Register dst, Register src) {
ltr(dst, src);
}
// Load And Test
// (Register dst(ptr) = Register src (32 | 32->64))
// src is treated as a 32-bit signed integer, which is sign extended to
// 64-bit if necessary.
void MacroAssembler::LoadAndTestP_ExtendSrc(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
ltgfr(dst, src);
#else
ltr(dst, src);
#endif
}
// Load And Test Pointer Sized (Reg <- Reg)
void MacroAssembler::LoadAndTestP(Register dst, Register src) {
#if V8_TARGET_ARCH_S390X
ltgr(dst, src);
#else
ltr(dst, src);
#endif
}
// Load And Test 32-bit (Reg <- Mem)
void MacroAssembler::LoadAndTest32(Register dst, const MemOperand& mem) {
lt_z(dst, mem);
}
// Load And Test Pointer Sized (Reg <- Mem)
void MacroAssembler::LoadAndTestP(Register dst, const MemOperand& mem) {
#if V8_TARGET_ARCH_S390X
ltg(dst, mem);
#else
lt_z(dst, mem);
#endif
}
// Load On Condition Pointer Sized (Reg <- Reg)
void MacroAssembler::LoadOnConditionP(Condition cond, Register dst,
Register src) {
#if V8_TARGET_ARCH_S390X
locgr(cond, dst, src);
#else
locr(cond, dst, src);
#endif
}
// Load Double Precision (64-bit) Floating Point number from memory
void MacroAssembler::LoadDouble(DoubleRegister dst, const MemOperand& mem) {
// for 32bit and 64bit we all use 64bit floating point regs
if (is_uint12(mem.offset())) {
ld(dst, mem);
} else {
ldy(dst, mem);
}
}
// Load Single Precision (32-bit) Floating Point number from memory
void MacroAssembler::LoadFloat32(DoubleRegister dst, const MemOperand& mem) {
if (is_uint12(mem.offset())) {
le_z(dst, mem);
} else {
DCHECK(is_int20(mem.offset()));
ley(dst, mem);
}
}
// Load Single Precision (32-bit) Floating Point number from memory,
// and convert to Double Precision (64-bit)
void MacroAssembler::LoadFloat32ConvertToDouble(DoubleRegister dst,
const MemOperand& mem) {
LoadFloat32(dst, mem);
ldebr(dst, dst);
}
// Store Double Precision (64-bit) Floating Point number to memory
void MacroAssembler::StoreDouble(DoubleRegister dst, const MemOperand& mem) {
if (is_uint12(mem.offset())) {
std(dst, mem);
} else {
stdy(dst, mem);
}
}
// Store Single Precision (32-bit) Floating Point number to memory
void MacroAssembler::StoreFloat32(DoubleRegister src, const MemOperand& mem) {
if (is_uint12(mem.offset())) {
ste(src, mem);
} else {
stey(src, mem);
}
}
// Convert Double precision (64-bit) to Single Precision (32-bit)
// and store resulting Float32 to memory
void MacroAssembler::StoreDoubleAsFloat32(DoubleRegister src,
const MemOperand& mem,
DoubleRegister scratch) {
ledbr(scratch, src);
StoreFloat32(scratch, mem);
}
// Variable length depending on whether offset fits into immediate field
// MemOperand of RX or RXY format
void MacroAssembler::StoreW(Register src, const MemOperand& mem,
Register scratch) {
Register base = mem.rb();
int offset = mem.offset();
bool use_RXform = false;
bool use_RXYform = false;
if (is_uint12(offset)) {
// RX-format supports unsigned 12-bits offset.
use_RXform = true;
} else if (is_int20(offset)) {
// RXY-format supports signed 20-bits offset.
use_RXYform = true;
} else if (!scratch.is(no_reg)) {
// Materialize offset into scratch register.
LoadIntLiteral(scratch, offset);
} else {
// scratch is no_reg
DCHECK(false);
}
if (use_RXform) {
st(src, mem);
} else if (use_RXYform) {
sty(src, mem);
} else {
StoreW(src, MemOperand(base, scratch));
}
}
// Loads 16-bits half-word value from memory and sign extends to pointer
// sized register
void MacroAssembler::LoadHalfWordP(Register dst, const MemOperand& mem,
Register scratch) {
Register base = mem.rb();
int offset = mem.offset();
if (!is_int20(offset)) {
DCHECK(!scratch.is(no_reg));
LoadIntLiteral(scratch, offset);
#if V8_TARGET_ARCH_S390X
lgh(dst, MemOperand(base, scratch));
#else
lh(dst, MemOperand(base, scratch));
#endif
} else {
#if V8_TARGET_ARCH_S390X
lgh(dst, mem);
#else
if (is_uint12(offset)) {
lh(dst, mem);
} else {
lhy(dst, mem);
}
#endif
}
}
// Variable length depending on whether offset fits into immediate field
// MemOperand current only supports d-form
void MacroAssembler::StoreHalfWord(Register src, const MemOperand& mem,
Register scratch) {
Register base = mem.rb();
int offset = mem.offset();
if (is_uint12(offset)) {
sth(src, mem);
} else if (is_int20(offset)) {
sthy(src, mem);
} else {
DCHECK(!scratch.is(no_reg));
LoadIntLiteral(scratch, offset);
sth(src, MemOperand(base, scratch));
}
}
// Variable length depending on whether offset fits into immediate field
// MemOperand current only supports d-form
void MacroAssembler::StoreByte(Register src, const MemOperand& mem,
Register scratch) {
Register base = mem.rb();
int offset = mem.offset();
if (is_uint12(offset)) {
stc(src, mem);
} else if (is_int20(offset)) {
stcy(src, mem);
} else {
DCHECK(!scratch.is(no_reg));
LoadIntLiteral(scratch, offset);
stc(src, MemOperand(base, scratch));
}
}
// Shift left logical for 32-bit integer types.
void MacroAssembler::ShiftLeft(Register dst, Register src, const Operand& val) {
if (dst.is(src)) {
sll(dst, val);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
sllk(dst, src, val);
} else {
lr(dst, src);
sll(dst, val);
}
}
// Shift left logical for 32-bit integer types.
void MacroAssembler::ShiftLeft(Register dst, Register src, Register val) {
if (dst.is(src)) {
sll(dst, val);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
sllk(dst, src, val);
} else {
DCHECK(!dst.is(val)); // The lr/sll path clobbers val.
lr(dst, src);
sll(dst, val);
}
}
// Shift right logical for 32-bit integer types.
void MacroAssembler::ShiftRight(Register dst, Register src,
const Operand& val) {
if (dst.is(src)) {
srl(dst, val);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
srlk(dst, src, val);
} else {
lr(dst, src);
srl(dst, val);
}
}
// Shift right logical for 32-bit integer types.
void MacroAssembler::ShiftRight(Register dst, Register src, Register val) {
if (dst.is(src)) {
srl(dst, val);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
srlk(dst, src, val);
} else {
DCHECK(!dst.is(val)); // The lr/srl path clobbers val.
lr(dst, src);
srl(dst, val);
}
}
// Shift left arithmetic for 32-bit integer types.
void MacroAssembler::ShiftLeftArith(Register dst, Register src,
const Operand& val) {
if (dst.is(src)) {
sla(dst, val);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
slak(dst, src, val);
} else {
lr(dst, src);
sla(dst, val);
}
}
// Shift left arithmetic for 32-bit integer types.
void MacroAssembler::ShiftLeftArith(Register dst, Register src, Register val) {
if (dst.is(src)) {
sla(dst, val);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
slak(dst, src, val);
} else {
DCHECK(!dst.is(val)); // The lr/sla path clobbers val.
lr(dst, src);
sla(dst, val);
}
}
// Shift right arithmetic for 32-bit integer types.
void MacroAssembler::ShiftRightArith(Register dst, Register src,
const Operand& val) {
if (dst.is(src)) {
sra(dst, val);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
srak(dst, src, val);
} else {
lr(dst, src);
sra(dst, val);
}
}
// Shift right arithmetic for 32-bit integer types.
void MacroAssembler::ShiftRightArith(Register dst, Register src, Register val) {
if (dst.is(src)) {
sra(dst, val);
} else if (CpuFeatures::IsSupported(DISTINCT_OPS)) {
srak(dst, src, val);
} else {
DCHECK(!dst.is(val)); // The lr/sra path clobbers val.
lr(dst, src);
sra(dst, val);
}
}
// Clear right most # of bits
void MacroAssembler::ClearRightImm(Register dst, Register src,
const Operand& val) {
int numBitsToClear = val.imm_ % (kPointerSize * 8);
// Try to use RISBG if possible
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
int endBit = 63 - numBitsToClear;
risbg(dst, src, Operand::Zero(), Operand(endBit), Operand::Zero(), true);
return;
}
uint64_t hexMask = ~((1L << numBitsToClear) - 1);
// S390 AND instr clobbers source. Make a copy if necessary
if (!dst.is(src)) LoadRR(dst, src);
if (numBitsToClear <= 16) {
nill(dst, Operand(static_cast<uint16_t>(hexMask)));
} else if (numBitsToClear <= 32) {
nilf(dst, Operand(static_cast<uint32_t>(hexMask)));
} else if (numBitsToClear <= 64) {
nilf(dst, Operand(static_cast<intptr_t>(0)));
nihf(dst, Operand(hexMask >> 32));
}
}
void MacroAssembler::Popcnt32(Register dst, Register src) {
DCHECK(!src.is(r0));
DCHECK(!dst.is(r0));
popcnt(dst, src);
ShiftRight(r0, dst, Operand(16));
ar(dst, r0);
ShiftRight(r0, dst, Operand(8));
ar(dst, r0);
LoadB(dst, dst);
}
#ifdef V8_TARGET_ARCH_S390X
void MacroAssembler::Popcnt64(Register dst, Register src) {
DCHECK(!src.is(r0));
DCHECK(!dst.is(r0));
popcnt(dst, src);
ShiftRightP(r0, dst, Operand(32));
AddP(dst, r0);
ShiftRightP(r0, dst, Operand(16));
AddP(dst, r0);
ShiftRightP(r0, dst, Operand(8));
AddP(dst, r0);
LoadB(dst, dst);
}
#endif
#ifdef DEBUG
bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4,
Register reg5, Register reg6, Register reg7, Register reg8,
Register reg9, Register reg10) {
int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() +
reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
reg7.is_valid() + reg8.is_valid() + reg9.is_valid() +
reg10.is_valid();
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
if (reg7.is_valid()) regs |= reg7.bit();
if (reg8.is_valid()) regs |= reg8.bit();
if (reg9.is_valid()) regs |= reg9.bit();
if (reg10.is_valid()) regs |= reg10.bit();
int n_of_non_aliasing_regs = NumRegs(regs);
return n_of_valid_regs != n_of_non_aliasing_regs;
}
#endif
CodePatcher::CodePatcher(Isolate* isolate, byte* address, int size,
FlushICache flush_cache)
: address_(address),
size_(size),
masm_(isolate, address, size_ + Assembler::kGap, CodeObjectRequired::kNo),
flush_cache_(flush_cache) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
if (flush_cache_ == FLUSH) {
Assembler::FlushICache(masm_.isolate(), address_, size_);
}
// Check that the code was patched as expected.
DCHECK(masm_.pc_ == address_ + size_);
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
void MacroAssembler::TruncatingDiv(Register result, Register dividend,
int32_t divisor) {
DCHECK(!dividend.is(result));
DCHECK(!dividend.is(r0));
DCHECK(!result.is(r0));
base::MagicNumbersForDivision<uint32_t> mag =
base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
#ifdef V8_TARGET_ARCH_S390X
LoadRR(result, dividend);
MulP(result, Operand(mag.multiplier));
ShiftRightArithP(result, result, Operand(32));
#else
lay(sp, MemOperand(sp, -kPointerSize));
StoreP(r1, MemOperand(sp));
mov(r1, Operand(mag.multiplier));
mr_z(r0, dividend); // r0:r1 = r1 * dividend
LoadRR(result, r0);
LoadP(r1, MemOperand(sp));
la(sp, MemOperand(sp, kPointerSize));
#endif
bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
if (divisor > 0 && neg) {
AddP(result, dividend);
}
if (divisor < 0 && !neg && mag.multiplier > 0) {
SubP(result, dividend);
}
if (mag.shift > 0) ShiftRightArith(result, result, Operand(mag.shift));
ExtractBit(r0, dividend, 31);
AddP(result, r0);
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_S390