5ae3dccad0
BUG= R=joransiu@ca.ibm.com, michael_dawson@ca.ibm.com, bjaideep@ca.ibm.com Review-Url: https://codereview.chromium.org/2522283003 Cr-Commit-Position: refs/heads/master@{#41238}
12654 lines
354 KiB
C++
12654 lines
354 KiB
C++
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include <stdarg.h>
|
|
#include <stdlib.h>
|
|
#include <cmath>
|
|
|
|
#if V8_TARGET_ARCH_S390
|
|
|
|
#include "src/assembler.h"
|
|
#include "src/base/bits.h"
|
|
#include "src/base/once.h"
|
|
#include "src/codegen.h"
|
|
#include "src/disasm.h"
|
|
#include "src/runtime/runtime-utils.h"
|
|
#include "src/s390/constants-s390.h"
|
|
#include "src/s390/frames-s390.h"
|
|
#include "src/s390/simulator-s390.h"
|
|
#if defined(USE_SIMULATOR)
|
|
|
|
// Only build the simulator if not compiling for real s390 hardware.
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
const auto GetRegConfig = RegisterConfiguration::Crankshaft;
|
|
|
|
// This macro provides a platform independent use of sscanf. The reason for
|
|
// SScanF not being implemented in a platform independent way through
|
|
// ::v8::internal::OS in the same way as SNPrintF is that the
|
|
// Windows C Run-Time Library does not provide vsscanf.
|
|
#define SScanF sscanf // NOLINT
|
|
|
|
// The S390Debugger class is used by the simulator while debugging simulated
|
|
// z/Architecture code.
|
|
class S390Debugger {
|
|
public:
|
|
explicit S390Debugger(Simulator* sim) : sim_(sim) {}
|
|
|
|
void Stop(Instruction* instr);
|
|
void Debug();
|
|
|
|
private:
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
static const Instr kBreakpointInstr = (0x0000FFB2); // TRAP4 0000
|
|
static const Instr kNopInstr = (0x00160016); // OR r0, r0 x2
|
|
#else
|
|
static const Instr kBreakpointInstr = (0xB2FF0000); // TRAP4 0000
|
|
static const Instr kNopInstr = (0x16001600); // OR r0, r0 x2
|
|
#endif
|
|
|
|
Simulator* sim_;
|
|
|
|
intptr_t GetRegisterValue(int regnum);
|
|
double GetRegisterPairDoubleValue(int regnum);
|
|
double GetFPDoubleRegisterValue(int regnum);
|
|
float GetFPFloatRegisterValue(int regnum);
|
|
bool GetValue(const char* desc, intptr_t* value);
|
|
bool GetFPDoubleValue(const char* desc, double* value);
|
|
|
|
// Set or delete a breakpoint. Returns true if successful.
|
|
bool SetBreakpoint(Instruction* break_pc);
|
|
bool DeleteBreakpoint(Instruction* break_pc);
|
|
|
|
// Undo and redo all breakpoints. This is needed to bracket disassembly and
|
|
// execution to skip past breakpoints when run from the debugger.
|
|
void UndoBreakpoints();
|
|
void RedoBreakpoints();
|
|
};
|
|
|
|
void S390Debugger::Stop(Instruction* instr) {
|
|
// Get the stop code.
|
|
// use of kStopCodeMask not right on PowerPC
|
|
uint32_t code = instr->SvcValue() & kStopCodeMask;
|
|
// Retrieve the encoded address, which comes just after this stop.
|
|
char* msg = *reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr));
|
|
// Update this stop description.
|
|
if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
|
|
sim_->watched_stops_[code].desc = msg;
|
|
}
|
|
// Print the stop message and code if it is not the default code.
|
|
if (code != kMaxStopCode) {
|
|
PrintF("Simulator hit stop %u: %s\n", code, msg);
|
|
} else {
|
|
PrintF("Simulator hit %s\n", msg);
|
|
}
|
|
sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize);
|
|
Debug();
|
|
}
|
|
|
|
intptr_t S390Debugger::GetRegisterValue(int regnum) {
|
|
return sim_->get_register(regnum);
|
|
}
|
|
|
|
double S390Debugger::GetRegisterPairDoubleValue(int regnum) {
|
|
return sim_->get_double_from_register_pair(regnum);
|
|
}
|
|
|
|
double S390Debugger::GetFPDoubleRegisterValue(int regnum) {
|
|
return sim_->get_double_from_d_register(regnum);
|
|
}
|
|
|
|
float S390Debugger::GetFPFloatRegisterValue(int regnum) {
|
|
return sim_->get_float32_from_d_register(regnum);
|
|
}
|
|
|
|
bool S390Debugger::GetValue(const char* desc, intptr_t* value) {
|
|
int regnum = Registers::Number(desc);
|
|
if (regnum != kNoRegister) {
|
|
*value = GetRegisterValue(regnum);
|
|
return true;
|
|
} else {
|
|
if (strncmp(desc, "0x", 2) == 0) {
|
|
return SScanF(desc + 2, "%" V8PRIxPTR,
|
|
reinterpret_cast<uintptr_t*>(value)) == 1;
|
|
} else {
|
|
return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
|
|
1;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool S390Debugger::GetFPDoubleValue(const char* desc, double* value) {
|
|
int regnum = DoubleRegisters::Number(desc);
|
|
if (regnum != kNoRegister) {
|
|
*value = sim_->get_double_from_d_register(regnum);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool S390Debugger::SetBreakpoint(Instruction* break_pc) {
|
|
// Check if a breakpoint can be set. If not return without any side-effects.
|
|
if (sim_->break_pc_ != NULL) {
|
|
return false;
|
|
}
|
|
|
|
// Set the breakpoint.
|
|
sim_->break_pc_ = break_pc;
|
|
sim_->break_instr_ = break_pc->InstructionBits();
|
|
// Not setting the breakpoint instruction in the code itself. It will be set
|
|
// when the debugger shell continues.
|
|
return true;
|
|
}
|
|
|
|
bool S390Debugger::DeleteBreakpoint(Instruction* break_pc) {
|
|
if (sim_->break_pc_ != NULL) {
|
|
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
|
}
|
|
|
|
sim_->break_pc_ = NULL;
|
|
sim_->break_instr_ = 0;
|
|
return true;
|
|
}
|
|
|
|
void S390Debugger::UndoBreakpoints() {
|
|
if (sim_->break_pc_ != NULL) {
|
|
sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
|
}
|
|
}
|
|
|
|
void S390Debugger::RedoBreakpoints() {
|
|
if (sim_->break_pc_ != NULL) {
|
|
sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
|
|
}
|
|
}
|
|
|
|
void S390Debugger::Debug() {
|
|
intptr_t last_pc = -1;
|
|
bool done = false;
|
|
|
|
#define COMMAND_SIZE 63
|
|
#define ARG_SIZE 255
|
|
|
|
#define STR(a) #a
|
|
#define XSTR(a) STR(a)
|
|
|
|
char cmd[COMMAND_SIZE + 1];
|
|
char arg1[ARG_SIZE + 1];
|
|
char arg2[ARG_SIZE + 1];
|
|
char* argv[3] = {cmd, arg1, arg2};
|
|
|
|
// make sure to have a proper terminating character if reaching the limit
|
|
cmd[COMMAND_SIZE] = 0;
|
|
arg1[ARG_SIZE] = 0;
|
|
arg2[ARG_SIZE] = 0;
|
|
|
|
// Undo all set breakpoints while running in the debugger shell. This will
|
|
// make them invisible to all commands.
|
|
UndoBreakpoints();
|
|
// Disable tracing while simulating
|
|
bool trace = ::v8::internal::FLAG_trace_sim;
|
|
::v8::internal::FLAG_trace_sim = false;
|
|
|
|
while (!done && !sim_->has_bad_pc()) {
|
|
if (last_pc != sim_->get_pc()) {
|
|
disasm::NameConverter converter;
|
|
disasm::Disassembler dasm(converter);
|
|
// use a reasonably large buffer
|
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
|
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
|
|
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
|
|
last_pc = sim_->get_pc();
|
|
}
|
|
char* line = ReadLine("sim> ");
|
|
if (line == NULL) {
|
|
break;
|
|
} else {
|
|
char* last_input = sim_->last_debugger_input();
|
|
if (strcmp(line, "\n") == 0 && last_input != NULL) {
|
|
line = last_input;
|
|
} else {
|
|
// Ownership is transferred to sim_;
|
|
sim_->set_last_debugger_input(line);
|
|
}
|
|
// Use sscanf to parse the individual parts of the command line. At the
|
|
// moment no command expects more than two parameters.
|
|
int argc = SScanF(line,
|
|
"%" XSTR(COMMAND_SIZE) "s "
|
|
"%" XSTR(ARG_SIZE) "s "
|
|
"%" XSTR(ARG_SIZE) "s",
|
|
cmd, arg1, arg2);
|
|
if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
|
|
intptr_t value;
|
|
|
|
// If at a breakpoint, proceed past it.
|
|
if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
|
|
->InstructionBits() == 0x7d821008) {
|
|
sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr));
|
|
} else {
|
|
sim_->ExecuteInstruction(
|
|
reinterpret_cast<Instruction*>(sim_->get_pc()));
|
|
}
|
|
|
|
if (argc == 2 && last_pc != sim_->get_pc()) {
|
|
disasm::NameConverter converter;
|
|
disasm::Disassembler dasm(converter);
|
|
// use a reasonably large buffer
|
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
|
|
|
if (GetValue(arg1, &value)) {
|
|
// Interpret a numeric argument as the number of instructions to
|
|
// step past.
|
|
for (int i = 1; (!sim_->has_bad_pc()) && i < value; i++) {
|
|
dasm.InstructionDecode(buffer,
|
|
reinterpret_cast<byte*>(sim_->get_pc()));
|
|
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
|
|
buffer.start());
|
|
sim_->ExecuteInstruction(
|
|
reinterpret_cast<Instruction*>(sim_->get_pc()));
|
|
}
|
|
} else {
|
|
// Otherwise treat it as the mnemonic of the opcode to stop at.
|
|
char mnemonic[256];
|
|
while (!sim_->has_bad_pc()) {
|
|
dasm.InstructionDecode(buffer,
|
|
reinterpret_cast<byte*>(sim_->get_pc()));
|
|
char* mnemonicStart = buffer.start();
|
|
while (*mnemonicStart != 0 && *mnemonicStart != ' ')
|
|
mnemonicStart++;
|
|
SScanF(mnemonicStart, "%s", mnemonic);
|
|
if (!strcmp(arg1, mnemonic)) break;
|
|
|
|
PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
|
|
buffer.start());
|
|
sim_->ExecuteInstruction(
|
|
reinterpret_cast<Instruction*>(sim_->get_pc()));
|
|
}
|
|
}
|
|
}
|
|
} else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
|
|
// If at a breakpoint, proceed past it.
|
|
if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
|
|
->InstructionBits() == 0x7d821008) {
|
|
sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr));
|
|
} else {
|
|
// Execute the one instruction we broke at with breakpoints disabled.
|
|
sim_->ExecuteInstruction(
|
|
reinterpret_cast<Instruction*>(sim_->get_pc()));
|
|
}
|
|
// Leave the debugger shell.
|
|
done = true;
|
|
} else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
|
|
if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
|
|
intptr_t value;
|
|
double dvalue;
|
|
if (strcmp(arg1, "all") == 0) {
|
|
for (int i = 0; i < kNumRegisters; i++) {
|
|
value = GetRegisterValue(i);
|
|
PrintF(" %3s: %08" V8PRIxPTR,
|
|
GetRegConfig()->GetGeneralRegisterName(i), value);
|
|
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
|
|
(i % 2) == 0) {
|
|
dvalue = GetRegisterPairDoubleValue(i);
|
|
PrintF(" (%f)\n", dvalue);
|
|
} else if (i != 0 && !((i + 1) & 3)) {
|
|
PrintF("\n");
|
|
}
|
|
}
|
|
PrintF(" pc: %08" V8PRIxPTR " cr: %08x\n", sim_->special_reg_pc_,
|
|
sim_->condition_reg_);
|
|
} else if (strcmp(arg1, "alld") == 0) {
|
|
for (int i = 0; i < kNumRegisters; i++) {
|
|
value = GetRegisterValue(i);
|
|
PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
|
|
GetRegConfig()->GetGeneralRegisterName(i), value, value);
|
|
if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
|
|
(i % 2) == 0) {
|
|
dvalue = GetRegisterPairDoubleValue(i);
|
|
PrintF(" (%f)\n", dvalue);
|
|
} else if (!((i + 1) % 2)) {
|
|
PrintF("\n");
|
|
}
|
|
}
|
|
PrintF(" pc: %08" V8PRIxPTR " cr: %08x\n", sim_->special_reg_pc_,
|
|
sim_->condition_reg_);
|
|
} else if (strcmp(arg1, "allf") == 0) {
|
|
for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
|
|
float fvalue = GetFPFloatRegisterValue(i);
|
|
uint32_t as_words = bit_cast<uint32_t>(fvalue);
|
|
PrintF("%3s: %f 0x%08x\n",
|
|
GetRegConfig()->GetDoubleRegisterName(i), fvalue,
|
|
as_words);
|
|
}
|
|
} else if (strcmp(arg1, "alld") == 0) {
|
|
for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
|
|
dvalue = GetFPDoubleRegisterValue(i);
|
|
uint64_t as_words = bit_cast<uint64_t>(dvalue);
|
|
PrintF("%3s: %f 0x%08x %08x\n",
|
|
GetRegConfig()->GetDoubleRegisterName(i), dvalue,
|
|
static_cast<uint32_t>(as_words >> 32),
|
|
static_cast<uint32_t>(as_words & 0xffffffff));
|
|
}
|
|
} else if (arg1[0] == 'r' &&
|
|
(arg1[1] >= '0' && arg1[1] <= '2' &&
|
|
(arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '5' &&
|
|
arg1[3] == '\0')))) {
|
|
int regnum = strtoul(&arg1[1], 0, 10);
|
|
if (regnum != kNoRegister) {
|
|
value = GetRegisterValue(regnum);
|
|
PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
|
|
value);
|
|
} else {
|
|
PrintF("%s unrecognized\n", arg1);
|
|
}
|
|
} else {
|
|
if (GetValue(arg1, &value)) {
|
|
PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
|
|
value);
|
|
} else if (GetFPDoubleValue(arg1, &dvalue)) {
|
|
uint64_t as_words = bit_cast<uint64_t>(dvalue);
|
|
PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
|
|
static_cast<uint32_t>(as_words >> 32),
|
|
static_cast<uint32_t>(as_words & 0xffffffff));
|
|
} else {
|
|
PrintF("%s unrecognized\n", arg1);
|
|
}
|
|
}
|
|
} else {
|
|
PrintF("print <register>\n");
|
|
}
|
|
} else if ((strcmp(cmd, "po") == 0) ||
|
|
(strcmp(cmd, "printobject") == 0)) {
|
|
if (argc == 2) {
|
|
intptr_t value;
|
|
OFStream os(stdout);
|
|
if (GetValue(arg1, &value)) {
|
|
Object* obj = reinterpret_cast<Object*>(value);
|
|
os << arg1 << ": \n";
|
|
#ifdef DEBUG
|
|
obj->Print(os);
|
|
os << "\n";
|
|
#else
|
|
os << Brief(obj) << "\n";
|
|
#endif
|
|
} else {
|
|
os << arg1 << " unrecognized\n";
|
|
}
|
|
} else {
|
|
PrintF("printobject <value>\n");
|
|
}
|
|
} else if (strcmp(cmd, "setpc") == 0) {
|
|
intptr_t value;
|
|
|
|
if (!GetValue(arg1, &value)) {
|
|
PrintF("%s unrecognized\n", arg1);
|
|
continue;
|
|
}
|
|
sim_->set_pc(value);
|
|
} else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
|
|
intptr_t* cur = NULL;
|
|
intptr_t* end = NULL;
|
|
int next_arg = 1;
|
|
|
|
if (strcmp(cmd, "stack") == 0) {
|
|
cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
|
|
} else { // "mem"
|
|
intptr_t value;
|
|
if (!GetValue(arg1, &value)) {
|
|
PrintF("%s unrecognized\n", arg1);
|
|
continue;
|
|
}
|
|
cur = reinterpret_cast<intptr_t*>(value);
|
|
next_arg++;
|
|
}
|
|
|
|
intptr_t words; // likely inaccurate variable name for 64bit
|
|
if (argc == next_arg) {
|
|
words = 10;
|
|
} else {
|
|
if (!GetValue(argv[next_arg], &words)) {
|
|
words = 10;
|
|
}
|
|
}
|
|
end = cur + words;
|
|
|
|
while (cur < end) {
|
|
PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
|
|
reinterpret_cast<intptr_t>(cur), *cur, *cur);
|
|
HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
|
|
intptr_t value = *cur;
|
|
Heap* current_heap = sim_->isolate_->heap();
|
|
if (((value & 1) == 0) ||
|
|
current_heap->ContainsSlow(obj->address())) {
|
|
PrintF("(smi %d)", PlatformSmiTagging::SmiToInt(obj));
|
|
} else if (current_heap->Contains(obj)) {
|
|
PrintF(" (");
|
|
obj->ShortPrint();
|
|
PrintF(")");
|
|
}
|
|
PrintF("\n");
|
|
cur++;
|
|
}
|
|
} else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
|
|
disasm::NameConverter converter;
|
|
disasm::Disassembler dasm(converter);
|
|
// use a reasonably large buffer
|
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
|
|
|
byte* prev = NULL;
|
|
byte* cur = NULL;
|
|
// Default number of instructions to disassemble.
|
|
int32_t numInstructions = 10;
|
|
|
|
if (argc == 1) {
|
|
cur = reinterpret_cast<byte*>(sim_->get_pc());
|
|
} else if (argc == 2) {
|
|
int regnum = Registers::Number(arg1);
|
|
if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
|
|
// The argument is an address or a register name.
|
|
intptr_t value;
|
|
if (GetValue(arg1, &value)) {
|
|
cur = reinterpret_cast<byte*>(value);
|
|
}
|
|
} else {
|
|
// The argument is the number of instructions.
|
|
intptr_t value;
|
|
if (GetValue(arg1, &value)) {
|
|
cur = reinterpret_cast<byte*>(sim_->get_pc());
|
|
// Disassemble <arg1> instructions.
|
|
numInstructions = static_cast<int32_t>(value);
|
|
}
|
|
}
|
|
} else {
|
|
intptr_t value1;
|
|
intptr_t value2;
|
|
if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
|
|
cur = reinterpret_cast<byte*>(value1);
|
|
// Disassemble <arg2> instructions.
|
|
numInstructions = static_cast<int32_t>(value2);
|
|
}
|
|
}
|
|
|
|
while (numInstructions > 0) {
|
|
prev = cur;
|
|
cur += dasm.InstructionDecode(buffer, cur);
|
|
PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
|
|
buffer.start());
|
|
numInstructions--;
|
|
}
|
|
} else if (strcmp(cmd, "gdb") == 0) {
|
|
PrintF("relinquishing control to gdb\n");
|
|
v8::base::OS::DebugBreak();
|
|
PrintF("regaining control from gdb\n");
|
|
} else if (strcmp(cmd, "break") == 0) {
|
|
if (argc == 2) {
|
|
intptr_t value;
|
|
if (GetValue(arg1, &value)) {
|
|
if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
|
|
PrintF("setting breakpoint failed\n");
|
|
}
|
|
} else {
|
|
PrintF("%s unrecognized\n", arg1);
|
|
}
|
|
} else {
|
|
PrintF("break <address>\n");
|
|
}
|
|
} else if (strcmp(cmd, "del") == 0) {
|
|
if (!DeleteBreakpoint(NULL)) {
|
|
PrintF("deleting breakpoint failed\n");
|
|
}
|
|
} else if (strcmp(cmd, "cr") == 0) {
|
|
PrintF("Condition reg: %08x\n", sim_->condition_reg_);
|
|
} else if (strcmp(cmd, "stop") == 0) {
|
|
intptr_t value;
|
|
intptr_t stop_pc =
|
|
sim_->get_pc() - (sizeof(FourByteInstr) + kPointerSize);
|
|
Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
|
|
Instruction* msg_address =
|
|
reinterpret_cast<Instruction*>(stop_pc + sizeof(FourByteInstr));
|
|
if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
|
|
// Remove the current stop.
|
|
if (sim_->isStopInstruction(stop_instr)) {
|
|
stop_instr->SetInstructionBits(kNopInstr);
|
|
msg_address->SetInstructionBits(kNopInstr);
|
|
} else {
|
|
PrintF("Not at debugger stop.\n");
|
|
}
|
|
} else if (argc == 3) {
|
|
// Print information about all/the specified breakpoint(s).
|
|
if (strcmp(arg1, "info") == 0) {
|
|
if (strcmp(arg2, "all") == 0) {
|
|
PrintF("Stop information:\n");
|
|
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
|
sim_->PrintStopInfo(i);
|
|
}
|
|
} else if (GetValue(arg2, &value)) {
|
|
sim_->PrintStopInfo(value);
|
|
} else {
|
|
PrintF("Unrecognized argument.\n");
|
|
}
|
|
} else if (strcmp(arg1, "enable") == 0) {
|
|
// Enable all/the specified breakpoint(s).
|
|
if (strcmp(arg2, "all") == 0) {
|
|
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
|
sim_->EnableStop(i);
|
|
}
|
|
} else if (GetValue(arg2, &value)) {
|
|
sim_->EnableStop(value);
|
|
} else {
|
|
PrintF("Unrecognized argument.\n");
|
|
}
|
|
} else if (strcmp(arg1, "disable") == 0) {
|
|
// Disable all/the specified breakpoint(s).
|
|
if (strcmp(arg2, "all") == 0) {
|
|
for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
|
sim_->DisableStop(i);
|
|
}
|
|
} else if (GetValue(arg2, &value)) {
|
|
sim_->DisableStop(value);
|
|
} else {
|
|
PrintF("Unrecognized argument.\n");
|
|
}
|
|
}
|
|
} else {
|
|
PrintF("Wrong usage. Use help command for more information.\n");
|
|
}
|
|
} else if (strcmp(cmd, "icount") == 0) {
|
|
PrintF("%05" PRId64 "\n", sim_->icount_);
|
|
} else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
|
|
::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
|
|
PrintF("Trace of executed instructions is %s\n",
|
|
::v8::internal::FLAG_trace_sim ? "on" : "off");
|
|
} else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
|
|
PrintF("cont\n");
|
|
PrintF(" continue execution (alias 'c')\n");
|
|
PrintF("stepi [num instructions]\n");
|
|
PrintF(" step one/num instruction(s) (alias 'si')\n");
|
|
PrintF("print <register>\n");
|
|
PrintF(" print register content (alias 'p')\n");
|
|
PrintF(" use register name 'all' to display all integer registers\n");
|
|
PrintF(
|
|
" use register name 'alld' to display integer registers "
|
|
"with decimal values\n");
|
|
PrintF(" use register name 'rN' to display register number 'N'\n");
|
|
PrintF(" add argument 'fp' to print register pair double values\n");
|
|
PrintF(
|
|
" use register name 'allf' to display floating-point "
|
|
"registers\n");
|
|
PrintF("printobject <register>\n");
|
|
PrintF(" print an object from a register (alias 'po')\n");
|
|
PrintF("cr\n");
|
|
PrintF(" print condition register\n");
|
|
PrintF("stack [<num words>]\n");
|
|
PrintF(" dump stack content, default dump 10 words)\n");
|
|
PrintF("mem <address> [<num words>]\n");
|
|
PrintF(" dump memory content, default dump 10 words)\n");
|
|
PrintF("disasm [<instructions>]\n");
|
|
PrintF("disasm [<address/register>]\n");
|
|
PrintF("disasm [[<address/register>] <instructions>]\n");
|
|
PrintF(" disassemble code, default is 10 instructions\n");
|
|
PrintF(" from pc (alias 'di')\n");
|
|
PrintF("gdb\n");
|
|
PrintF(" enter gdb\n");
|
|
PrintF("break <address>\n");
|
|
PrintF(" set a break point on the address\n");
|
|
PrintF("del\n");
|
|
PrintF(" delete the breakpoint\n");
|
|
PrintF("trace (alias 't')\n");
|
|
PrintF(" toogle the tracing of all executed statements\n");
|
|
PrintF("stop feature:\n");
|
|
PrintF(" Description:\n");
|
|
PrintF(" Stops are debug instructions inserted by\n");
|
|
PrintF(" the Assembler::stop() function.\n");
|
|
PrintF(" When hitting a stop, the Simulator will\n");
|
|
PrintF(" stop and and give control to the S390Debugger.\n");
|
|
PrintF(" The first %d stop codes are watched:\n",
|
|
Simulator::kNumOfWatchedStops);
|
|
PrintF(" - They can be enabled / disabled: the Simulator\n");
|
|
PrintF(" will / won't stop when hitting them.\n");
|
|
PrintF(" - The Simulator keeps track of how many times they \n");
|
|
PrintF(" are met. (See the info command.) Going over a\n");
|
|
PrintF(" disabled stop still increases its counter. \n");
|
|
PrintF(" Commands:\n");
|
|
PrintF(" stop info all/<code> : print infos about number <code>\n");
|
|
PrintF(" or all stop(s).\n");
|
|
PrintF(" stop enable/disable all/<code> : enables / disables\n");
|
|
PrintF(" all or number <code> stop(s)\n");
|
|
PrintF(" stop unstop\n");
|
|
PrintF(" ignore the stop instruction at the current location\n");
|
|
PrintF(" from now on\n");
|
|
} else {
|
|
PrintF("Unknown command: %s\n", cmd);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add all the breakpoints back to stop execution and enter the debugger
|
|
// shell when hit.
|
|
RedoBreakpoints();
|
|
// Restore tracing
|
|
::v8::internal::FLAG_trace_sim = trace;
|
|
|
|
#undef COMMAND_SIZE
|
|
#undef ARG_SIZE
|
|
|
|
#undef STR
|
|
#undef XSTR
|
|
}
|
|
|
|
static bool ICacheMatch(void* one, void* two) {
|
|
DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
|
|
DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
|
|
return one == two;
|
|
}
|
|
|
|
static uint32_t ICacheHash(void* key) {
|
|
return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
|
|
}
|
|
|
|
static bool AllOnOnePage(uintptr_t start, int size) {
|
|
intptr_t start_page = (start & ~CachePage::kPageMask);
|
|
intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
|
|
return start_page == end_page;
|
|
}
|
|
|
|
void Simulator::set_last_debugger_input(char* input) {
|
|
DeleteArray(last_debugger_input_);
|
|
last_debugger_input_ = input;
|
|
}
|
|
|
|
void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
|
|
void* start_addr, size_t size) {
|
|
intptr_t start = reinterpret_cast<intptr_t>(start_addr);
|
|
int intra_line = (start & CachePage::kLineMask);
|
|
start -= intra_line;
|
|
size += intra_line;
|
|
size = ((size - 1) | CachePage::kLineMask) + 1;
|
|
int offset = (start & CachePage::kPageMask);
|
|
while (!AllOnOnePage(start, size - 1)) {
|
|
int bytes_to_flush = CachePage::kPageSize - offset;
|
|
FlushOnePage(i_cache, start, bytes_to_flush);
|
|
start += bytes_to_flush;
|
|
size -= bytes_to_flush;
|
|
DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
|
|
offset = 0;
|
|
}
|
|
if (size != 0) {
|
|
FlushOnePage(i_cache, start, size);
|
|
}
|
|
}
|
|
|
|
CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
|
|
void* page) {
|
|
base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
|
|
if (entry->value == NULL) {
|
|
CachePage* new_page = new CachePage();
|
|
entry->value = new_page;
|
|
}
|
|
return reinterpret_cast<CachePage*>(entry->value);
|
|
}
|
|
|
|
// Flush from start up to and not including start + size.
|
|
void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
|
|
intptr_t start, int size) {
|
|
DCHECK(size <= CachePage::kPageSize);
|
|
DCHECK(AllOnOnePage(start, size - 1));
|
|
DCHECK((start & CachePage::kLineMask) == 0);
|
|
DCHECK((size & CachePage::kLineMask) == 0);
|
|
void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
|
|
int offset = (start & CachePage::kPageMask);
|
|
CachePage* cache_page = GetCachePage(i_cache, page);
|
|
char* valid_bytemap = cache_page->ValidityByte(offset);
|
|
memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
|
|
}
|
|
|
|
void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
|
|
Instruction* instr) {
|
|
intptr_t address = reinterpret_cast<intptr_t>(instr);
|
|
void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
|
|
void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
|
|
int offset = (address & CachePage::kPageMask);
|
|
CachePage* cache_page = GetCachePage(i_cache, page);
|
|
char* cache_valid_byte = cache_page->ValidityByte(offset);
|
|
bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
|
|
char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
|
|
if (cache_hit) {
|
|
// Check that the data in memory matches the contents of the I-cache.
|
|
CHECK_EQ(memcmp(reinterpret_cast<void*>(instr),
|
|
cache_page->CachedData(offset), sizeof(FourByteInstr)),
|
|
0);
|
|
} else {
|
|
// Cache miss. Load memory into the cache.
|
|
memcpy(cached_line, line, CachePage::kLineLength);
|
|
*cache_valid_byte = CachePage::LINE_VALID;
|
|
}
|
|
}
|
|
|
|
void Simulator::Initialize(Isolate* isolate) {
|
|
if (isolate->simulator_initialized()) return;
|
|
isolate->set_simulator_initialized(true);
|
|
::v8::internal::ExternalReference::set_redirector(isolate,
|
|
&RedirectExternalReference);
|
|
static base::OnceType once = V8_ONCE_INIT;
|
|
base::CallOnce(&once, &Simulator::EvalTableInit);
|
|
}
|
|
|
|
Simulator::EvaluateFuncType Simulator::EvalTable[] = {NULL};
|
|
|
|
void Simulator::EvalTableInit() {
|
|
for (int i = 0; i < MAX_NUM_OPCODES; i++) {
|
|
EvalTable[i] = &Simulator::Evaluate_Unknown;
|
|
}
|
|
|
|
EvalTable[DUMY] = &Simulator::Evaluate_DUMY;
|
|
EvalTable[BKPT] = &Simulator::Evaluate_BKPT;
|
|
EvalTable[SPM] = &Simulator::Evaluate_SPM;
|
|
EvalTable[BALR] = &Simulator::Evaluate_BALR;
|
|
EvalTable[BCTR] = &Simulator::Evaluate_BCTR;
|
|
EvalTable[BCR] = &Simulator::Evaluate_BCR;
|
|
EvalTable[SVC] = &Simulator::Evaluate_SVC;
|
|
EvalTable[BSM] = &Simulator::Evaluate_BSM;
|
|
EvalTable[BASSM] = &Simulator::Evaluate_BASSM;
|
|
EvalTable[BASR] = &Simulator::Evaluate_BASR;
|
|
EvalTable[MVCL] = &Simulator::Evaluate_MVCL;
|
|
EvalTable[CLCL] = &Simulator::Evaluate_CLCL;
|
|
EvalTable[LPR] = &Simulator::Evaluate_LPR;
|
|
EvalTable[LNR] = &Simulator::Evaluate_LNR;
|
|
EvalTable[LTR] = &Simulator::Evaluate_LTR;
|
|
EvalTable[LCR] = &Simulator::Evaluate_LCR;
|
|
EvalTable[NR] = &Simulator::Evaluate_NR;
|
|
EvalTable[CLR] = &Simulator::Evaluate_CLR;
|
|
EvalTable[OR] = &Simulator::Evaluate_OR;
|
|
EvalTable[XR] = &Simulator::Evaluate_XR;
|
|
EvalTable[LR] = &Simulator::Evaluate_LR;
|
|
EvalTable[CR] = &Simulator::Evaluate_CR;
|
|
EvalTable[AR] = &Simulator::Evaluate_AR;
|
|
EvalTable[SR] = &Simulator::Evaluate_SR;
|
|
EvalTable[MR] = &Simulator::Evaluate_MR;
|
|
EvalTable[DR] = &Simulator::Evaluate_DR;
|
|
EvalTable[ALR] = &Simulator::Evaluate_ALR;
|
|
EvalTable[SLR] = &Simulator::Evaluate_SLR;
|
|
EvalTable[LDR] = &Simulator::Evaluate_LDR;
|
|
EvalTable[CDR] = &Simulator::Evaluate_CDR;
|
|
EvalTable[LER] = &Simulator::Evaluate_LER;
|
|
EvalTable[STH] = &Simulator::Evaluate_STH;
|
|
EvalTable[LA] = &Simulator::Evaluate_LA;
|
|
EvalTable[STC] = &Simulator::Evaluate_STC;
|
|
EvalTable[IC_z] = &Simulator::Evaluate_IC_z;
|
|
EvalTable[EX] = &Simulator::Evaluate_EX;
|
|
EvalTable[BAL] = &Simulator::Evaluate_BAL;
|
|
EvalTable[BCT] = &Simulator::Evaluate_BCT;
|
|
EvalTable[BC] = &Simulator::Evaluate_BC;
|
|
EvalTable[LH] = &Simulator::Evaluate_LH;
|
|
EvalTable[CH] = &Simulator::Evaluate_CH;
|
|
EvalTable[AH] = &Simulator::Evaluate_AH;
|
|
EvalTable[SH] = &Simulator::Evaluate_SH;
|
|
EvalTable[MH] = &Simulator::Evaluate_MH;
|
|
EvalTable[BAS] = &Simulator::Evaluate_BAS;
|
|
EvalTable[CVD] = &Simulator::Evaluate_CVD;
|
|
EvalTable[CVB] = &Simulator::Evaluate_CVB;
|
|
EvalTable[ST] = &Simulator::Evaluate_ST;
|
|
EvalTable[LAE] = &Simulator::Evaluate_LAE;
|
|
EvalTable[N] = &Simulator::Evaluate_N;
|
|
EvalTable[CL] = &Simulator::Evaluate_CL;
|
|
EvalTable[O] = &Simulator::Evaluate_O;
|
|
EvalTable[X] = &Simulator::Evaluate_X;
|
|
EvalTable[L] = &Simulator::Evaluate_L;
|
|
EvalTable[C] = &Simulator::Evaluate_C;
|
|
EvalTable[A] = &Simulator::Evaluate_A;
|
|
EvalTable[S] = &Simulator::Evaluate_S;
|
|
EvalTable[M] = &Simulator::Evaluate_M;
|
|
EvalTable[D] = &Simulator::Evaluate_D;
|
|
EvalTable[AL] = &Simulator::Evaluate_AL;
|
|
EvalTable[SL] = &Simulator::Evaluate_SL;
|
|
EvalTable[STD] = &Simulator::Evaluate_STD;
|
|
EvalTable[LD] = &Simulator::Evaluate_LD;
|
|
EvalTable[CD] = &Simulator::Evaluate_CD;
|
|
EvalTable[STE] = &Simulator::Evaluate_STE;
|
|
EvalTable[MS] = &Simulator::Evaluate_MS;
|
|
EvalTable[LE] = &Simulator::Evaluate_LE;
|
|
EvalTable[BRXH] = &Simulator::Evaluate_BRXH;
|
|
EvalTable[BRXLE] = &Simulator::Evaluate_BRXLE;
|
|
EvalTable[BXH] = &Simulator::Evaluate_BXH;
|
|
EvalTable[BXLE] = &Simulator::Evaluate_BXLE;
|
|
EvalTable[SRL] = &Simulator::Evaluate_SRL;
|
|
EvalTable[SLL] = &Simulator::Evaluate_SLL;
|
|
EvalTable[SRA] = &Simulator::Evaluate_SRA;
|
|
EvalTable[SLA] = &Simulator::Evaluate_SLA;
|
|
EvalTable[SRDL] = &Simulator::Evaluate_SRDL;
|
|
EvalTable[SLDL] = &Simulator::Evaluate_SLDL;
|
|
EvalTable[SRDA] = &Simulator::Evaluate_SRDA;
|
|
EvalTable[SLDA] = &Simulator::Evaluate_SLDA;
|
|
EvalTable[STM] = &Simulator::Evaluate_STM;
|
|
EvalTable[TM] = &Simulator::Evaluate_TM;
|
|
EvalTable[MVI] = &Simulator::Evaluate_MVI;
|
|
EvalTable[TS] = &Simulator::Evaluate_TS;
|
|
EvalTable[NI] = &Simulator::Evaluate_NI;
|
|
EvalTable[CLI] = &Simulator::Evaluate_CLI;
|
|
EvalTable[OI] = &Simulator::Evaluate_OI;
|
|
EvalTable[XI] = &Simulator::Evaluate_XI;
|
|
EvalTable[LM] = &Simulator::Evaluate_LM;
|
|
EvalTable[MVCLE] = &Simulator::Evaluate_MVCLE;
|
|
EvalTable[CLCLE] = &Simulator::Evaluate_CLCLE;
|
|
EvalTable[MC] = &Simulator::Evaluate_MC;
|
|
EvalTable[CDS] = &Simulator::Evaluate_CDS;
|
|
EvalTable[STCM] = &Simulator::Evaluate_STCM;
|
|
EvalTable[ICM] = &Simulator::Evaluate_ICM;
|
|
EvalTable[BPRP] = &Simulator::Evaluate_BPRP;
|
|
EvalTable[BPP] = &Simulator::Evaluate_BPP;
|
|
EvalTable[TRTR] = &Simulator::Evaluate_TRTR;
|
|
EvalTable[MVN] = &Simulator::Evaluate_MVN;
|
|
EvalTable[MVC] = &Simulator::Evaluate_MVC;
|
|
EvalTable[MVZ] = &Simulator::Evaluate_MVZ;
|
|
EvalTable[NC] = &Simulator::Evaluate_NC;
|
|
EvalTable[CLC] = &Simulator::Evaluate_CLC;
|
|
EvalTable[OC] = &Simulator::Evaluate_OC;
|
|
EvalTable[XC] = &Simulator::Evaluate_XC;
|
|
EvalTable[MVCP] = &Simulator::Evaluate_MVCP;
|
|
EvalTable[TR] = &Simulator::Evaluate_TR;
|
|
EvalTable[TRT] = &Simulator::Evaluate_TRT;
|
|
EvalTable[ED] = &Simulator::Evaluate_ED;
|
|
EvalTable[EDMK] = &Simulator::Evaluate_EDMK;
|
|
EvalTable[PKU] = &Simulator::Evaluate_PKU;
|
|
EvalTable[UNPKU] = &Simulator::Evaluate_UNPKU;
|
|
EvalTable[MVCIN] = &Simulator::Evaluate_MVCIN;
|
|
EvalTable[PKA] = &Simulator::Evaluate_PKA;
|
|
EvalTable[UNPKA] = &Simulator::Evaluate_UNPKA;
|
|
EvalTable[PLO] = &Simulator::Evaluate_PLO;
|
|
EvalTable[LMD] = &Simulator::Evaluate_LMD;
|
|
EvalTable[SRP] = &Simulator::Evaluate_SRP;
|
|
EvalTable[MVO] = &Simulator::Evaluate_MVO;
|
|
EvalTable[PACK] = &Simulator::Evaluate_PACK;
|
|
EvalTable[UNPK] = &Simulator::Evaluate_UNPK;
|
|
EvalTable[ZAP] = &Simulator::Evaluate_ZAP;
|
|
EvalTable[AP] = &Simulator::Evaluate_AP;
|
|
EvalTable[SP] = &Simulator::Evaluate_SP;
|
|
EvalTable[MP] = &Simulator::Evaluate_MP;
|
|
EvalTable[DP] = &Simulator::Evaluate_DP;
|
|
EvalTable[UPT] = &Simulator::Evaluate_UPT;
|
|
EvalTable[PFPO] = &Simulator::Evaluate_PFPO;
|
|
EvalTable[IIHH] = &Simulator::Evaluate_IIHH;
|
|
EvalTable[IIHL] = &Simulator::Evaluate_IIHL;
|
|
EvalTable[IILH] = &Simulator::Evaluate_IILH;
|
|
EvalTable[IILL] = &Simulator::Evaluate_IILL;
|
|
EvalTable[NIHH] = &Simulator::Evaluate_NIHH;
|
|
EvalTable[NIHL] = &Simulator::Evaluate_NIHL;
|
|
EvalTable[NILH] = &Simulator::Evaluate_NILH;
|
|
EvalTable[NILL] = &Simulator::Evaluate_NILL;
|
|
EvalTable[OIHH] = &Simulator::Evaluate_OIHH;
|
|
EvalTable[OIHL] = &Simulator::Evaluate_OIHL;
|
|
EvalTable[OILH] = &Simulator::Evaluate_OILH;
|
|
EvalTable[OILL] = &Simulator::Evaluate_OILL;
|
|
EvalTable[LLIHH] = &Simulator::Evaluate_LLIHH;
|
|
EvalTable[LLIHL] = &Simulator::Evaluate_LLIHL;
|
|
EvalTable[LLILH] = &Simulator::Evaluate_LLILH;
|
|
EvalTable[LLILL] = &Simulator::Evaluate_LLILL;
|
|
EvalTable[TMLH] = &Simulator::Evaluate_TMLH;
|
|
EvalTable[TMLL] = &Simulator::Evaluate_TMLL;
|
|
EvalTable[TMHH] = &Simulator::Evaluate_TMHH;
|
|
EvalTable[TMHL] = &Simulator::Evaluate_TMHL;
|
|
EvalTable[BRC] = &Simulator::Evaluate_BRC;
|
|
EvalTable[BRAS] = &Simulator::Evaluate_BRAS;
|
|
EvalTable[BRCT] = &Simulator::Evaluate_BRCT;
|
|
EvalTable[BRCTG] = &Simulator::Evaluate_BRCTG;
|
|
EvalTable[LHI] = &Simulator::Evaluate_LHI;
|
|
EvalTable[LGHI] = &Simulator::Evaluate_LGHI;
|
|
EvalTable[AHI] = &Simulator::Evaluate_AHI;
|
|
EvalTable[AGHI] = &Simulator::Evaluate_AGHI;
|
|
EvalTable[MHI] = &Simulator::Evaluate_MHI;
|
|
EvalTable[MGHI] = &Simulator::Evaluate_MGHI;
|
|
EvalTable[CHI] = &Simulator::Evaluate_CHI;
|
|
EvalTable[CGHI] = &Simulator::Evaluate_CGHI;
|
|
EvalTable[LARL] = &Simulator::Evaluate_LARL;
|
|
EvalTable[LGFI] = &Simulator::Evaluate_LGFI;
|
|
EvalTable[BRCL] = &Simulator::Evaluate_BRCL;
|
|
EvalTable[BRASL] = &Simulator::Evaluate_BRASL;
|
|
EvalTable[XIHF] = &Simulator::Evaluate_XIHF;
|
|
EvalTable[XILF] = &Simulator::Evaluate_XILF;
|
|
EvalTable[IIHF] = &Simulator::Evaluate_IIHF;
|
|
EvalTable[IILF] = &Simulator::Evaluate_IILF;
|
|
EvalTable[NIHF] = &Simulator::Evaluate_NIHF;
|
|
EvalTable[NILF] = &Simulator::Evaluate_NILF;
|
|
EvalTable[OIHF] = &Simulator::Evaluate_OIHF;
|
|
EvalTable[OILF] = &Simulator::Evaluate_OILF;
|
|
EvalTable[LLIHF] = &Simulator::Evaluate_LLIHF;
|
|
EvalTable[LLILF] = &Simulator::Evaluate_LLILF;
|
|
EvalTable[MSGFI] = &Simulator::Evaluate_MSGFI;
|
|
EvalTable[MSFI] = &Simulator::Evaluate_MSFI;
|
|
EvalTable[SLGFI] = &Simulator::Evaluate_SLGFI;
|
|
EvalTable[SLFI] = &Simulator::Evaluate_SLFI;
|
|
EvalTable[AGFI] = &Simulator::Evaluate_AGFI;
|
|
EvalTable[AFI] = &Simulator::Evaluate_AFI;
|
|
EvalTable[ALGFI] = &Simulator::Evaluate_ALGFI;
|
|
EvalTable[ALFI] = &Simulator::Evaluate_ALFI;
|
|
EvalTable[CGFI] = &Simulator::Evaluate_CGFI;
|
|
EvalTable[CFI] = &Simulator::Evaluate_CFI;
|
|
EvalTable[CLGFI] = &Simulator::Evaluate_CLGFI;
|
|
EvalTable[CLFI] = &Simulator::Evaluate_CLFI;
|
|
EvalTable[LLHRL] = &Simulator::Evaluate_LLHRL;
|
|
EvalTable[LGHRL] = &Simulator::Evaluate_LGHRL;
|
|
EvalTable[LHRL] = &Simulator::Evaluate_LHRL;
|
|
EvalTable[LLGHRL] = &Simulator::Evaluate_LLGHRL;
|
|
EvalTable[STHRL] = &Simulator::Evaluate_STHRL;
|
|
EvalTable[LGRL] = &Simulator::Evaluate_LGRL;
|
|
EvalTable[STGRL] = &Simulator::Evaluate_STGRL;
|
|
EvalTable[LGFRL] = &Simulator::Evaluate_LGFRL;
|
|
EvalTable[LRL] = &Simulator::Evaluate_LRL;
|
|
EvalTable[LLGFRL] = &Simulator::Evaluate_LLGFRL;
|
|
EvalTable[STRL] = &Simulator::Evaluate_STRL;
|
|
EvalTable[EXRL] = &Simulator::Evaluate_EXRL;
|
|
EvalTable[PFDRL] = &Simulator::Evaluate_PFDRL;
|
|
EvalTable[CGHRL] = &Simulator::Evaluate_CGHRL;
|
|
EvalTable[CHRL] = &Simulator::Evaluate_CHRL;
|
|
EvalTable[CGRL] = &Simulator::Evaluate_CGRL;
|
|
EvalTable[CGFRL] = &Simulator::Evaluate_CGFRL;
|
|
EvalTable[ECTG] = &Simulator::Evaluate_ECTG;
|
|
EvalTable[CSST] = &Simulator::Evaluate_CSST;
|
|
EvalTable[LPD] = &Simulator::Evaluate_LPD;
|
|
EvalTable[LPDG] = &Simulator::Evaluate_LPDG;
|
|
EvalTable[BRCTH] = &Simulator::Evaluate_BRCTH;
|
|
EvalTable[AIH] = &Simulator::Evaluate_AIH;
|
|
EvalTable[ALSIH] = &Simulator::Evaluate_ALSIH;
|
|
EvalTable[ALSIHN] = &Simulator::Evaluate_ALSIHN;
|
|
EvalTable[CIH] = &Simulator::Evaluate_CIH;
|
|
EvalTable[STCK] = &Simulator::Evaluate_STCK;
|
|
EvalTable[CFC] = &Simulator::Evaluate_CFC;
|
|
EvalTable[IPM] = &Simulator::Evaluate_IPM;
|
|
EvalTable[HSCH] = &Simulator::Evaluate_HSCH;
|
|
EvalTable[MSCH] = &Simulator::Evaluate_MSCH;
|
|
EvalTable[SSCH] = &Simulator::Evaluate_SSCH;
|
|
EvalTable[STSCH] = &Simulator::Evaluate_STSCH;
|
|
EvalTable[TSCH] = &Simulator::Evaluate_TSCH;
|
|
EvalTable[TPI] = &Simulator::Evaluate_TPI;
|
|
EvalTable[SAL] = &Simulator::Evaluate_SAL;
|
|
EvalTable[RSCH] = &Simulator::Evaluate_RSCH;
|
|
EvalTable[STCRW] = &Simulator::Evaluate_STCRW;
|
|
EvalTable[STCPS] = &Simulator::Evaluate_STCPS;
|
|
EvalTable[RCHP] = &Simulator::Evaluate_RCHP;
|
|
EvalTable[SCHM] = &Simulator::Evaluate_SCHM;
|
|
EvalTable[CKSM] = &Simulator::Evaluate_CKSM;
|
|
EvalTable[SAR] = &Simulator::Evaluate_SAR;
|
|
EvalTable[EAR] = &Simulator::Evaluate_EAR;
|
|
EvalTable[MSR] = &Simulator::Evaluate_MSR;
|
|
EvalTable[MVST] = &Simulator::Evaluate_MVST;
|
|
EvalTable[CUSE] = &Simulator::Evaluate_CUSE;
|
|
EvalTable[SRST] = &Simulator::Evaluate_SRST;
|
|
EvalTable[XSCH] = &Simulator::Evaluate_XSCH;
|
|
EvalTable[STCKE] = &Simulator::Evaluate_STCKE;
|
|
EvalTable[STCKF] = &Simulator::Evaluate_STCKF;
|
|
EvalTable[SRNM] = &Simulator::Evaluate_SRNM;
|
|
EvalTable[STFPC] = &Simulator::Evaluate_STFPC;
|
|
EvalTable[LFPC] = &Simulator::Evaluate_LFPC;
|
|
EvalTable[TRE] = &Simulator::Evaluate_TRE;
|
|
EvalTable[CUUTF] = &Simulator::Evaluate_CUUTF;
|
|
EvalTable[CUTFU] = &Simulator::Evaluate_CUTFU;
|
|
EvalTable[STFLE] = &Simulator::Evaluate_STFLE;
|
|
EvalTable[SRNMB] = &Simulator::Evaluate_SRNMB;
|
|
EvalTable[SRNMT] = &Simulator::Evaluate_SRNMT;
|
|
EvalTable[LFAS] = &Simulator::Evaluate_LFAS;
|
|
EvalTable[PPA] = &Simulator::Evaluate_PPA;
|
|
EvalTable[ETND] = &Simulator::Evaluate_ETND;
|
|
EvalTable[TEND] = &Simulator::Evaluate_TEND;
|
|
EvalTable[NIAI] = &Simulator::Evaluate_NIAI;
|
|
EvalTable[TABORT] = &Simulator::Evaluate_TABORT;
|
|
EvalTable[TRAP4] = &Simulator::Evaluate_TRAP4;
|
|
EvalTable[LPEBR] = &Simulator::Evaluate_LPEBR;
|
|
EvalTable[LNEBR] = &Simulator::Evaluate_LNEBR;
|
|
EvalTable[LTEBR] = &Simulator::Evaluate_LTEBR;
|
|
EvalTable[LCEBR] = &Simulator::Evaluate_LCEBR;
|
|
EvalTable[LDEBR] = &Simulator::Evaluate_LDEBR;
|
|
EvalTable[LXDBR] = &Simulator::Evaluate_LXDBR;
|
|
EvalTable[LXEBR] = &Simulator::Evaluate_LXEBR;
|
|
EvalTable[MXDBR] = &Simulator::Evaluate_MXDBR;
|
|
EvalTable[KEBR] = &Simulator::Evaluate_KEBR;
|
|
EvalTable[CEBR] = &Simulator::Evaluate_CEBR;
|
|
EvalTable[AEBR] = &Simulator::Evaluate_AEBR;
|
|
EvalTable[SEBR] = &Simulator::Evaluate_SEBR;
|
|
EvalTable[MDEBR] = &Simulator::Evaluate_MDEBR;
|
|
EvalTable[DEBR] = &Simulator::Evaluate_DEBR;
|
|
EvalTable[MAEBR] = &Simulator::Evaluate_MAEBR;
|
|
EvalTable[MSEBR] = &Simulator::Evaluate_MSEBR;
|
|
EvalTable[LPDBR] = &Simulator::Evaluate_LPDBR;
|
|
EvalTable[LNDBR] = &Simulator::Evaluate_LNDBR;
|
|
EvalTable[LTDBR] = &Simulator::Evaluate_LTDBR;
|
|
EvalTable[LCDBR] = &Simulator::Evaluate_LCDBR;
|
|
EvalTable[SQEBR] = &Simulator::Evaluate_SQEBR;
|
|
EvalTable[SQDBR] = &Simulator::Evaluate_SQDBR;
|
|
EvalTable[SQXBR] = &Simulator::Evaluate_SQXBR;
|
|
EvalTable[MEEBR] = &Simulator::Evaluate_MEEBR;
|
|
EvalTable[KDBR] = &Simulator::Evaluate_KDBR;
|
|
EvalTable[CDBR] = &Simulator::Evaluate_CDBR;
|
|
EvalTable[ADBR] = &Simulator::Evaluate_ADBR;
|
|
EvalTable[SDBR] = &Simulator::Evaluate_SDBR;
|
|
EvalTable[MDBR] = &Simulator::Evaluate_MDBR;
|
|
EvalTable[DDBR] = &Simulator::Evaluate_DDBR;
|
|
EvalTable[MADBR] = &Simulator::Evaluate_MADBR;
|
|
EvalTable[MSDBR] = &Simulator::Evaluate_MSDBR;
|
|
EvalTable[LPXBR] = &Simulator::Evaluate_LPXBR;
|
|
EvalTable[LNXBR] = &Simulator::Evaluate_LNXBR;
|
|
EvalTable[LTXBR] = &Simulator::Evaluate_LTXBR;
|
|
EvalTable[LCXBR] = &Simulator::Evaluate_LCXBR;
|
|
EvalTable[LEDBRA] = &Simulator::Evaluate_LEDBRA;
|
|
EvalTable[LDXBRA] = &Simulator::Evaluate_LDXBRA;
|
|
EvalTable[LEXBRA] = &Simulator::Evaluate_LEXBRA;
|
|
EvalTable[FIXBRA] = &Simulator::Evaluate_FIXBRA;
|
|
EvalTable[KXBR] = &Simulator::Evaluate_KXBR;
|
|
EvalTable[CXBR] = &Simulator::Evaluate_CXBR;
|
|
EvalTable[AXBR] = &Simulator::Evaluate_AXBR;
|
|
EvalTable[SXBR] = &Simulator::Evaluate_SXBR;
|
|
EvalTable[MXBR] = &Simulator::Evaluate_MXBR;
|
|
EvalTable[DXBR] = &Simulator::Evaluate_DXBR;
|
|
EvalTable[TBEDR] = &Simulator::Evaluate_TBEDR;
|
|
EvalTable[TBDR] = &Simulator::Evaluate_TBDR;
|
|
EvalTable[DIEBR] = &Simulator::Evaluate_DIEBR;
|
|
EvalTable[FIEBRA] = &Simulator::Evaluate_FIEBRA;
|
|
EvalTable[THDER] = &Simulator::Evaluate_THDER;
|
|
EvalTable[THDR] = &Simulator::Evaluate_THDR;
|
|
EvalTable[DIDBR] = &Simulator::Evaluate_DIDBR;
|
|
EvalTable[FIDBRA] = &Simulator::Evaluate_FIDBRA;
|
|
EvalTable[LXR] = &Simulator::Evaluate_LXR;
|
|
EvalTable[LPDFR] = &Simulator::Evaluate_LPDFR;
|
|
EvalTable[LNDFR] = &Simulator::Evaluate_LNDFR;
|
|
EvalTable[LCDFR] = &Simulator::Evaluate_LCDFR;
|
|
EvalTable[LZER] = &Simulator::Evaluate_LZER;
|
|
EvalTable[LZDR] = &Simulator::Evaluate_LZDR;
|
|
EvalTable[LZXR] = &Simulator::Evaluate_LZXR;
|
|
EvalTable[SFPC] = &Simulator::Evaluate_SFPC;
|
|
EvalTable[SFASR] = &Simulator::Evaluate_SFASR;
|
|
EvalTable[EFPC] = &Simulator::Evaluate_EFPC;
|
|
EvalTable[CELFBR] = &Simulator::Evaluate_CELFBR;
|
|
EvalTable[CDLFBR] = &Simulator::Evaluate_CDLFBR;
|
|
EvalTable[CXLFBR] = &Simulator::Evaluate_CXLFBR;
|
|
EvalTable[CEFBRA] = &Simulator::Evaluate_CEFBRA;
|
|
EvalTable[CDFBRA] = &Simulator::Evaluate_CDFBRA;
|
|
EvalTable[CXFBRA] = &Simulator::Evaluate_CXFBRA;
|
|
EvalTable[CFEBRA] = &Simulator::Evaluate_CFEBRA;
|
|
EvalTable[CFDBRA] = &Simulator::Evaluate_CFDBRA;
|
|
EvalTable[CFXBRA] = &Simulator::Evaluate_CFXBRA;
|
|
EvalTable[CLFEBR] = &Simulator::Evaluate_CLFEBR;
|
|
EvalTable[CLFDBR] = &Simulator::Evaluate_CLFDBR;
|
|
EvalTable[CLFXBR] = &Simulator::Evaluate_CLFXBR;
|
|
EvalTable[CELGBR] = &Simulator::Evaluate_CELGBR;
|
|
EvalTable[CDLGBR] = &Simulator::Evaluate_CDLGBR;
|
|
EvalTable[CXLGBR] = &Simulator::Evaluate_CXLGBR;
|
|
EvalTable[CEGBRA] = &Simulator::Evaluate_CEGBRA;
|
|
EvalTable[CDGBRA] = &Simulator::Evaluate_CDGBRA;
|
|
EvalTable[CXGBRA] = &Simulator::Evaluate_CXGBRA;
|
|
EvalTable[CGEBRA] = &Simulator::Evaluate_CGEBRA;
|
|
EvalTable[CGDBRA] = &Simulator::Evaluate_CGDBRA;
|
|
EvalTable[CGXBRA] = &Simulator::Evaluate_CGXBRA;
|
|
EvalTable[CLGEBR] = &Simulator::Evaluate_CLGEBR;
|
|
EvalTable[CLGDBR] = &Simulator::Evaluate_CLGDBR;
|
|
EvalTable[CFER] = &Simulator::Evaluate_CFER;
|
|
EvalTable[CFDR] = &Simulator::Evaluate_CFDR;
|
|
EvalTable[CFXR] = &Simulator::Evaluate_CFXR;
|
|
EvalTable[LDGR] = &Simulator::Evaluate_LDGR;
|
|
EvalTable[CGER] = &Simulator::Evaluate_CGER;
|
|
EvalTable[CGDR] = &Simulator::Evaluate_CGDR;
|
|
EvalTable[CGXR] = &Simulator::Evaluate_CGXR;
|
|
EvalTable[LGDR] = &Simulator::Evaluate_LGDR;
|
|
EvalTable[MDTR] = &Simulator::Evaluate_MDTR;
|
|
EvalTable[MDTRA] = &Simulator::Evaluate_MDTRA;
|
|
EvalTable[DDTRA] = &Simulator::Evaluate_DDTRA;
|
|
EvalTable[ADTRA] = &Simulator::Evaluate_ADTRA;
|
|
EvalTable[SDTRA] = &Simulator::Evaluate_SDTRA;
|
|
EvalTable[LDETR] = &Simulator::Evaluate_LDETR;
|
|
EvalTable[LEDTR] = &Simulator::Evaluate_LEDTR;
|
|
EvalTable[LTDTR] = &Simulator::Evaluate_LTDTR;
|
|
EvalTable[FIDTR] = &Simulator::Evaluate_FIDTR;
|
|
EvalTable[MXTRA] = &Simulator::Evaluate_MXTRA;
|
|
EvalTable[DXTRA] = &Simulator::Evaluate_DXTRA;
|
|
EvalTable[AXTRA] = &Simulator::Evaluate_AXTRA;
|
|
EvalTable[SXTRA] = &Simulator::Evaluate_SXTRA;
|
|
EvalTable[LXDTR] = &Simulator::Evaluate_LXDTR;
|
|
EvalTable[LDXTR] = &Simulator::Evaluate_LDXTR;
|
|
EvalTable[LTXTR] = &Simulator::Evaluate_LTXTR;
|
|
EvalTable[FIXTR] = &Simulator::Evaluate_FIXTR;
|
|
EvalTable[KDTR] = &Simulator::Evaluate_KDTR;
|
|
EvalTable[CGDTRA] = &Simulator::Evaluate_CGDTRA;
|
|
EvalTable[CUDTR] = &Simulator::Evaluate_CUDTR;
|
|
EvalTable[CDTR] = &Simulator::Evaluate_CDTR;
|
|
EvalTable[EEDTR] = &Simulator::Evaluate_EEDTR;
|
|
EvalTable[ESDTR] = &Simulator::Evaluate_ESDTR;
|
|
EvalTable[KXTR] = &Simulator::Evaluate_KXTR;
|
|
EvalTable[CGXTRA] = &Simulator::Evaluate_CGXTRA;
|
|
EvalTable[CUXTR] = &Simulator::Evaluate_CUXTR;
|
|
EvalTable[CSXTR] = &Simulator::Evaluate_CSXTR;
|
|
EvalTable[CXTR] = &Simulator::Evaluate_CXTR;
|
|
EvalTable[EEXTR] = &Simulator::Evaluate_EEXTR;
|
|
EvalTable[ESXTR] = &Simulator::Evaluate_ESXTR;
|
|
EvalTable[CDGTRA] = &Simulator::Evaluate_CDGTRA;
|
|
EvalTable[CDUTR] = &Simulator::Evaluate_CDUTR;
|
|
EvalTable[CDSTR] = &Simulator::Evaluate_CDSTR;
|
|
EvalTable[CEDTR] = &Simulator::Evaluate_CEDTR;
|
|
EvalTable[QADTR] = &Simulator::Evaluate_QADTR;
|
|
EvalTable[IEDTR] = &Simulator::Evaluate_IEDTR;
|
|
EvalTable[RRDTR] = &Simulator::Evaluate_RRDTR;
|
|
EvalTable[CXGTRA] = &Simulator::Evaluate_CXGTRA;
|
|
EvalTable[CXUTR] = &Simulator::Evaluate_CXUTR;
|
|
EvalTable[CXSTR] = &Simulator::Evaluate_CXSTR;
|
|
EvalTable[CEXTR] = &Simulator::Evaluate_CEXTR;
|
|
EvalTable[QAXTR] = &Simulator::Evaluate_QAXTR;
|
|
EvalTable[IEXTR] = &Simulator::Evaluate_IEXTR;
|
|
EvalTable[RRXTR] = &Simulator::Evaluate_RRXTR;
|
|
EvalTable[LPGR] = &Simulator::Evaluate_LPGR;
|
|
EvalTable[LNGR] = &Simulator::Evaluate_LNGR;
|
|
EvalTable[LTGR] = &Simulator::Evaluate_LTGR;
|
|
EvalTable[LCGR] = &Simulator::Evaluate_LCGR;
|
|
EvalTable[LGR] = &Simulator::Evaluate_LGR;
|
|
EvalTable[LGBR] = &Simulator::Evaluate_LGBR;
|
|
EvalTable[LGHR] = &Simulator::Evaluate_LGHR;
|
|
EvalTable[AGR] = &Simulator::Evaluate_AGR;
|
|
EvalTable[SGR] = &Simulator::Evaluate_SGR;
|
|
EvalTable[ALGR] = &Simulator::Evaluate_ALGR;
|
|
EvalTable[SLGR] = &Simulator::Evaluate_SLGR;
|
|
EvalTable[MSGR] = &Simulator::Evaluate_MSGR;
|
|
EvalTable[DSGR] = &Simulator::Evaluate_DSGR;
|
|
EvalTable[LRVGR] = &Simulator::Evaluate_LRVGR;
|
|
EvalTable[LPGFR] = &Simulator::Evaluate_LPGFR;
|
|
EvalTable[LNGFR] = &Simulator::Evaluate_LNGFR;
|
|
EvalTable[LTGFR] = &Simulator::Evaluate_LTGFR;
|
|
EvalTable[LCGFR] = &Simulator::Evaluate_LCGFR;
|
|
EvalTable[LGFR] = &Simulator::Evaluate_LGFR;
|
|
EvalTable[LLGFR] = &Simulator::Evaluate_LLGFR;
|
|
EvalTable[LLGTR] = &Simulator::Evaluate_LLGTR;
|
|
EvalTable[AGFR] = &Simulator::Evaluate_AGFR;
|
|
EvalTable[SGFR] = &Simulator::Evaluate_SGFR;
|
|
EvalTable[ALGFR] = &Simulator::Evaluate_ALGFR;
|
|
EvalTable[SLGFR] = &Simulator::Evaluate_SLGFR;
|
|
EvalTable[MSGFR] = &Simulator::Evaluate_MSGFR;
|
|
EvalTable[DSGFR] = &Simulator::Evaluate_DSGFR;
|
|
EvalTable[KMAC] = &Simulator::Evaluate_KMAC;
|
|
EvalTable[LRVR] = &Simulator::Evaluate_LRVR;
|
|
EvalTable[CGR] = &Simulator::Evaluate_CGR;
|
|
EvalTable[CLGR] = &Simulator::Evaluate_CLGR;
|
|
EvalTable[LBR] = &Simulator::Evaluate_LBR;
|
|
EvalTable[LHR] = &Simulator::Evaluate_LHR;
|
|
EvalTable[KMF] = &Simulator::Evaluate_KMF;
|
|
EvalTable[KMO] = &Simulator::Evaluate_KMO;
|
|
EvalTable[PCC] = &Simulator::Evaluate_PCC;
|
|
EvalTable[KMCTR] = &Simulator::Evaluate_KMCTR;
|
|
EvalTable[KM] = &Simulator::Evaluate_KM;
|
|
EvalTable[KMC] = &Simulator::Evaluate_KMC;
|
|
EvalTable[CGFR] = &Simulator::Evaluate_CGFR;
|
|
EvalTable[KIMD] = &Simulator::Evaluate_KIMD;
|
|
EvalTable[KLMD] = &Simulator::Evaluate_KLMD;
|
|
EvalTable[CFDTR] = &Simulator::Evaluate_CFDTR;
|
|
EvalTable[CLGDTR] = &Simulator::Evaluate_CLGDTR;
|
|
EvalTable[CLFDTR] = &Simulator::Evaluate_CLFDTR;
|
|
EvalTable[BCTGR] = &Simulator::Evaluate_BCTGR;
|
|
EvalTable[CFXTR] = &Simulator::Evaluate_CFXTR;
|
|
EvalTable[CLFXTR] = &Simulator::Evaluate_CLFXTR;
|
|
EvalTable[CDFTR] = &Simulator::Evaluate_CDFTR;
|
|
EvalTable[CDLGTR] = &Simulator::Evaluate_CDLGTR;
|
|
EvalTable[CDLFTR] = &Simulator::Evaluate_CDLFTR;
|
|
EvalTable[CXFTR] = &Simulator::Evaluate_CXFTR;
|
|
EvalTable[CXLGTR] = &Simulator::Evaluate_CXLGTR;
|
|
EvalTable[CXLFTR] = &Simulator::Evaluate_CXLFTR;
|
|
EvalTable[CGRT] = &Simulator::Evaluate_CGRT;
|
|
EvalTable[NGR] = &Simulator::Evaluate_NGR;
|
|
EvalTable[OGR] = &Simulator::Evaluate_OGR;
|
|
EvalTable[XGR] = &Simulator::Evaluate_XGR;
|
|
EvalTable[FLOGR] = &Simulator::Evaluate_FLOGR;
|
|
EvalTable[LLGCR] = &Simulator::Evaluate_LLGCR;
|
|
EvalTable[LLGHR] = &Simulator::Evaluate_LLGHR;
|
|
EvalTable[MLGR] = &Simulator::Evaluate_MLGR;
|
|
EvalTable[DLGR] = &Simulator::Evaluate_DLGR;
|
|
EvalTable[ALCGR] = &Simulator::Evaluate_ALCGR;
|
|
EvalTable[SLBGR] = &Simulator::Evaluate_SLBGR;
|
|
EvalTable[EPSW] = &Simulator::Evaluate_EPSW;
|
|
EvalTable[TRTT] = &Simulator::Evaluate_TRTT;
|
|
EvalTable[TRTO] = &Simulator::Evaluate_TRTO;
|
|
EvalTable[TROT] = &Simulator::Evaluate_TROT;
|
|
EvalTable[TROO] = &Simulator::Evaluate_TROO;
|
|
EvalTable[LLCR] = &Simulator::Evaluate_LLCR;
|
|
EvalTable[LLHR] = &Simulator::Evaluate_LLHR;
|
|
EvalTable[MLR] = &Simulator::Evaluate_MLR;
|
|
EvalTable[DLR] = &Simulator::Evaluate_DLR;
|
|
EvalTable[ALCR] = &Simulator::Evaluate_ALCR;
|
|
EvalTable[SLBR] = &Simulator::Evaluate_SLBR;
|
|
EvalTable[CU14] = &Simulator::Evaluate_CU14;
|
|
EvalTable[CU24] = &Simulator::Evaluate_CU24;
|
|
EvalTable[CU41] = &Simulator::Evaluate_CU41;
|
|
EvalTable[CU42] = &Simulator::Evaluate_CU42;
|
|
EvalTable[TRTRE] = &Simulator::Evaluate_TRTRE;
|
|
EvalTable[SRSTU] = &Simulator::Evaluate_SRSTU;
|
|
EvalTable[TRTE] = &Simulator::Evaluate_TRTE;
|
|
EvalTable[AHHHR] = &Simulator::Evaluate_AHHHR;
|
|
EvalTable[SHHHR] = &Simulator::Evaluate_SHHHR;
|
|
EvalTable[ALHHHR] = &Simulator::Evaluate_ALHHHR;
|
|
EvalTable[SLHHHR] = &Simulator::Evaluate_SLHHHR;
|
|
EvalTable[CHHR] = &Simulator::Evaluate_CHHR;
|
|
EvalTable[AHHLR] = &Simulator::Evaluate_AHHLR;
|
|
EvalTable[SHHLR] = &Simulator::Evaluate_SHHLR;
|
|
EvalTable[ALHHLR] = &Simulator::Evaluate_ALHHLR;
|
|
EvalTable[SLHHLR] = &Simulator::Evaluate_SLHHLR;
|
|
EvalTable[CHLR] = &Simulator::Evaluate_CHLR;
|
|
EvalTable[POPCNT_Z] = &Simulator::Evaluate_POPCNT_Z;
|
|
EvalTable[LOCGR] = &Simulator::Evaluate_LOCGR;
|
|
EvalTable[NGRK] = &Simulator::Evaluate_NGRK;
|
|
EvalTable[OGRK] = &Simulator::Evaluate_OGRK;
|
|
EvalTable[XGRK] = &Simulator::Evaluate_XGRK;
|
|
EvalTable[AGRK] = &Simulator::Evaluate_AGRK;
|
|
EvalTable[SGRK] = &Simulator::Evaluate_SGRK;
|
|
EvalTable[ALGRK] = &Simulator::Evaluate_ALGRK;
|
|
EvalTable[SLGRK] = &Simulator::Evaluate_SLGRK;
|
|
EvalTable[LOCR] = &Simulator::Evaluate_LOCR;
|
|
EvalTable[NRK] = &Simulator::Evaluate_NRK;
|
|
EvalTable[ORK] = &Simulator::Evaluate_ORK;
|
|
EvalTable[XRK] = &Simulator::Evaluate_XRK;
|
|
EvalTable[ARK] = &Simulator::Evaluate_ARK;
|
|
EvalTable[SRK] = &Simulator::Evaluate_SRK;
|
|
EvalTable[ALRK] = &Simulator::Evaluate_ALRK;
|
|
EvalTable[SLRK] = &Simulator::Evaluate_SLRK;
|
|
EvalTable[LTG] = &Simulator::Evaluate_LTG;
|
|
EvalTable[LG] = &Simulator::Evaluate_LG;
|
|
EvalTable[CVBY] = &Simulator::Evaluate_CVBY;
|
|
EvalTable[AG] = &Simulator::Evaluate_AG;
|
|
EvalTable[SG] = &Simulator::Evaluate_SG;
|
|
EvalTable[ALG] = &Simulator::Evaluate_ALG;
|
|
EvalTable[SLG] = &Simulator::Evaluate_SLG;
|
|
EvalTable[MSG] = &Simulator::Evaluate_MSG;
|
|
EvalTable[DSG] = &Simulator::Evaluate_DSG;
|
|
EvalTable[CVBG] = &Simulator::Evaluate_CVBG;
|
|
EvalTable[LRVG] = &Simulator::Evaluate_LRVG;
|
|
EvalTable[LT] = &Simulator::Evaluate_LT;
|
|
EvalTable[LGF] = &Simulator::Evaluate_LGF;
|
|
EvalTable[LGH] = &Simulator::Evaluate_LGH;
|
|
EvalTable[LLGF] = &Simulator::Evaluate_LLGF;
|
|
EvalTable[LLGT] = &Simulator::Evaluate_LLGT;
|
|
EvalTable[AGF] = &Simulator::Evaluate_AGF;
|
|
EvalTable[SGF] = &Simulator::Evaluate_SGF;
|
|
EvalTable[ALGF] = &Simulator::Evaluate_ALGF;
|
|
EvalTable[SLGF] = &Simulator::Evaluate_SLGF;
|
|
EvalTable[MSGF] = &Simulator::Evaluate_MSGF;
|
|
EvalTable[DSGF] = &Simulator::Evaluate_DSGF;
|
|
EvalTable[LRV] = &Simulator::Evaluate_LRV;
|
|
EvalTable[LRVH] = &Simulator::Evaluate_LRVH;
|
|
EvalTable[CG] = &Simulator::Evaluate_CG;
|
|
EvalTable[CLG] = &Simulator::Evaluate_CLG;
|
|
EvalTable[STG] = &Simulator::Evaluate_STG;
|
|
EvalTable[NTSTG] = &Simulator::Evaluate_NTSTG;
|
|
EvalTable[CVDY] = &Simulator::Evaluate_CVDY;
|
|
EvalTable[CVDG] = &Simulator::Evaluate_CVDG;
|
|
EvalTable[STRVG] = &Simulator::Evaluate_STRVG;
|
|
EvalTable[CGF] = &Simulator::Evaluate_CGF;
|
|
EvalTable[CLGF] = &Simulator::Evaluate_CLGF;
|
|
EvalTable[LTGF] = &Simulator::Evaluate_LTGF;
|
|
EvalTable[CGH] = &Simulator::Evaluate_CGH;
|
|
EvalTable[PFD] = &Simulator::Evaluate_PFD;
|
|
EvalTable[STRV] = &Simulator::Evaluate_STRV;
|
|
EvalTable[STRVH] = &Simulator::Evaluate_STRVH;
|
|
EvalTable[BCTG] = &Simulator::Evaluate_BCTG;
|
|
EvalTable[STY] = &Simulator::Evaluate_STY;
|
|
EvalTable[MSY] = &Simulator::Evaluate_MSY;
|
|
EvalTable[NY] = &Simulator::Evaluate_NY;
|
|
EvalTable[CLY] = &Simulator::Evaluate_CLY;
|
|
EvalTable[OY] = &Simulator::Evaluate_OY;
|
|
EvalTable[XY] = &Simulator::Evaluate_XY;
|
|
EvalTable[LY] = &Simulator::Evaluate_LY;
|
|
EvalTable[CY] = &Simulator::Evaluate_CY;
|
|
EvalTable[AY] = &Simulator::Evaluate_AY;
|
|
EvalTable[SY] = &Simulator::Evaluate_SY;
|
|
EvalTable[MFY] = &Simulator::Evaluate_MFY;
|
|
EvalTable[ALY] = &Simulator::Evaluate_ALY;
|
|
EvalTable[SLY] = &Simulator::Evaluate_SLY;
|
|
EvalTable[STHY] = &Simulator::Evaluate_STHY;
|
|
EvalTable[LAY] = &Simulator::Evaluate_LAY;
|
|
EvalTable[STCY] = &Simulator::Evaluate_STCY;
|
|
EvalTable[ICY] = &Simulator::Evaluate_ICY;
|
|
EvalTable[LAEY] = &Simulator::Evaluate_LAEY;
|
|
EvalTable[LB] = &Simulator::Evaluate_LB;
|
|
EvalTable[LGB] = &Simulator::Evaluate_LGB;
|
|
EvalTable[LHY] = &Simulator::Evaluate_LHY;
|
|
EvalTable[CHY] = &Simulator::Evaluate_CHY;
|
|
EvalTable[AHY] = &Simulator::Evaluate_AHY;
|
|
EvalTable[SHY] = &Simulator::Evaluate_SHY;
|
|
EvalTable[MHY] = &Simulator::Evaluate_MHY;
|
|
EvalTable[NG] = &Simulator::Evaluate_NG;
|
|
EvalTable[OG] = &Simulator::Evaluate_OG;
|
|
EvalTable[XG] = &Simulator::Evaluate_XG;
|
|
EvalTable[LGAT] = &Simulator::Evaluate_LGAT;
|
|
EvalTable[MLG] = &Simulator::Evaluate_MLG;
|
|
EvalTable[DLG] = &Simulator::Evaluate_DLG;
|
|
EvalTable[ALCG] = &Simulator::Evaluate_ALCG;
|
|
EvalTable[SLBG] = &Simulator::Evaluate_SLBG;
|
|
EvalTable[STPQ] = &Simulator::Evaluate_STPQ;
|
|
EvalTable[LPQ] = &Simulator::Evaluate_LPQ;
|
|
EvalTable[LLGC] = &Simulator::Evaluate_LLGC;
|
|
EvalTable[LLGH] = &Simulator::Evaluate_LLGH;
|
|
EvalTable[LLC] = &Simulator::Evaluate_LLC;
|
|
EvalTable[LLH] = &Simulator::Evaluate_LLH;
|
|
EvalTable[ML] = &Simulator::Evaluate_ML;
|
|
EvalTable[DL] = &Simulator::Evaluate_DL;
|
|
EvalTable[ALC] = &Simulator::Evaluate_ALC;
|
|
EvalTable[SLB] = &Simulator::Evaluate_SLB;
|
|
EvalTable[LLGTAT] = &Simulator::Evaluate_LLGTAT;
|
|
EvalTable[LLGFAT] = &Simulator::Evaluate_LLGFAT;
|
|
EvalTable[LAT] = &Simulator::Evaluate_LAT;
|
|
EvalTable[LBH] = &Simulator::Evaluate_LBH;
|
|
EvalTable[LLCH] = &Simulator::Evaluate_LLCH;
|
|
EvalTable[STCH] = &Simulator::Evaluate_STCH;
|
|
EvalTable[LHH] = &Simulator::Evaluate_LHH;
|
|
EvalTable[LLHH] = &Simulator::Evaluate_LLHH;
|
|
EvalTable[STHH] = &Simulator::Evaluate_STHH;
|
|
EvalTable[LFHAT] = &Simulator::Evaluate_LFHAT;
|
|
EvalTable[LFH] = &Simulator::Evaluate_LFH;
|
|
EvalTable[STFH] = &Simulator::Evaluate_STFH;
|
|
EvalTable[CHF] = &Simulator::Evaluate_CHF;
|
|
EvalTable[MVCDK] = &Simulator::Evaluate_MVCDK;
|
|
EvalTable[MVHHI] = &Simulator::Evaluate_MVHHI;
|
|
EvalTable[MVGHI] = &Simulator::Evaluate_MVGHI;
|
|
EvalTable[MVHI] = &Simulator::Evaluate_MVHI;
|
|
EvalTable[CHHSI] = &Simulator::Evaluate_CHHSI;
|
|
EvalTable[CGHSI] = &Simulator::Evaluate_CGHSI;
|
|
EvalTable[CHSI] = &Simulator::Evaluate_CHSI;
|
|
EvalTable[CLFHSI] = &Simulator::Evaluate_CLFHSI;
|
|
EvalTable[TBEGIN] = &Simulator::Evaluate_TBEGIN;
|
|
EvalTable[TBEGINC] = &Simulator::Evaluate_TBEGINC;
|
|
EvalTable[LMG] = &Simulator::Evaluate_LMG;
|
|
EvalTable[SRAG] = &Simulator::Evaluate_SRAG;
|
|
EvalTable[SLAG] = &Simulator::Evaluate_SLAG;
|
|
EvalTable[SRLG] = &Simulator::Evaluate_SRLG;
|
|
EvalTable[SLLG] = &Simulator::Evaluate_SLLG;
|
|
EvalTable[CSY] = &Simulator::Evaluate_CSY;
|
|
EvalTable[RLLG] = &Simulator::Evaluate_RLLG;
|
|
EvalTable[RLL] = &Simulator::Evaluate_RLL;
|
|
EvalTable[STMG] = &Simulator::Evaluate_STMG;
|
|
EvalTable[STMH] = &Simulator::Evaluate_STMH;
|
|
EvalTable[STCMH] = &Simulator::Evaluate_STCMH;
|
|
EvalTable[STCMY] = &Simulator::Evaluate_STCMY;
|
|
EvalTable[CDSY] = &Simulator::Evaluate_CDSY;
|
|
EvalTable[CDSG] = &Simulator::Evaluate_CDSG;
|
|
EvalTable[BXHG] = &Simulator::Evaluate_BXHG;
|
|
EvalTable[BXLEG] = &Simulator::Evaluate_BXLEG;
|
|
EvalTable[ECAG] = &Simulator::Evaluate_ECAG;
|
|
EvalTable[TMY] = &Simulator::Evaluate_TMY;
|
|
EvalTable[MVIY] = &Simulator::Evaluate_MVIY;
|
|
EvalTable[NIY] = &Simulator::Evaluate_NIY;
|
|
EvalTable[CLIY] = &Simulator::Evaluate_CLIY;
|
|
EvalTable[OIY] = &Simulator::Evaluate_OIY;
|
|
EvalTable[XIY] = &Simulator::Evaluate_XIY;
|
|
EvalTable[ASI] = &Simulator::Evaluate_ASI;
|
|
EvalTable[ALSI] = &Simulator::Evaluate_ALSI;
|
|
EvalTable[AGSI] = &Simulator::Evaluate_AGSI;
|
|
EvalTable[ALGSI] = &Simulator::Evaluate_ALGSI;
|
|
EvalTable[ICMH] = &Simulator::Evaluate_ICMH;
|
|
EvalTable[ICMY] = &Simulator::Evaluate_ICMY;
|
|
EvalTable[MVCLU] = &Simulator::Evaluate_MVCLU;
|
|
EvalTable[CLCLU] = &Simulator::Evaluate_CLCLU;
|
|
EvalTable[STMY] = &Simulator::Evaluate_STMY;
|
|
EvalTable[LMH] = &Simulator::Evaluate_LMH;
|
|
EvalTable[LMY] = &Simulator::Evaluate_LMY;
|
|
EvalTable[TP] = &Simulator::Evaluate_TP;
|
|
EvalTable[SRAK] = &Simulator::Evaluate_SRAK;
|
|
EvalTable[SLAK] = &Simulator::Evaluate_SLAK;
|
|
EvalTable[SRLK] = &Simulator::Evaluate_SRLK;
|
|
EvalTable[SLLK] = &Simulator::Evaluate_SLLK;
|
|
EvalTable[LOCG] = &Simulator::Evaluate_LOCG;
|
|
EvalTable[STOCG] = &Simulator::Evaluate_STOCG;
|
|
EvalTable[LANG] = &Simulator::Evaluate_LANG;
|
|
EvalTable[LAOG] = &Simulator::Evaluate_LAOG;
|
|
EvalTable[LAXG] = &Simulator::Evaluate_LAXG;
|
|
EvalTable[LAAG] = &Simulator::Evaluate_LAAG;
|
|
EvalTable[LAALG] = &Simulator::Evaluate_LAALG;
|
|
EvalTable[LOC] = &Simulator::Evaluate_LOC;
|
|
EvalTable[STOC] = &Simulator::Evaluate_STOC;
|
|
EvalTable[LAN] = &Simulator::Evaluate_LAN;
|
|
EvalTable[LAO] = &Simulator::Evaluate_LAO;
|
|
EvalTable[LAX] = &Simulator::Evaluate_LAX;
|
|
EvalTable[LAA] = &Simulator::Evaluate_LAA;
|
|
EvalTable[LAAL] = &Simulator::Evaluate_LAAL;
|
|
EvalTable[BRXHG] = &Simulator::Evaluate_BRXHG;
|
|
EvalTable[BRXLG] = &Simulator::Evaluate_BRXLG;
|
|
EvalTable[RISBLG] = &Simulator::Evaluate_RISBLG;
|
|
EvalTable[RNSBG] = &Simulator::Evaluate_RNSBG;
|
|
EvalTable[RISBG] = &Simulator::Evaluate_RISBG;
|
|
EvalTable[ROSBG] = &Simulator::Evaluate_ROSBG;
|
|
EvalTable[RXSBG] = &Simulator::Evaluate_RXSBG;
|
|
EvalTable[RISBGN] = &Simulator::Evaluate_RISBGN;
|
|
EvalTable[RISBHG] = &Simulator::Evaluate_RISBHG;
|
|
EvalTable[CGRJ] = &Simulator::Evaluate_CGRJ;
|
|
EvalTable[CGIT] = &Simulator::Evaluate_CGIT;
|
|
EvalTable[CIT] = &Simulator::Evaluate_CIT;
|
|
EvalTable[CLFIT] = &Simulator::Evaluate_CLFIT;
|
|
EvalTable[CGIJ] = &Simulator::Evaluate_CGIJ;
|
|
EvalTable[CIJ] = &Simulator::Evaluate_CIJ;
|
|
EvalTable[AHIK] = &Simulator::Evaluate_AHIK;
|
|
EvalTable[AGHIK] = &Simulator::Evaluate_AGHIK;
|
|
EvalTable[ALHSIK] = &Simulator::Evaluate_ALHSIK;
|
|
EvalTable[ALGHSIK] = &Simulator::Evaluate_ALGHSIK;
|
|
EvalTable[CGRB] = &Simulator::Evaluate_CGRB;
|
|
EvalTable[CGIB] = &Simulator::Evaluate_CGIB;
|
|
EvalTable[CIB] = &Simulator::Evaluate_CIB;
|
|
EvalTable[LDEB] = &Simulator::Evaluate_LDEB;
|
|
EvalTable[LXDB] = &Simulator::Evaluate_LXDB;
|
|
EvalTable[LXEB] = &Simulator::Evaluate_LXEB;
|
|
EvalTable[MXDB] = &Simulator::Evaluate_MXDB;
|
|
EvalTable[KEB] = &Simulator::Evaluate_KEB;
|
|
EvalTable[CEB] = &Simulator::Evaluate_CEB;
|
|
EvalTable[AEB] = &Simulator::Evaluate_AEB;
|
|
EvalTable[SEB] = &Simulator::Evaluate_SEB;
|
|
EvalTable[MDEB] = &Simulator::Evaluate_MDEB;
|
|
EvalTable[DEB] = &Simulator::Evaluate_DEB;
|
|
EvalTable[MAEB] = &Simulator::Evaluate_MAEB;
|
|
EvalTable[MSEB] = &Simulator::Evaluate_MSEB;
|
|
EvalTable[TCEB] = &Simulator::Evaluate_TCEB;
|
|
EvalTable[TCDB] = &Simulator::Evaluate_TCDB;
|
|
EvalTable[TCXB] = &Simulator::Evaluate_TCXB;
|
|
EvalTable[SQEB] = &Simulator::Evaluate_SQEB;
|
|
EvalTable[SQDB] = &Simulator::Evaluate_SQDB;
|
|
EvalTable[MEEB] = &Simulator::Evaluate_MEEB;
|
|
EvalTable[KDB] = &Simulator::Evaluate_KDB;
|
|
EvalTable[CDB] = &Simulator::Evaluate_CDB;
|
|
EvalTable[ADB] = &Simulator::Evaluate_ADB;
|
|
EvalTable[SDB] = &Simulator::Evaluate_SDB;
|
|
EvalTable[MDB] = &Simulator::Evaluate_MDB;
|
|
EvalTable[DDB] = &Simulator::Evaluate_DDB;
|
|
EvalTable[MADB] = &Simulator::Evaluate_MADB;
|
|
EvalTable[MSDB] = &Simulator::Evaluate_MSDB;
|
|
EvalTable[SLDT] = &Simulator::Evaluate_SLDT;
|
|
EvalTable[SRDT] = &Simulator::Evaluate_SRDT;
|
|
EvalTable[SLXT] = &Simulator::Evaluate_SLXT;
|
|
EvalTable[SRXT] = &Simulator::Evaluate_SRXT;
|
|
EvalTable[TDCET] = &Simulator::Evaluate_TDCET;
|
|
EvalTable[TDGET] = &Simulator::Evaluate_TDGET;
|
|
EvalTable[TDCDT] = &Simulator::Evaluate_TDCDT;
|
|
EvalTable[TDGDT] = &Simulator::Evaluate_TDGDT;
|
|
EvalTable[TDCXT] = &Simulator::Evaluate_TDCXT;
|
|
EvalTable[TDGXT] = &Simulator::Evaluate_TDGXT;
|
|
EvalTable[LEY] = &Simulator::Evaluate_LEY;
|
|
EvalTable[LDY] = &Simulator::Evaluate_LDY;
|
|
EvalTable[STEY] = &Simulator::Evaluate_STEY;
|
|
EvalTable[STDY] = &Simulator::Evaluate_STDY;
|
|
EvalTable[CZDT] = &Simulator::Evaluate_CZDT;
|
|
EvalTable[CZXT] = &Simulator::Evaluate_CZXT;
|
|
EvalTable[CDZT] = &Simulator::Evaluate_CDZT;
|
|
EvalTable[CXZT] = &Simulator::Evaluate_CXZT;
|
|
} // NOLINT
|
|
|
|
Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
|
|
i_cache_ = isolate_->simulator_i_cache();
|
|
if (i_cache_ == NULL) {
|
|
i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch);
|
|
isolate_->set_simulator_i_cache(i_cache_);
|
|
}
|
|
Initialize(isolate);
|
|
// Set up simulator support first. Some of this information is needed to
|
|
// setup the architecture state.
|
|
#if V8_TARGET_ARCH_S390X
|
|
size_t stack_size = FLAG_sim_stack_size * KB;
|
|
#else
|
|
size_t stack_size = MB; // allocate 1MB for stack
|
|
#endif
|
|
stack_size += 2 * stack_protection_size_;
|
|
stack_ = reinterpret_cast<char*>(malloc(stack_size));
|
|
pc_modified_ = false;
|
|
icount_ = 0;
|
|
break_pc_ = NULL;
|
|
break_instr_ = 0;
|
|
|
|
// make sure our register type can hold exactly 4/8 bytes
|
|
#ifdef V8_TARGET_ARCH_S390X
|
|
DCHECK(sizeof(intptr_t) == 8);
|
|
#else
|
|
DCHECK(sizeof(intptr_t) == 4);
|
|
#endif
|
|
// Set up architecture state.
|
|
// All registers are initialized to zero to start with.
|
|
for (int i = 0; i < kNumGPRs; i++) {
|
|
registers_[i] = 0;
|
|
}
|
|
condition_reg_ = 0;
|
|
special_reg_pc_ = 0;
|
|
|
|
// Initializing FP registers.
|
|
for (int i = 0; i < kNumFPRs; i++) {
|
|
fp_registers_[i] = 0.0;
|
|
}
|
|
|
|
// The sp is initialized to point to the bottom (high address) of the
|
|
// allocated stack area. To be safe in potential stack underflows we leave
|
|
// some buffer below.
|
|
registers_[sp] =
|
|
reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
|
|
|
|
last_debugger_input_ = NULL;
|
|
}
|
|
|
|
Simulator::~Simulator() { free(stack_); }
|
|
|
|
// When the generated code calls an external reference we need to catch that in
|
|
// the simulator. The external reference will be a function compiled for the
|
|
// host architecture. We need to call that function instead of trying to
|
|
// execute it with the simulator. We do that by redirecting the external
|
|
// reference to a svc (Supervisor Call) instruction that is handled by
|
|
// the simulator. We write the original destination of the jump just at a known
|
|
// offset from the svc instruction so the simulator knows what to call.
|
|
class Redirection {
|
|
public:
|
|
Redirection(Isolate* isolate, void* external_function,
|
|
ExternalReference::Type type)
|
|
: external_function_(external_function),
|
|
// we use TRAP4 here (0xBF22)
|
|
#if V8_TARGET_LITTLE_ENDIAN
|
|
swi_instruction_(0x1000FFB2),
|
|
#else
|
|
swi_instruction_(0xB2FF0000 | kCallRtRedirected),
|
|
#endif
|
|
type_(type),
|
|
next_(NULL) {
|
|
next_ = isolate->simulator_redirection();
|
|
Simulator::current(isolate)->FlushICache(
|
|
isolate->simulator_i_cache(),
|
|
reinterpret_cast<void*>(&swi_instruction_), sizeof(FourByteInstr));
|
|
isolate->set_simulator_redirection(this);
|
|
if (ABI_USES_FUNCTION_DESCRIPTORS) {
|
|
function_descriptor_[0] = reinterpret_cast<intptr_t>(&swi_instruction_);
|
|
function_descriptor_[1] = 0;
|
|
function_descriptor_[2] = 0;
|
|
}
|
|
}
|
|
|
|
void* address() {
|
|
if (ABI_USES_FUNCTION_DESCRIPTORS) {
|
|
return reinterpret_cast<void*>(function_descriptor_);
|
|
} else {
|
|
return reinterpret_cast<void*>(&swi_instruction_);
|
|
}
|
|
}
|
|
|
|
void* external_function() { return external_function_; }
|
|
ExternalReference::Type type() { return type_; }
|
|
|
|
static Redirection* Get(Isolate* isolate, void* external_function,
|
|
ExternalReference::Type type) {
|
|
Redirection* current = isolate->simulator_redirection();
|
|
for (; current != NULL; current = current->next_) {
|
|
if (current->external_function_ == external_function) {
|
|
DCHECK_EQ(current->type(), type);
|
|
return current;
|
|
}
|
|
}
|
|
return new Redirection(isolate, external_function, type);
|
|
}
|
|
|
|
static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
|
|
char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
|
|
char* addr_of_redirection =
|
|
addr_of_swi - offsetof(Redirection, swi_instruction_);
|
|
return reinterpret_cast<Redirection*>(addr_of_redirection);
|
|
}
|
|
|
|
static Redirection* FromAddress(void* address) {
|
|
int delta = ABI_USES_FUNCTION_DESCRIPTORS
|
|
? offsetof(Redirection, function_descriptor_)
|
|
: offsetof(Redirection, swi_instruction_);
|
|
char* addr_of_redirection = reinterpret_cast<char*>(address) - delta;
|
|
return reinterpret_cast<Redirection*>(addr_of_redirection);
|
|
}
|
|
|
|
static void* ReverseRedirection(intptr_t reg) {
|
|
Redirection* redirection = FromAddress(reinterpret_cast<void*>(reg));
|
|
return redirection->external_function();
|
|
}
|
|
|
|
static void DeleteChain(Redirection* redirection) {
|
|
while (redirection != nullptr) {
|
|
Redirection* next = redirection->next_;
|
|
delete redirection;
|
|
redirection = next;
|
|
}
|
|
}
|
|
|
|
private:
|
|
void* external_function_;
|
|
uint32_t swi_instruction_;
|
|
ExternalReference::Type type_;
|
|
Redirection* next_;
|
|
intptr_t function_descriptor_[3];
|
|
};
|
|
|
|
// static
|
|
void Simulator::TearDown(base::CustomMatcherHashMap* i_cache,
|
|
Redirection* first) {
|
|
Redirection::DeleteChain(first);
|
|
if (i_cache != nullptr) {
|
|
for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
|
|
entry = i_cache->Next(entry)) {
|
|
delete static_cast<CachePage*>(entry->value);
|
|
}
|
|
delete i_cache;
|
|
}
|
|
}
|
|
|
|
void* Simulator::RedirectExternalReference(Isolate* isolate,
|
|
void* external_function,
|
|
ExternalReference::Type type) {
|
|
Redirection* redirection = Redirection::Get(isolate, external_function, type);
|
|
return redirection->address();
|
|
}
|
|
|
|
// Get the active Simulator for the current thread.
|
|
Simulator* Simulator::current(Isolate* isolate) {
|
|
v8::internal::Isolate::PerIsolateThreadData* isolate_data =
|
|
isolate->FindOrAllocatePerThreadDataForThisThread();
|
|
DCHECK(isolate_data != NULL);
|
|
|
|
Simulator* sim = isolate_data->simulator();
|
|
if (sim == NULL) {
|
|
// TODO(146): delete the simulator object when a thread/isolate goes away.
|
|
sim = new Simulator(isolate);
|
|
isolate_data->set_simulator(sim);
|
|
}
|
|
return sim;
|
|
}
|
|
|
|
// Sets the register in the architecture state.
|
|
void Simulator::set_register(int reg, uint64_t value) {
|
|
DCHECK((reg >= 0) && (reg < kNumGPRs));
|
|
registers_[reg] = value;
|
|
}
|
|
|
|
// Get the register from the architecture state.
|
|
uint64_t Simulator::get_register(int reg) const {
|
|
DCHECK((reg >= 0) && (reg < kNumGPRs));
|
|
// Stupid code added to avoid bug in GCC.
|
|
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
|
|
if (reg >= kNumGPRs) return 0;
|
|
// End stupid code.
|
|
return registers_[reg];
|
|
}
|
|
|
|
template <typename T>
|
|
T Simulator::get_low_register(int reg) const {
|
|
DCHECK((reg >= 0) && (reg < kNumGPRs));
|
|
// Stupid code added to avoid bug in GCC.
|
|
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
|
|
if (reg >= kNumGPRs) return 0;
|
|
// End stupid code.
|
|
return static_cast<T>(registers_[reg] & 0xFFFFFFFF);
|
|
}
|
|
|
|
template <typename T>
|
|
T Simulator::get_high_register(int reg) const {
|
|
DCHECK((reg >= 0) && (reg < kNumGPRs));
|
|
// Stupid code added to avoid bug in GCC.
|
|
// See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
|
|
if (reg >= kNumGPRs) return 0;
|
|
// End stupid code.
|
|
return static_cast<T>(registers_[reg] >> 32);
|
|
}
|
|
|
|
void Simulator::set_low_register(int reg, uint32_t value) {
|
|
uint64_t shifted_val = static_cast<uint64_t>(value);
|
|
uint64_t orig_val = static_cast<uint64_t>(registers_[reg]);
|
|
uint64_t result = (orig_val >> 32 << 32) | shifted_val;
|
|
registers_[reg] = result;
|
|
}
|
|
|
|
void Simulator::set_high_register(int reg, uint32_t value) {
|
|
uint64_t shifted_val = static_cast<uint64_t>(value) << 32;
|
|
uint64_t orig_val = static_cast<uint64_t>(registers_[reg]);
|
|
uint64_t result = (orig_val & 0xFFFFFFFF) | shifted_val;
|
|
registers_[reg] = result;
|
|
}
|
|
|
|
double Simulator::get_double_from_register_pair(int reg) {
|
|
DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
|
|
|
|
double dm_val = 0.0;
|
|
#if 0 && !V8_TARGET_ARCH_S390X // doesn't make sense in 64bit mode
|
|
// Read the bits from the unsigned integer register_[] array
|
|
// into the double precision floating point value and return it.
|
|
char buffer[sizeof(fp_registers_[0])];
|
|
memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0]));
|
|
memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
|
|
#endif
|
|
return (dm_val);
|
|
}
|
|
|
|
// Raw access to the PC register.
|
|
void Simulator::set_pc(intptr_t value) {
|
|
pc_modified_ = true;
|
|
special_reg_pc_ = value;
|
|
}
|
|
|
|
bool Simulator::has_bad_pc() const {
|
|
return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
|
|
}
|
|
|
|
// Raw access to the PC register without the special adjustment when reading.
|
|
intptr_t Simulator::get_pc() const { return special_reg_pc_; }
|
|
|
|
// Runtime FP routines take:
|
|
// - two double arguments
|
|
// - one double argument and zero or one integer arguments.
|
|
// All are consructed here from d1, d2 and r2.
|
|
void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
|
|
*x = get_double_from_d_register(0);
|
|
*y = get_double_from_d_register(2);
|
|
*z = get_register(2);
|
|
}
|
|
|
|
// The return value is in d0.
|
|
void Simulator::SetFpResult(const double& result) {
|
|
set_d_register_from_double(0, result);
|
|
}
|
|
|
|
void Simulator::TrashCallerSaveRegisters() {
|
|
// We don't trash the registers with the return value.
|
|
#if 0 // A good idea to trash volatile registers, needs to be done
|
|
registers_[2] = 0x50Bad4U;
|
|
registers_[3] = 0x50Bad4U;
|
|
registers_[12] = 0x50Bad4U;
|
|
#endif
|
|
}
|
|
|
|
uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
|
|
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
|
|
return *ptr;
|
|
}
|
|
|
|
int64_t Simulator::ReadW64(intptr_t addr, Instruction* instr) {
|
|
int64_t* ptr = reinterpret_cast<int64_t*>(addr);
|
|
return *ptr;
|
|
}
|
|
|
|
int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
|
|
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
|
return *ptr;
|
|
}
|
|
|
|
void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
|
|
uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
|
|
*ptr = value;
|
|
return;
|
|
}
|
|
|
|
void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
|
|
int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
|
*ptr = value;
|
|
return;
|
|
}
|
|
|
|
uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
|
|
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
|
return *ptr;
|
|
}
|
|
|
|
int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
|
|
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
|
return *ptr;
|
|
}
|
|
|
|
void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
|
|
uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
|
*ptr = value;
|
|
return;
|
|
}
|
|
|
|
void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
|
|
int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
|
*ptr = value;
|
|
return;
|
|
}
|
|
|
|
uint8_t Simulator::ReadBU(intptr_t addr) {
|
|
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
|
return *ptr;
|
|
}
|
|
|
|
int8_t Simulator::ReadB(intptr_t addr) {
|
|
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
|
return *ptr;
|
|
}
|
|
|
|
void Simulator::WriteB(intptr_t addr, uint8_t value) {
|
|
uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
|
*ptr = value;
|
|
}
|
|
|
|
void Simulator::WriteB(intptr_t addr, int8_t value) {
|
|
int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
|
*ptr = value;
|
|
}
|
|
|
|
int64_t Simulator::ReadDW(intptr_t addr) {
|
|
int64_t* ptr = reinterpret_cast<int64_t*>(addr);
|
|
return *ptr;
|
|
}
|
|
|
|
void Simulator::WriteDW(intptr_t addr, int64_t value) {
|
|
int64_t* ptr = reinterpret_cast<int64_t*>(addr);
|
|
*ptr = value;
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Reads a double value from memory at given address.
|
|
*/
|
|
double Simulator::ReadDouble(intptr_t addr) {
|
|
double* ptr = reinterpret_cast<double*>(addr);
|
|
return *ptr;
|
|
}
|
|
|
|
// Returns the limit of the stack area to enable checking for stack overflows.
|
|
uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
|
|
// The simulator uses a separate JS stack. If we have exhausted the C stack,
|
|
// we also drop down the JS limit to reflect the exhaustion on the JS stack.
|
|
if (GetCurrentStackPosition() < c_limit) {
|
|
return reinterpret_cast<uintptr_t>(get_sp());
|
|
}
|
|
|
|
// Otherwise the limit is the JS stack. Leave a safety margin to prevent
|
|
// overrunning the stack when pushing values.
|
|
return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
|
|
}
|
|
|
|
// Unsupported instructions use Format to print an error and stop execution.
|
|
void Simulator::Format(Instruction* instr, const char* format) {
|
|
PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
|
|
reinterpret_cast<intptr_t>(instr), format);
|
|
UNIMPLEMENTED();
|
|
}
|
|
|
|
// Calculate C flag value for additions.
|
|
bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
|
|
uint32_t uleft = static_cast<uint32_t>(left);
|
|
uint32_t uright = static_cast<uint32_t>(right);
|
|
uint32_t urest = 0xffffffffU - uleft;
|
|
|
|
return (uright > urest) ||
|
|
(carry && (((uright + 1) > urest) || (uright > (urest - 1))));
|
|
}
|
|
|
|
// Calculate C flag value for subtractions.
|
|
bool Simulator::BorrowFrom(int32_t left, int32_t right) {
|
|
uint32_t uleft = static_cast<uint32_t>(left);
|
|
uint32_t uright = static_cast<uint32_t>(right);
|
|
|
|
return (uright > uleft);
|
|
}
|
|
|
|
// Calculate V flag value for additions and subtractions.
|
|
template <typename T1>
|
|
bool Simulator::OverflowFromSigned(T1 alu_out, T1 left, T1 right,
|
|
bool addition) {
|
|
bool overflow;
|
|
if (addition) {
|
|
// operands have the same sign
|
|
overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
|
|
// and operands and result have different sign
|
|
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
|
} else {
|
|
// operands have different signs
|
|
overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
|
|
// and first operand and result have different signs
|
|
&& ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
|
}
|
|
return overflow;
|
|
}
|
|
|
|
#if V8_TARGET_ARCH_S390X
|
|
static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
|
|
*x = reinterpret_cast<intptr_t>(pair->x);
|
|
*y = reinterpret_cast<intptr_t>(pair->y);
|
|
}
|
|
#else
|
|
static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
|
|
#if V8_TARGET_BIG_ENDIAN
|
|
*x = static_cast<int32_t>(*pair >> 32);
|
|
*y = static_cast<int32_t>(*pair);
|
|
#else
|
|
*x = static_cast<int32_t>(*pair);
|
|
*y = static_cast<int32_t>(*pair >> 32);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Calls into the V8 runtime.
|
|
typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
|
|
intptr_t arg2, intptr_t arg3,
|
|
intptr_t arg4, intptr_t arg5);
|
|
typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1,
|
|
intptr_t arg2, intptr_t arg3,
|
|
intptr_t arg4, intptr_t arg5);
|
|
typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1,
|
|
intptr_t arg2, intptr_t arg3,
|
|
intptr_t arg4,
|
|
intptr_t arg5);
|
|
|
|
// These prototypes handle the four types of FP calls.
|
|
typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
|
|
typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
|
|
typedef double (*SimulatorRuntimeFPCall)(double darg0);
|
|
typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
|
|
|
|
// This signature supports direct call in to API function native callback
|
|
// (refer to InvocationCallback in v8.h).
|
|
typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
|
|
typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
|
|
|
|
// This signature supports direct call to accessor getter callback.
|
|
typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
|
|
typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
|
|
intptr_t arg1, void* arg2);
|
|
|
|
// Software interrupt instructions are used by the simulator to call into the
|
|
// C-based V8 runtime.
|
|
void Simulator::SoftwareInterrupt(Instruction* instr) {
|
|
int svc = instr->SvcValue();
|
|
switch (svc) {
|
|
case kCallRtRedirected: {
|
|
// Check if stack is aligned. Error if not aligned is reported below to
|
|
// include information on the function called.
|
|
bool stack_aligned =
|
|
(get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
|
|
0;
|
|
Redirection* redirection = Redirection::FromSwiInstruction(instr);
|
|
const int kArgCount = 6;
|
|
int arg0_regnum = 2;
|
|
intptr_t result_buffer = 0;
|
|
bool uses_result_buffer =
|
|
redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE ||
|
|
(redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
|
|
!ABI_RETURNS_OBJECTPAIR_IN_REGS);
|
|
if (uses_result_buffer) {
|
|
result_buffer = get_register(r2);
|
|
arg0_regnum++;
|
|
}
|
|
intptr_t arg[kArgCount];
|
|
for (int i = 0; i < kArgCount - 1; i++) {
|
|
arg[i] = get_register(arg0_regnum + i);
|
|
}
|
|
intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp));
|
|
arg[5] = stack_pointer[kCalleeRegisterSaveAreaSize / kPointerSize];
|
|
bool fp_call =
|
|
(redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
|
|
(redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
|
|
(redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
|
|
(redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
|
|
|
|
// Place the return address on the stack, making the call GC safe.
|
|
*reinterpret_cast<intptr_t*>(get_register(sp) +
|
|
kStackFrameRASlot * kPointerSize) =
|
|
get_register(r14);
|
|
|
|
intptr_t external =
|
|
reinterpret_cast<intptr_t>(redirection->external_function());
|
|
if (fp_call) {
|
|
double dval0, dval1; // one or two double parameters
|
|
intptr_t ival; // zero or one integer parameters
|
|
int iresult = 0; // integer return value
|
|
double dresult = 0; // double return value
|
|
GetFpArgs(&dval0, &dval1, &ival);
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
SimulatorRuntimeCall generic_target =
|
|
reinterpret_cast<SimulatorRuntimeCall>(external);
|
|
switch (redirection->type()) {
|
|
case ExternalReference::BUILTIN_FP_FP_CALL:
|
|
case ExternalReference::BUILTIN_COMPARE_CALL:
|
|
PrintF("Call to host function at %p with args %f, %f",
|
|
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
|
|
dval1);
|
|
break;
|
|
case ExternalReference::BUILTIN_FP_CALL:
|
|
PrintF("Call to host function at %p with arg %f",
|
|
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0);
|
|
break;
|
|
case ExternalReference::BUILTIN_FP_INT_CALL:
|
|
PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
|
|
static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0,
|
|
ival);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
if (!stack_aligned) {
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
static_cast<intptr_t>(get_register(sp)));
|
|
}
|
|
PrintF("\n");
|
|
}
|
|
CHECK(stack_aligned);
|
|
switch (redirection->type()) {
|
|
case ExternalReference::BUILTIN_COMPARE_CALL: {
|
|
SimulatorRuntimeCompareCall target =
|
|
reinterpret_cast<SimulatorRuntimeCompareCall>(external);
|
|
iresult = target(dval0, dval1);
|
|
set_register(r2, iresult);
|
|
break;
|
|
}
|
|
case ExternalReference::BUILTIN_FP_FP_CALL: {
|
|
SimulatorRuntimeFPFPCall target =
|
|
reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
|
|
dresult = target(dval0, dval1);
|
|
SetFpResult(dresult);
|
|
break;
|
|
}
|
|
case ExternalReference::BUILTIN_FP_CALL: {
|
|
SimulatorRuntimeFPCall target =
|
|
reinterpret_cast<SimulatorRuntimeFPCall>(external);
|
|
dresult = target(dval0);
|
|
SetFpResult(dresult);
|
|
break;
|
|
}
|
|
case ExternalReference::BUILTIN_FP_INT_CALL: {
|
|
SimulatorRuntimeFPIntCall target =
|
|
reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
|
|
dresult = target(dval0, ival);
|
|
SetFpResult(dresult);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
switch (redirection->type()) {
|
|
case ExternalReference::BUILTIN_COMPARE_CALL:
|
|
PrintF("Returned %08x\n", iresult);
|
|
break;
|
|
case ExternalReference::BUILTIN_FP_FP_CALL:
|
|
case ExternalReference::BUILTIN_FP_CALL:
|
|
case ExternalReference::BUILTIN_FP_INT_CALL:
|
|
PrintF("Returned %f\n", dresult);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
} else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
|
|
// See callers of MacroAssembler::CallApiFunctionAndReturn for
|
|
// explanation of register usage.
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
PrintF("Call to host function at %p args %08" V8PRIxPTR,
|
|
reinterpret_cast<void*>(external), arg[0]);
|
|
if (!stack_aligned) {
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
static_cast<intptr_t>(get_register(sp)));
|
|
}
|
|
PrintF("\n");
|
|
}
|
|
CHECK(stack_aligned);
|
|
SimulatorRuntimeDirectApiCall target =
|
|
reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
|
|
target(arg[0]);
|
|
} else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
|
|
// See callers of MacroAssembler::CallApiFunctionAndReturn for
|
|
// explanation of register usage.
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
PrintF("Call to host function at %p args %08" V8PRIxPTR
|
|
" %08" V8PRIxPTR,
|
|
reinterpret_cast<void*>(external), arg[0], arg[1]);
|
|
if (!stack_aligned) {
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
static_cast<intptr_t>(get_register(sp)));
|
|
}
|
|
PrintF("\n");
|
|
}
|
|
CHECK(stack_aligned);
|
|
SimulatorRuntimeProfilingApiCall target =
|
|
reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
|
|
target(arg[0], Redirection::ReverseRedirection(arg[1]));
|
|
} else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
|
|
// See callers of MacroAssembler::CallApiFunctionAndReturn for
|
|
// explanation of register usage.
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
PrintF("Call to host function at %p args %08" V8PRIxPTR
|
|
" %08" V8PRIxPTR,
|
|
reinterpret_cast<void*>(external), arg[0], arg[1]);
|
|
if (!stack_aligned) {
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
static_cast<intptr_t>(get_register(sp)));
|
|
}
|
|
PrintF("\n");
|
|
}
|
|
CHECK(stack_aligned);
|
|
SimulatorRuntimeDirectGetterCall target =
|
|
reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
|
|
if (!ABI_PASSES_HANDLES_IN_REGS) {
|
|
arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
|
|
}
|
|
target(arg[0], arg[1]);
|
|
} else if (redirection->type() ==
|
|
ExternalReference::PROFILING_GETTER_CALL) {
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
PrintF("Call to host function at %p args %08" V8PRIxPTR
|
|
" %08" V8PRIxPTR " %08" V8PRIxPTR,
|
|
reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
|
|
if (!stack_aligned) {
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
static_cast<intptr_t>(get_register(sp)));
|
|
}
|
|
PrintF("\n");
|
|
}
|
|
CHECK(stack_aligned);
|
|
SimulatorRuntimeProfilingGetterCall target =
|
|
reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
|
|
if (!ABI_PASSES_HANDLES_IN_REGS) {
|
|
arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
|
|
}
|
|
target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
|
|
} else {
|
|
// builtin call.
|
|
if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
|
SimulatorRuntimeCall target =
|
|
reinterpret_cast<SimulatorRuntimeCall>(external);
|
|
PrintF(
|
|
"Call to host function at %p,\n"
|
|
"\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
|
|
", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
|
|
static_cast<void*>(FUNCTION_ADDR(target)), arg[0], arg[1], arg[2],
|
|
arg[3], arg[4], arg[5]);
|
|
if (!stack_aligned) {
|
|
PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
|
static_cast<intptr_t>(get_register(sp)));
|
|
}
|
|
PrintF("\n");
|
|
}
|
|
CHECK(stack_aligned);
|
|
if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
|
|
SimulatorRuntimeTripleCall target =
|
|
reinterpret_cast<SimulatorRuntimeTripleCall>(external);
|
|
ObjectTriple result =
|
|
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
|
|
if (::v8::internal::FLAG_trace_sim) {
|
|
PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
|
|
"}\n",
|
|
reinterpret_cast<intptr_t>(result.x),
|
|
reinterpret_cast<intptr_t>(result.y),
|
|
reinterpret_cast<intptr_t>(result.z));
|
|
}
|
|
memcpy(reinterpret_cast<void*>(result_buffer), &result,
|
|
sizeof(ObjectTriple));
|
|
set_register(r2, result_buffer);
|
|
} else {
|
|
if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
|
|
SimulatorRuntimePairCall target =
|
|
reinterpret_cast<SimulatorRuntimePairCall>(external);
|
|
ObjectPair result =
|
|
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
|
|
intptr_t x;
|
|
intptr_t y;
|
|
decodeObjectPair(&result, &x, &y);
|
|
if (::v8::internal::FLAG_trace_sim) {
|
|
PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
|
|
}
|
|
if (ABI_RETURNS_OBJECTPAIR_IN_REGS) {
|
|
set_register(r2, x);
|
|
set_register(r3, y);
|
|
} else {
|
|
memcpy(reinterpret_cast<void*>(result_buffer), &result,
|
|
sizeof(ObjectPair));
|
|
set_register(r2, result_buffer);
|
|
}
|
|
} else {
|
|
DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
|
|
SimulatorRuntimeCall target =
|
|
reinterpret_cast<SimulatorRuntimeCall>(external);
|
|
intptr_t result =
|
|
target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
|
|
if (::v8::internal::FLAG_trace_sim) {
|
|
PrintF("Returned %08" V8PRIxPTR "\n", result);
|
|
}
|
|
set_register(r2, result);
|
|
}
|
|
}
|
|
// #if !V8_TARGET_ARCH_S390X
|
|
// DCHECK(redirection->type() ==
|
|
// ExternalReference::BUILTIN_CALL);
|
|
// SimulatorRuntimeCall target =
|
|
// reinterpret_cast<SimulatorRuntimeCall>(external);
|
|
// int64_t result = target(arg[0], arg[1], arg[2], arg[3],
|
|
// arg[4],
|
|
// arg[5]);
|
|
// int32_t lo_res = static_cast<int32_t>(result);
|
|
// int32_t hi_res = static_cast<int32_t>(result >> 32);
|
|
// #if !V8_TARGET_LITTLE_ENDIAN
|
|
// if (::v8::internal::FLAG_trace_sim) {
|
|
// PrintF("Returned %08x\n", hi_res);
|
|
// }
|
|
// set_register(r2, hi_res);
|
|
// set_register(r3, lo_res);
|
|
// #else
|
|
// if (::v8::internal::FLAG_trace_sim) {
|
|
// PrintF("Returned %08x\n", lo_res);
|
|
// }
|
|
// set_register(r2, lo_res);
|
|
// set_register(r3, hi_res);
|
|
// #endif
|
|
// #else
|
|
// if (redirection->type() == ExternalReference::BUILTIN_CALL) {
|
|
// SimulatorRuntimeCall target =
|
|
// reinterpret_cast<SimulatorRuntimeCall>(external);
|
|
// intptr_t result = target(arg[0], arg[1], arg[2], arg[3],
|
|
// arg[4],
|
|
// arg[5]);
|
|
// if (::v8::internal::FLAG_trace_sim) {
|
|
// PrintF("Returned %08" V8PRIxPTR "\n", result);
|
|
// }
|
|
// set_register(r2, result);
|
|
// } else {
|
|
// DCHECK(redirection->type() ==
|
|
// ExternalReference::BUILTIN_CALL_PAIR);
|
|
// SimulatorRuntimePairCall target =
|
|
// reinterpret_cast<SimulatorRuntimePairCall>(external);
|
|
// ObjectPair result = target(arg[0], arg[1], arg[2], arg[3],
|
|
// arg[4], arg[5]);
|
|
// if (::v8::internal::FLAG_trace_sim) {
|
|
// PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n",
|
|
// result.x, result.y);
|
|
// }
|
|
// #if ABI_RETURNS_OBJECTPAIR_IN_REGS
|
|
// set_register(r2, result.x);
|
|
// set_register(r3, result.y);
|
|
// #else
|
|
// memcpy(reinterpret_cast<void *>(result_buffer), &result,
|
|
// sizeof(ObjectPair));
|
|
// #endif
|
|
// }
|
|
// #endif
|
|
}
|
|
int64_t saved_lr = *reinterpret_cast<intptr_t*>(
|
|
get_register(sp) + kStackFrameRASlot * kPointerSize);
|
|
#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
|
|
// On zLinux-31, the saved_lr might be tagged with a high bit of 1.
|
|
// Cleanse it before proceeding with simulation.
|
|
saved_lr &= 0x7FFFFFFF;
|
|
#endif
|
|
set_pc(saved_lr);
|
|
break;
|
|
}
|
|
case kBreakpoint: {
|
|
S390Debugger dbg(this);
|
|
dbg.Debug();
|
|
break;
|
|
}
|
|
// stop uses all codes greater than 1 << 23.
|
|
default: {
|
|
if (svc >= (1 << 23)) {
|
|
uint32_t code = svc & kStopCodeMask;
|
|
if (isWatchedStop(code)) {
|
|
IncreaseStopCounter(code);
|
|
}
|
|
// Stop if it is enabled, otherwise go on jumping over the stop
|
|
// and the message address.
|
|
if (isEnabledStop(code)) {
|
|
S390Debugger dbg(this);
|
|
dbg.Stop(instr);
|
|
} else {
|
|
set_pc(get_pc() + sizeof(FourByteInstr) + kPointerSize);
|
|
}
|
|
} else {
|
|
// This is not a valid svc code.
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Stop helper functions.
|
|
bool Simulator::isStopInstruction(Instruction* instr) {
|
|
return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
|
|
}
|
|
|
|
bool Simulator::isWatchedStop(uint32_t code) {
|
|
DCHECK(code <= kMaxStopCode);
|
|
return code < kNumOfWatchedStops;
|
|
}
|
|
|
|
bool Simulator::isEnabledStop(uint32_t code) {
|
|
DCHECK(code <= kMaxStopCode);
|
|
// Unwatched stops are always enabled.
|
|
return !isWatchedStop(code) ||
|
|
!(watched_stops_[code].count & kStopDisabledBit);
|
|
}
|
|
|
|
void Simulator::EnableStop(uint32_t code) {
|
|
DCHECK(isWatchedStop(code));
|
|
if (!isEnabledStop(code)) {
|
|
watched_stops_[code].count &= ~kStopDisabledBit;
|
|
}
|
|
}
|
|
|
|
void Simulator::DisableStop(uint32_t code) {
|
|
DCHECK(isWatchedStop(code));
|
|
if (isEnabledStop(code)) {
|
|
watched_stops_[code].count |= kStopDisabledBit;
|
|
}
|
|
}
|
|
|
|
void Simulator::IncreaseStopCounter(uint32_t code) {
|
|
DCHECK(code <= kMaxStopCode);
|
|
DCHECK(isWatchedStop(code));
|
|
if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
|
|
PrintF(
|
|
"Stop counter for code %i has overflowed.\n"
|
|
"Enabling this code and reseting the counter to 0.\n",
|
|
code);
|
|
watched_stops_[code].count = 0;
|
|
EnableStop(code);
|
|
} else {
|
|
watched_stops_[code].count++;
|
|
}
|
|
}
|
|
|
|
// Print a stop status.
|
|
void Simulator::PrintStopInfo(uint32_t code) {
|
|
DCHECK(code <= kMaxStopCode);
|
|
if (!isWatchedStop(code)) {
|
|
PrintF("Stop not watched.");
|
|
} else {
|
|
const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
|
|
int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
|
|
// Don't print the state of unused breakpoints.
|
|
if (count != 0) {
|
|
if (watched_stops_[code].desc) {
|
|
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
|
|
state, count, watched_stops_[code].desc);
|
|
} else {
|
|
PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
|
|
count);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Method for checking overflow on signed addition:
|
|
// Test src1 and src2 have opposite sign,
|
|
// (1) No overflow if they have opposite sign
|
|
// (2) Test the result and one of the operands have opposite sign
|
|
// (a) No overflow if they don't have opposite sign
|
|
// (b) Overflow if opposite
|
|
#define CheckOverflowForIntAdd(src1, src2, type) \
|
|
OverflowFromSigned<type>(src1 + src2, src1, src2, true);
|
|
|
|
#define CheckOverflowForIntSub(src1, src2, type) \
|
|
OverflowFromSigned<type>(src1 - src2, src1, src2, false);
|
|
|
|
// Method for checking overflow on unsigned addtion
|
|
#define CheckOverflowForUIntAdd(src1, src2) \
|
|
((src1) + (src2) < (src1) || (src1) + (src2) < (src2))
|
|
|
|
// Method for checking overflow on unsigned subtraction
|
|
#define CheckOverflowForUIntSub(src1, src2) ((src1) - (src2) > (src1))
|
|
|
|
// Method for checking overflow on multiplication
|
|
#define CheckOverflowForMul(src1, src2) (((src1) * (src2)) / (src2) != (src1))
|
|
|
|
// Method for checking overflow on shift right
|
|
#define CheckOverflowForShiftRight(src1, src2) \
|
|
(((src1) >> (src2)) << (src2) != (src1))
|
|
|
|
// Method for checking overflow on shift left
|
|
#define CheckOverflowForShiftLeft(src1, src2) \
|
|
(((src1) << (src2)) >> (src2) != (src1))
|
|
|
|
// S390 Decode and simulate helpers
|
|
bool Simulator::DecodeTwoByte(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
|
|
switch (op) {
|
|
// RR format instructions
|
|
case AR:
|
|
case SR:
|
|
case MR:
|
|
case DR:
|
|
case OR:
|
|
case NR:
|
|
case XR: {
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
bool isOF = false;
|
|
switch (op) {
|
|
case AR:
|
|
isOF = CheckOverflowForIntAdd(r1_val, r2_val, int32_t);
|
|
r1_val += r2_val;
|
|
SetS390ConditionCode<int32_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
case SR:
|
|
isOF = CheckOverflowForIntSub(r1_val, r2_val, int32_t);
|
|
r1_val -= r2_val;
|
|
SetS390ConditionCode<int32_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
case OR:
|
|
r1_val |= r2_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(r1_val);
|
|
break;
|
|
case NR:
|
|
r1_val &= r2_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(r1_val);
|
|
break;
|
|
case XR:
|
|
r1_val ^= r2_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(r1_val);
|
|
break;
|
|
case MR: {
|
|
DCHECK(r1 % 2 == 0);
|
|
r1_val = get_low_register<int32_t>(r1 + 1);
|
|
int64_t product =
|
|
static_cast<int64_t>(r1_val) * static_cast<int64_t>(r2_val);
|
|
int32_t high_bits = product >> 32;
|
|
r1_val = high_bits;
|
|
int32_t low_bits = product & 0x00000000FFFFFFFF;
|
|
set_low_register(r1, high_bits);
|
|
set_low_register(r1 + 1, low_bits);
|
|
break;
|
|
}
|
|
case DR: {
|
|
// reg-reg pair should be even-odd pair, assert r1 is an even register
|
|
DCHECK(r1 % 2 == 0);
|
|
// leftmost 32 bits of the dividend are in r1
|
|
// rightmost 32 bits of the dividend are in r1+1
|
|
// get the signed value from r1
|
|
int64_t dividend = static_cast<int64_t>(r1_val) << 32;
|
|
// get unsigned value from r1+1
|
|
// avoid addition with sign-extended r1+1 value
|
|
dividend += get_low_register<uint32_t>(r1 + 1);
|
|
int32_t remainder = dividend % r2_val;
|
|
int32_t quotient = dividend / r2_val;
|
|
r1_val = remainder;
|
|
set_low_register(r1, remainder);
|
|
set_low_register(r1 + 1, quotient);
|
|
break; // reg pair
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
set_low_register(r1, r1_val);
|
|
break;
|
|
}
|
|
case LR: {
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
set_low_register(r1, get_low_register<int32_t>(r2));
|
|
break;
|
|
}
|
|
case LDR: {
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
int64_t r2_val = get_d_register(r2);
|
|
set_d_register(r1, r2_val);
|
|
break;
|
|
}
|
|
case CR: {
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
SetS390ConditionCode<int32_t>(r1_val, r2_val);
|
|
break;
|
|
}
|
|
case CLR: {
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
SetS390ConditionCode<uint32_t>(r1_val, r2_val);
|
|
break;
|
|
}
|
|
case BCR: {
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
if (TestConditionCode(Condition(r1))) {
|
|
intptr_t r2_val = get_register(r2);
|
|
#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
|
|
// On 31-bit, the top most bit may be 0 or 1, but is ignored by the
|
|
// hardware. Cleanse the top bit before jumping to it, unless it's one
|
|
// of the special PCs
|
|
if (r2_val != bad_lr && r2_val != end_sim_pc) r2_val &= 0x7FFFFFFF;
|
|
#endif
|
|
set_pc(r2_val);
|
|
}
|
|
break;
|
|
}
|
|
case LTR: {
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
SetS390ConditionCode<int32_t>(r2_val, 0);
|
|
set_low_register(r1, r2_val);
|
|
break;
|
|
}
|
|
case ALR:
|
|
case SLR: {
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint32_t alu_out = 0;
|
|
bool isOF = false;
|
|
if (ALR == op) {
|
|
alu_out = r1_val + r2_val;
|
|
isOF = CheckOverflowForUIntAdd(r1_val, r2_val);
|
|
} else if (SLR == op) {
|
|
alu_out = r1_val - r2_val;
|
|
isOF = CheckOverflowForUIntSub(r1_val, r2_val);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
|
|
break;
|
|
}
|
|
case LNR: {
|
|
// Load Negative (32)
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it.
|
|
set_low_register(r1, r2_val);
|
|
condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero
|
|
// CC1 - result is negative
|
|
break;
|
|
}
|
|
case BASR: {
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
intptr_t link_addr = get_pc() + 2;
|
|
// If R2 is zero, the BASR does not branch.
|
|
int64_t r2_val = (r2 == 0) ? link_addr : get_register(r2);
|
|
#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
|
|
// On 31-bit, the top most bit may be 0 or 1, which can cause issues
|
|
// for stackwalker. The top bit should either be cleanse before being
|
|
// pushed onto the stack, or during stack walking when dereferenced.
|
|
// For simulator, we'll take the worst case scenario and always tag
|
|
// the high bit, to flush out more problems.
|
|
link_addr |= 0x80000000;
|
|
#endif
|
|
set_register(r1, link_addr);
|
|
set_pc(r2_val);
|
|
break;
|
|
}
|
|
case LCR: {
|
|
RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int32_t original_r2_val = r2_val;
|
|
r2_val = ~r2_val;
|
|
r2_val = r2_val + 1;
|
|
set_low_register(r1, r2_val);
|
|
SetS390ConditionCode<int32_t>(r2_val, 0);
|
|
// Checks for overflow where r2_val = -2147483648.
|
|
// Cannot do int comparison due to GCC 4.8 bug on x86.
|
|
// Detect INT_MIN alternatively, as it is the only value where both
|
|
// original and result are negative due to overflow.
|
|
if (r2_val < 0 && original_r2_val < 0) {
|
|
SetS390OverflowCode(true);
|
|
}
|
|
break;
|
|
}
|
|
case BKPT: {
|
|
set_pc(get_pc() + 2);
|
|
S390Debugger dbg(this);
|
|
dbg.Debug();
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
return false;
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Decode routine for four-byte instructions
|
|
bool Simulator::DecodeFourByte(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
|
|
// Pre-cast instruction to various types
|
|
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
|
SIInstruction* siInstr = reinterpret_cast<SIInstruction*>(instr);
|
|
|
|
switch (op) {
|
|
case POPCNT_Z: {
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t r1_val = 0;
|
|
|
|
uint8_t* r2_val_ptr = reinterpret_cast<uint8_t*>(&r2_val);
|
|
uint8_t* r1_val_ptr = reinterpret_cast<uint8_t*>(&r1_val);
|
|
for (int i = 0; i < 8; i++) {
|
|
uint32_t x = static_cast<uint32_t>(r2_val_ptr[i]);
|
|
#if defined(__GNUC__)
|
|
r1_val_ptr[i] = __builtin_popcount(x);
|
|
#else
|
|
#error unsupport __builtin_popcount
|
|
#endif
|
|
}
|
|
|
|
set_register(r1, static_cast<uint64_t>(r1_val));
|
|
break;
|
|
}
|
|
case LLGFR: {
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
uint64_t r2_finalval =
|
|
(static_cast<uint64_t>(r2_val) & 0x00000000ffffffff);
|
|
set_register(r1, r2_finalval);
|
|
break;
|
|
}
|
|
case EX: {
|
|
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
|
int r1 = rxinst->R1Value();
|
|
int b2 = rxinst->B2Value();
|
|
int x2 = rxinst->X2Value();
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxinst->D2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
|
|
SixByteInstr the_instr = Instruction::InstructionBits(
|
|
reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
|
|
int length = Instruction::InstructionLength(
|
|
reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
|
|
|
|
char new_instr_buf[8];
|
|
char* addr = reinterpret_cast<char*>(&new_instr_buf[0]);
|
|
the_instr |= static_cast<SixByteInstr>(r1_val & 0xff)
|
|
<< (8 * length - 16);
|
|
Instruction::SetInstructionBits<SixByteInstr>(
|
|
reinterpret_cast<byte*>(addr), static_cast<SixByteInstr>(the_instr));
|
|
ExecuteInstruction(reinterpret_cast<Instruction*>(addr), false);
|
|
break;
|
|
}
|
|
case LGR: {
|
|
// Load Register (64)
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
set_register(r1, get_register(r2));
|
|
break;
|
|
}
|
|
case LDGR: {
|
|
// Load FPR from GPR (L <- 64)
|
|
uint64_t int_val = get_register(rreInst->R2Value());
|
|
// double double_val = bit_cast<double, uint64_t>(int_val);
|
|
// set_d_register_from_double(rreInst->R1Value(), double_val);
|
|
set_d_register(rreInst->R1Value(), int_val);
|
|
break;
|
|
}
|
|
case LGDR: {
|
|
// Load GPR from FPR (64 <- L)
|
|
int64_t double_val = get_d_register(rreInst->R2Value());
|
|
set_register(rreInst->R1Value(), double_val);
|
|
break;
|
|
}
|
|
case LTGR: {
|
|
// Load Register (64)
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
int64_t r2_val = get_register(r2);
|
|
SetS390ConditionCode<int64_t>(r2_val, 0);
|
|
set_register(r1, get_register(r2));
|
|
break;
|
|
}
|
|
case LZDR: {
|
|
int r1 = rreInst->R1Value();
|
|
set_d_register_from_double(r1, 0.0);
|
|
break;
|
|
}
|
|
case LTEBR: {
|
|
RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreinst->R1Value();
|
|
int r2 = rreinst->R2Value();
|
|
int64_t r2_val = get_d_register(r2);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
SetS390ConditionCode<float>(fr2_val, 0.0);
|
|
set_d_register(r1, r2_val);
|
|
break;
|
|
}
|
|
case LTDBR: {
|
|
RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreinst->R1Value();
|
|
int r2 = rreinst->R2Value();
|
|
int64_t r2_val = get_d_register(r2);
|
|
SetS390ConditionCode<double>(bit_cast<double, int64_t>(r2_val), 0.0);
|
|
set_d_register(r1, r2_val);
|
|
break;
|
|
}
|
|
case CGR: {
|
|
// Compare (64)
|
|
int64_t r1_val = get_register(rreInst->R1Value());
|
|
int64_t r2_val = get_register(rreInst->R2Value());
|
|
SetS390ConditionCode<int64_t>(r1_val, r2_val);
|
|
break;
|
|
}
|
|
case CLGR: {
|
|
// Compare Logical (64)
|
|
uint64_t r1_val = static_cast<uint64_t>(get_register(rreInst->R1Value()));
|
|
uint64_t r2_val = static_cast<uint64_t>(get_register(rreInst->R2Value()));
|
|
SetS390ConditionCode<uint64_t>(r1_val, r2_val);
|
|
break;
|
|
}
|
|
case LH: {
|
|
// Load Halfword
|
|
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
|
int r1 = rxinst->R1Value();
|
|
int x2 = rxinst->X2Value();
|
|
int b2 = rxinst->B2Value();
|
|
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t d2_val = rxinst->D2Value();
|
|
intptr_t mem_addr = x2_val + b2_val + d2_val;
|
|
|
|
int32_t result = static_cast<int32_t>(ReadH(mem_addr, instr));
|
|
set_low_register(r1, result);
|
|
break;
|
|
}
|
|
case LHI: {
|
|
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
|
int r1 = riinst->R1Value();
|
|
int i = riinst->I2Value();
|
|
set_low_register(r1, i);
|
|
break;
|
|
}
|
|
case LGHI: {
|
|
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
|
int r1 = riinst->R1Value();
|
|
int64_t i = riinst->I2Value();
|
|
set_register(r1, i);
|
|
break;
|
|
}
|
|
case CHI: {
|
|
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
|
int r1 = riinst->R1Value();
|
|
int16_t i = riinst->I2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
SetS390ConditionCode<int32_t>(r1_val, i);
|
|
break;
|
|
}
|
|
case CGHI: {
|
|
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
|
int r1 = riinst->R1Value();
|
|
int64_t i = static_cast<int64_t>(riinst->I2Value());
|
|
int64_t r1_val = get_register(r1);
|
|
SetS390ConditionCode<int64_t>(r1_val, i);
|
|
break;
|
|
}
|
|
case BRAS: {
|
|
// Branch Relative and Save
|
|
RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
|
|
int r1 = rilInstr->R1Value();
|
|
intptr_t d2 = rilInstr->I2Value();
|
|
intptr_t pc = get_pc();
|
|
// Set PC of next instruction to register
|
|
set_register(r1, pc + sizeof(FourByteInstr));
|
|
// Update PC to branch target
|
|
set_pc(pc + d2 * 2);
|
|
break;
|
|
}
|
|
case BRC: {
|
|
// Branch Relative on Condition
|
|
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
|
int m1 = riinst->M1Value();
|
|
if (TestConditionCode((Condition)m1)) {
|
|
intptr_t offset = riinst->I2Value() * 2;
|
|
set_pc(get_pc() + offset);
|
|
}
|
|
break;
|
|
}
|
|
case BRCT:
|
|
case BRCTG: {
|
|
// Branch On Count (32/64).
|
|
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
|
int r1 = riinst->R1Value();
|
|
int64_t value =
|
|
(op == BRCT) ? get_low_register<int32_t>(r1) : get_register(r1);
|
|
if (BRCT == op)
|
|
set_low_register(r1, --value);
|
|
else
|
|
set_register(r1, --value);
|
|
// Branch if value != 0
|
|
if (value != 0) {
|
|
intptr_t offset = riinst->I2Value() * 2;
|
|
set_pc(get_pc() + offset);
|
|
}
|
|
break;
|
|
}
|
|
case BXH: {
|
|
RSInstruction* rsinst = reinterpret_cast<RSInstruction*>(instr);
|
|
int r1 = rsinst->R1Value();
|
|
int r3 = rsinst->R3Value();
|
|
int b2 = rsinst->B2Value();
|
|
int d2 = rsinst->D2Value();
|
|
|
|
// r1_val is the first operand, r3_val is the increment
|
|
int32_t r1_val = r1 == 0 ? 0 : get_register(r1);
|
|
int32_t r3_val = r2 == 0 ? 0 : get_register(r3);
|
|
intptr_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
intptr_t branch_address = b2_val + d2;
|
|
// increment r1_val
|
|
r1_val += r3_val;
|
|
|
|
// if the increment is even, then it designates a pair of registers
|
|
// and the contents of the even and odd registers of the pair are used as
|
|
// the increment and compare value respectively. If the increment is odd,
|
|
// the increment itself is used as both the increment and compare value
|
|
int32_t compare_val = r3 % 2 == 0 ? get_register(r3 + 1) : r3_val;
|
|
if (r1_val > compare_val) {
|
|
// branch to address if r1_val is greater than compare value
|
|
set_pc(branch_address);
|
|
}
|
|
|
|
// update contents of register in r1 with the new incremented value
|
|
set_register(r1, r1_val);
|
|
break;
|
|
}
|
|
case IIHH:
|
|
case IIHL:
|
|
case IILH:
|
|
case IILL: {
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
case STM:
|
|
case LM: {
|
|
// Store Multiple 32-bits.
|
|
RSInstruction* rsinstr = reinterpret_cast<RSInstruction*>(instr);
|
|
int r1 = rsinstr->R1Value();
|
|
int r3 = rsinstr->R3Value();
|
|
int rb = rsinstr->B2Value();
|
|
int offset = rsinstr->D2Value();
|
|
|
|
// Regs roll around if r3 is less than r1.
|
|
// Artifically increase r3 by 16 so we can calculate
|
|
// the number of regs stored properly.
|
|
if (r3 < r1) r3 += 16;
|
|
|
|
int32_t rb_val = (rb == 0) ? 0 : get_low_register<int32_t>(rb);
|
|
|
|
// Store each register in ascending order.
|
|
for (int i = 0; i <= r3 - r1; i++) {
|
|
if (op == STM) {
|
|
int32_t value = get_low_register<int32_t>((r1 + i) % 16);
|
|
WriteW(rb_val + offset + 4 * i, value, instr);
|
|
} else if (op == LM) {
|
|
int32_t value = ReadW(rb_val + offset + 4 * i, instr);
|
|
set_low_register((r1 + i) % 16, value);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case SLL:
|
|
case SRL: {
|
|
RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
|
|
int r1 = rsInstr->R1Value();
|
|
int b2 = rsInstr->B2Value();
|
|
intptr_t d2 = rsInstr->D2Value();
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t alu_out = 0;
|
|
if (SLL == op) {
|
|
alu_out = r1_val << shiftBits;
|
|
} else if (SRL == op) {
|
|
alu_out = r1_val >> shiftBits;
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
break;
|
|
}
|
|
case SLDL: {
|
|
RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
|
|
int r1 = rsInstr->R1Value();
|
|
int b2 = rsInstr->B2Value();
|
|
intptr_t d2 = rsInstr->D2Value();
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
|
|
DCHECK(r1 % 2 == 0);
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r1_next_val = get_low_register<uint32_t>(r1 + 1);
|
|
uint64_t alu_out = (static_cast<uint64_t>(r1_val) << 32) |
|
|
(static_cast<uint64_t>(r1_next_val));
|
|
alu_out <<= shiftBits;
|
|
set_low_register(r1 + 1, static_cast<uint32_t>(alu_out));
|
|
set_low_register(r1, static_cast<uint32_t>(alu_out >> 32));
|
|
break;
|
|
}
|
|
case SLA:
|
|
case SRA: {
|
|
RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
|
|
int r1 = rsInstr->R1Value();
|
|
int b2 = rsInstr->B2Value();
|
|
intptr_t d2 = rsInstr->D2Value();
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
if (op == SLA) {
|
|
isOF = CheckOverflowForShiftLeft(r1_val, shiftBits);
|
|
alu_out = r1_val << shiftBits;
|
|
} else if (op == SRA) {
|
|
alu_out = r1_val >> shiftBits;
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
}
|
|
case LLHR: {
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
case LLGHR: {
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
case L:
|
|
case LA:
|
|
case LD:
|
|
case LE: {
|
|
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
|
int b2 = rxinst->B2Value();
|
|
int x2 = rxinst->X2Value();
|
|
int32_t r1 = rxinst->R1Value();
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxinst->D2Value();
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
if (op == L) {
|
|
int32_t mem_val = ReadW(addr, instr);
|
|
set_low_register(r1, mem_val);
|
|
} else if (op == LA) {
|
|
set_register(r1, addr);
|
|
} else if (op == LD) {
|
|
int64_t dbl_val = *reinterpret_cast<int64_t*>(addr);
|
|
set_d_register(r1, dbl_val);
|
|
} else if (op == LE) {
|
|
float float_val = *reinterpret_cast<float*>(addr);
|
|
set_d_register_from_float32(r1, float_val);
|
|
}
|
|
break;
|
|
}
|
|
case C:
|
|
case CL: {
|
|
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
|
int b2 = rxinst->B2Value();
|
|
int x2 = rxinst->X2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxinst->D2Value();
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int32_t mem_val = ReadW(addr, instr);
|
|
if (C == op)
|
|
SetS390ConditionCode<int32_t>(r1_val, mem_val);
|
|
else if (CL == op)
|
|
SetS390ConditionCode<uint32_t>(r1_val, mem_val);
|
|
break;
|
|
}
|
|
case CLI: {
|
|
// Compare Immediate (Mem - Imm) (8)
|
|
int b1 = siInstr->B1Value();
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t d1_val = siInstr->D1Value();
|
|
intptr_t addr = b1_val + d1_val;
|
|
uint8_t mem_val = ReadB(addr);
|
|
uint8_t imm_val = siInstr->I2Value();
|
|
SetS390ConditionCode<uint8_t>(mem_val, imm_val);
|
|
break;
|
|
}
|
|
case TM: {
|
|
// Test Under Mask (Mem - Imm) (8)
|
|
int b1 = siInstr->B1Value();
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t d1_val = siInstr->D1Value();
|
|
intptr_t addr = b1_val + d1_val;
|
|
uint8_t mem_val = ReadB(addr);
|
|
uint8_t imm_val = siInstr->I2Value();
|
|
uint8_t selected_bits = mem_val & imm_val;
|
|
// CC0: Selected bits are zero
|
|
// CC1: Selected bits mixed zeros and ones
|
|
// CC3: Selected bits all ones
|
|
if (0 == selected_bits) {
|
|
condition_reg_ = CC_EQ; // CC0
|
|
} else if (selected_bits == imm_val) {
|
|
condition_reg_ = 0x1; // CC3
|
|
} else {
|
|
condition_reg_ = 0x4; // CC1
|
|
}
|
|
break;
|
|
}
|
|
case ST:
|
|
case STE:
|
|
case STD: {
|
|
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
|
int b2 = rxinst->B2Value();
|
|
int x2 = rxinst->X2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxinst->D2Value();
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
if (op == ST) {
|
|
WriteW(addr, r1_val, instr);
|
|
} else if (op == STD) {
|
|
int64_t frs_val = get_d_register(rxinst->R1Value());
|
|
WriteDW(addr, frs_val);
|
|
} else if (op == STE) {
|
|
int64_t frs_val = get_d_register(rxinst->R1Value()) >> 32;
|
|
WriteW(addr, static_cast<int32_t>(frs_val), instr);
|
|
}
|
|
break;
|
|
}
|
|
case LTGFR:
|
|
case LGFR: {
|
|
// Load and Test Register (64 <- 32) (Sign Extends 32-bit val)
|
|
// Load Register (64 <- 32) (Sign Extends 32-bit val)
|
|
RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreInstr->R1Value();
|
|
int r2 = rreInstr->R2Value();
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int64_t result = static_cast<int64_t>(r2_val);
|
|
set_register(r1, result);
|
|
|
|
if (LTGFR == op) SetS390ConditionCode<int64_t>(result, 0);
|
|
break;
|
|
}
|
|
case LNGR: {
|
|
// Load Negative (64)
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
int64_t r2_val = get_register(r2);
|
|
r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it.
|
|
set_register(r1, r2_val);
|
|
condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero
|
|
// CC1 - result is negative
|
|
break;
|
|
}
|
|
case TRAP4: {
|
|
// whack the space of the caller allocated stack
|
|
int64_t sp_addr = get_register(sp);
|
|
for (int i = 0; i < kCalleeRegisterSaveAreaSize / kPointerSize; ++i) {
|
|
// we dont want to whack the RA (r14)
|
|
if (i != 14) (reinterpret_cast<intptr_t*>(sp_addr))[i] = 0xdeadbabe;
|
|
}
|
|
SoftwareInterrupt(instr);
|
|
break;
|
|
}
|
|
case STC: {
|
|
// Store Character/Byte
|
|
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
|
int b2 = rxinst->B2Value();
|
|
int x2 = rxinst->X2Value();
|
|
uint8_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxinst->D2Value();
|
|
intptr_t mem_addr = b2_val + x2_val + d2_val;
|
|
WriteB(mem_addr, r1_val);
|
|
break;
|
|
}
|
|
case STH: {
|
|
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
|
int b2 = rxinst->B2Value();
|
|
int x2 = rxinst->X2Value();
|
|
int16_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxinst->D2Value();
|
|
intptr_t mem_addr = b2_val + x2_val + d2_val;
|
|
WriteH(mem_addr, r1_val, instr);
|
|
break;
|
|
}
|
|
#if V8_TARGET_ARCH_S390X
|
|
case LCGR: {
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
int64_t r2_val = get_register(r2);
|
|
r2_val = ~r2_val;
|
|
r2_val = r2_val + 1;
|
|
set_register(r1, r2_val);
|
|
SetS390ConditionCode<int64_t>(r2_val, 0);
|
|
// if the input is INT_MIN, loading its compliment would be overflowing
|
|
if (r2_val < 0 && (r2_val + 1) > 0) {
|
|
SetS390OverflowCode(true);
|
|
}
|
|
break;
|
|
}
|
|
#endif
|
|
case SRDA: {
|
|
RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
|
|
int r1 = rsInstr->R1Value();
|
|
DCHECK(r1 % 2 == 0); // must be a reg pair
|
|
int b2 = rsInstr->B2Value();
|
|
intptr_t d2 = rsInstr->D2Value();
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int64_t opnd1 = static_cast<int64_t>(get_low_register<int32_t>(r1)) << 32;
|
|
int64_t opnd2 = static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
|
|
int64_t r1_val = opnd1 + opnd2;
|
|
int64_t alu_out = r1_val >> shiftBits;
|
|
set_low_register(r1, alu_out >> 32);
|
|
set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
break;
|
|
}
|
|
case SRDL: {
|
|
RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
|
|
int r1 = rsInstr->R1Value();
|
|
DCHECK(r1 % 2 == 0); // must be a reg pair
|
|
int b2 = rsInstr->B2Value();
|
|
intptr_t d2 = rsInstr->D2Value();
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
uint64_t opnd1 = static_cast<uint64_t>(get_low_register<uint32_t>(r1))
|
|
<< 32;
|
|
uint64_t opnd2 =
|
|
static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
|
|
uint64_t r1_val = opnd1 | opnd2;
|
|
uint64_t alu_out = r1_val >> shiftBits;
|
|
set_low_register(r1, alu_out >> 32);
|
|
set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
break;
|
|
}
|
|
default: { return DecodeFourByteArithmetic(instr); }
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Simulator::DecodeFourByteArithmetic64Bit(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
|
|
RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
|
|
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
|
|
|
switch (op) {
|
|
case AGR:
|
|
case SGR:
|
|
case OGR:
|
|
case NGR:
|
|
case XGR: {
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = get_register(r2);
|
|
bool isOF = false;
|
|
switch (op) {
|
|
case AGR:
|
|
isOF = CheckOverflowForIntAdd(r1_val, r2_val, int64_t);
|
|
r1_val += r2_val;
|
|
SetS390ConditionCode<int64_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
case SGR:
|
|
isOF = CheckOverflowForIntSub(r1_val, r2_val, int64_t);
|
|
r1_val -= r2_val;
|
|
SetS390ConditionCode<int64_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
case OGR:
|
|
r1_val |= r2_val;
|
|
SetS390BitWiseConditionCode<uint64_t>(r1_val);
|
|
break;
|
|
case NGR:
|
|
r1_val &= r2_val;
|
|
SetS390BitWiseConditionCode<uint64_t>(r1_val);
|
|
break;
|
|
case XGR:
|
|
r1_val ^= r2_val;
|
|
SetS390BitWiseConditionCode<uint64_t>(r1_val);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
set_register(r1, r1_val);
|
|
break;
|
|
}
|
|
case AGFR: {
|
|
// Add Register (64 <- 32) (Sign Extends 32-bit val)
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
|
|
bool isOF = CheckOverflowForIntAdd(r1_val, r2_val, int64_t);
|
|
r1_val += r2_val;
|
|
SetS390ConditionCode<int64_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r1_val);
|
|
break;
|
|
}
|
|
case SGFR: {
|
|
// Sub Reg (64 <- 32)
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntSub(r1_val, r2_val, int64_t);
|
|
r1_val -= r2_val;
|
|
SetS390ConditionCode<int64_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r1_val);
|
|
break;
|
|
}
|
|
case AGRK:
|
|
case SGRK:
|
|
case NGRK:
|
|
case OGRK:
|
|
case XGRK: {
|
|
// 64-bit Non-clobbering arithmetics / bitwise ops.
|
|
int r1 = rrfInst->R1Value();
|
|
int r2 = rrfInst->R2Value();
|
|
int r3 = rrfInst->R3Value();
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t r3_val = get_register(r3);
|
|
if (AGRK == op) {
|
|
bool isOF = CheckOverflowForIntAdd(r2_val, r3_val, int64_t);
|
|
SetS390ConditionCode<int64_t>(r2_val + r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r2_val + r3_val);
|
|
} else if (SGRK == op) {
|
|
bool isOF = CheckOverflowForIntSub(r2_val, r3_val, int64_t);
|
|
SetS390ConditionCode<int64_t>(r2_val - r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r2_val - r3_val);
|
|
} else {
|
|
// Assume bitwise operation here
|
|
uint64_t bitwise_result = 0;
|
|
if (NGRK == op) {
|
|
bitwise_result = r2_val & r3_val;
|
|
} else if (OGRK == op) {
|
|
bitwise_result = r2_val | r3_val;
|
|
} else if (XGRK == op) {
|
|
bitwise_result = r2_val ^ r3_val;
|
|
}
|
|
SetS390BitWiseConditionCode<uint64_t>(bitwise_result);
|
|
set_register(r1, bitwise_result);
|
|
}
|
|
break;
|
|
}
|
|
case ALGRK:
|
|
case SLGRK: {
|
|
// 64-bit Non-clobbering unsigned arithmetics
|
|
int r1 = rrfInst->R1Value();
|
|
int r2 = rrfInst->R2Value();
|
|
int r3 = rrfInst->R3Value();
|
|
uint64_t r2_val = get_register(r2);
|
|
uint64_t r3_val = get_register(r3);
|
|
if (ALGRK == op) {
|
|
bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
|
|
SetS390ConditionCode<uint64_t>(r2_val + r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r2_val + r3_val);
|
|
} else if (SLGRK == op) {
|
|
bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
|
|
SetS390ConditionCode<uint64_t>(r2_val - r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r2_val - r3_val);
|
|
}
|
|
break;
|
|
}
|
|
case AGHI:
|
|
case MGHI: {
|
|
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
|
int32_t r1 = riinst->R1Value();
|
|
int64_t i = static_cast<int64_t>(riinst->I2Value());
|
|
int64_t r1_val = get_register(r1);
|
|
bool isOF = false;
|
|
switch (op) {
|
|
case AGHI:
|
|
isOF = CheckOverflowForIntAdd(r1_val, i, int64_t);
|
|
r1_val += i;
|
|
break;
|
|
case MGHI:
|
|
isOF = CheckOverflowForMul(r1_val, i);
|
|
r1_val *= i;
|
|
break; // no overflow indication is given
|
|
default:
|
|
break;
|
|
}
|
|
set_register(r1, r1_val);
|
|
SetS390ConditionCode<int32_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Decodes and simulates four byte arithmetic instructions
|
|
*/
|
|
bool Simulator::DecodeFourByteArithmetic(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
|
|
// Pre-cast instruction to various types
|
|
RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
|
|
|
|
switch (op) {
|
|
case AGR:
|
|
case SGR:
|
|
case OGR:
|
|
case NGR:
|
|
case XGR:
|
|
case AGFR:
|
|
case SGFR: {
|
|
DecodeFourByteArithmetic64Bit(instr);
|
|
break;
|
|
}
|
|
case ARK:
|
|
case SRK:
|
|
case NRK:
|
|
case ORK:
|
|
case XRK: {
|
|
// 32-bit Non-clobbering arithmetics / bitwise ops
|
|
int r1 = rrfInst->R1Value();
|
|
int r2 = rrfInst->R2Value();
|
|
int r3 = rrfInst->R3Value();
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int32_t r3_val = get_low_register<int32_t>(r3);
|
|
if (ARK == op) {
|
|
bool isOF = CheckOverflowForIntAdd(r2_val, r3_val, int32_t);
|
|
SetS390ConditionCode<int32_t>(r2_val + r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, r2_val + r3_val);
|
|
} else if (SRK == op) {
|
|
bool isOF = CheckOverflowForIntSub(r2_val, r3_val, int32_t);
|
|
SetS390ConditionCode<int32_t>(r2_val - r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, r2_val - r3_val);
|
|
} else {
|
|
// Assume bitwise operation here
|
|
uint32_t bitwise_result = 0;
|
|
if (NRK == op) {
|
|
bitwise_result = r2_val & r3_val;
|
|
} else if (ORK == op) {
|
|
bitwise_result = r2_val | r3_val;
|
|
} else if (XRK == op) {
|
|
bitwise_result = r2_val ^ r3_val;
|
|
}
|
|
SetS390BitWiseConditionCode<uint32_t>(bitwise_result);
|
|
set_low_register(r1, bitwise_result);
|
|
}
|
|
break;
|
|
}
|
|
case ALRK:
|
|
case SLRK: {
|
|
// 32-bit Non-clobbering unsigned arithmetics
|
|
int r1 = rrfInst->R1Value();
|
|
int r2 = rrfInst->R2Value();
|
|
int r3 = rrfInst->R3Value();
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint32_t r3_val = get_low_register<uint32_t>(r3);
|
|
if (ALRK == op) {
|
|
bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
|
|
SetS390ConditionCode<uint32_t>(r2_val + r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, r2_val + r3_val);
|
|
} else if (SLRK == op) {
|
|
bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
|
|
SetS390ConditionCode<uint32_t>(r2_val - r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, r2_val - r3_val);
|
|
}
|
|
break;
|
|
}
|
|
case AGRK:
|
|
case SGRK:
|
|
case NGRK:
|
|
case OGRK:
|
|
case XGRK: {
|
|
DecodeFourByteArithmetic64Bit(instr);
|
|
break;
|
|
}
|
|
case ALGRK:
|
|
case SLGRK: {
|
|
DecodeFourByteArithmetic64Bit(instr);
|
|
break;
|
|
}
|
|
case AHI:
|
|
case MHI: {
|
|
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
|
int32_t r1 = riinst->R1Value();
|
|
int32_t i = riinst->I2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
bool isOF = false;
|
|
switch (op) {
|
|
case AHI:
|
|
isOF = CheckOverflowForIntAdd(r1_val, i, int32_t);
|
|
r1_val += i;
|
|
break;
|
|
case MHI:
|
|
isOF = CheckOverflowForMul(r1_val, i);
|
|
r1_val *= i;
|
|
break; // no overflow indication is given
|
|
default:
|
|
break;
|
|
}
|
|
set_low_register(r1, r1_val);
|
|
SetS390ConditionCode<int32_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
}
|
|
case AGHI:
|
|
case MGHI: {
|
|
DecodeFourByteArithmetic64Bit(instr);
|
|
break;
|
|
}
|
|
case MLR: {
|
|
RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreinst->R1Value();
|
|
int r2 = rreinst->R2Value();
|
|
DCHECK(r1 % 2 == 0);
|
|
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1 + 1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint64_t product =
|
|
static_cast<uint64_t>(r1_val) * static_cast<uint64_t>(r2_val);
|
|
int32_t high_bits = product >> 32;
|
|
int32_t low_bits = product & 0x00000000FFFFFFFF;
|
|
set_low_register(r1, high_bits);
|
|
set_low_register(r1 + 1, low_bits);
|
|
break;
|
|
}
|
|
case DLGR: {
|
|
#ifdef V8_TARGET_ARCH_S390X
|
|
RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreinst->R1Value();
|
|
int r2 = rreinst->R2Value();
|
|
uint64_t r1_val = get_register(r1);
|
|
uint64_t r2_val = get_register(r2);
|
|
DCHECK(r1 % 2 == 0);
|
|
unsigned __int128 dividend = static_cast<unsigned __int128>(r1_val) << 64;
|
|
dividend += get_register(r1 + 1);
|
|
uint64_t remainder = dividend % r2_val;
|
|
uint64_t quotient = dividend / r2_val;
|
|
r1_val = remainder;
|
|
set_register(r1, remainder);
|
|
set_register(r1 + 1, quotient);
|
|
#else
|
|
UNREACHABLE();
|
|
#endif
|
|
break;
|
|
}
|
|
case DLR: {
|
|
RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreinst->R1Value();
|
|
int r2 = rreinst->R2Value();
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
DCHECK(r1 % 2 == 0);
|
|
uint64_t dividend = static_cast<uint64_t>(r1_val) << 32;
|
|
dividend += get_low_register<uint32_t>(r1 + 1);
|
|
uint32_t remainder = dividend % r2_val;
|
|
uint32_t quotient = dividend / r2_val;
|
|
r1_val = remainder;
|
|
set_low_register(r1, remainder);
|
|
set_low_register(r1 + 1, quotient);
|
|
break;
|
|
}
|
|
case A:
|
|
case S:
|
|
case M:
|
|
case D:
|
|
case O:
|
|
case N:
|
|
case X: {
|
|
// 32-bit Reg-Mem instructions
|
|
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
|
int b2 = rxinst->B2Value();
|
|
int x2 = rxinst->X2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxinst->D2Value();
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
switch (op) {
|
|
case A:
|
|
isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
|
|
alu_out = r1_val + mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
case S:
|
|
isOF = CheckOverflowForIntSub(r1_val, mem_val, int32_t);
|
|
alu_out = r1_val - mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
case M:
|
|
case D:
|
|
UNIMPLEMENTED();
|
|
break;
|
|
case O:
|
|
alu_out = r1_val | mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
break;
|
|
case N:
|
|
alu_out = r1_val & mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
break;
|
|
case X:
|
|
alu_out = r1_val ^ mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
break;
|
|
}
|
|
case OILL:
|
|
case OIHL: {
|
|
RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr);
|
|
int r1 = riInst->R1Value();
|
|
int i = riInst->I2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
if (OILL == op) {
|
|
// CC is set based on the 16 bits that are AND'd
|
|
SetS390BitWiseConditionCode<uint16_t>(r1_val | i);
|
|
} else if (OILH == op) {
|
|
// CC is set based on the 16 bits that are AND'd
|
|
SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) | i);
|
|
i = i << 16;
|
|
} else {
|
|
UNIMPLEMENTED();
|
|
}
|
|
set_low_register(r1, r1_val | i);
|
|
break;
|
|
}
|
|
case NILL:
|
|
case NILH: {
|
|
RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr);
|
|
int r1 = riInst->R1Value();
|
|
int i = riInst->I2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
if (NILL == op) {
|
|
// CC is set based on the 16 bits that are AND'd
|
|
SetS390BitWiseConditionCode<uint16_t>(r1_val & i);
|
|
i |= 0xFFFF0000;
|
|
} else if (NILH == op) {
|
|
// CC is set based on the 16 bits that are AND'd
|
|
SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) & i);
|
|
i = (i << 16) | 0x0000FFFF;
|
|
} else {
|
|
UNIMPLEMENTED();
|
|
}
|
|
set_low_register(r1, r1_val & i);
|
|
break;
|
|
}
|
|
case AH:
|
|
case SH:
|
|
case MH: {
|
|
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
|
int b2 = rxinst->B2Value();
|
|
int x2 = rxinst->X2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxinst->D2Value();
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int32_t mem_val = static_cast<int32_t>(ReadH(addr, instr));
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
if (AH == op) {
|
|
isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
|
|
alu_out = r1_val + mem_val;
|
|
} else if (SH == op) {
|
|
isOF = CheckOverflowForIntSub(r1_val, mem_val, int32_t);
|
|
alu_out = r1_val - mem_val;
|
|
} else if (MH == op) {
|
|
alu_out = r1_val * mem_val;
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
if (MH != op) { // MH does not change condition code
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
}
|
|
break;
|
|
}
|
|
case DSGR: {
|
|
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
|
|
DCHECK(r1 % 2 == 0);
|
|
|
|
int64_t dividend = get_register(r1 + 1);
|
|
int64_t divisor = get_register(r2);
|
|
set_register(r1, dividend % divisor);
|
|
set_register(r1 + 1, dividend / divisor);
|
|
|
|
break;
|
|
}
|
|
case FLOGR: {
|
|
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
|
|
DCHECK(r1 % 2 == 0);
|
|
|
|
int64_t r2_val = get_register(r2);
|
|
|
|
int i = 0;
|
|
for (; i < 64; i++) {
|
|
if (r2_val < 0) break;
|
|
r2_val <<= 1;
|
|
}
|
|
|
|
r2_val = get_register(r2);
|
|
|
|
int64_t mask = ~(1 << (63 - i));
|
|
set_register(r1, i);
|
|
set_register(r1 + 1, r2_val & mask);
|
|
|
|
break;
|
|
}
|
|
case MSR:
|
|
case MSGR: { // they do not set overflow code
|
|
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
if (op == MSR) {
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
set_low_register(r1, r1_val * r2_val);
|
|
} else if (op == MSGR) {
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = get_register(r2);
|
|
set_register(r1, r1_val * r2_val);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
break;
|
|
}
|
|
case MS: {
|
|
RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
|
int r1 = rxinst->R1Value();
|
|
int b2 = rxinst->B2Value();
|
|
int x2 = rxinst->X2Value();
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t d2_val = rxinst->D2Value();
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
set_low_register(r1, r1_val * mem_val);
|
|
break;
|
|
}
|
|
case LGBR:
|
|
case LBR: {
|
|
RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
if (op == LGBR) {
|
|
int64_t r2_val = get_low_register<int64_t>(r2);
|
|
r2_val <<= 56;
|
|
r2_val >>= 56;
|
|
set_register(r1, r2_val);
|
|
} else if (op == LBR) {
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
r2_val <<= 24;
|
|
r2_val >>= 24;
|
|
set_low_register(r1, r2_val);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
break;
|
|
}
|
|
case LGHR:
|
|
case LHR: {
|
|
RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
if (op == LGHR) {
|
|
int64_t r2_val = get_low_register<int64_t>(r2);
|
|
r2_val <<= 48;
|
|
r2_val >>= 48;
|
|
set_register(r1, r2_val);
|
|
} else if (op == LHR) {
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
r2_val <<= 16;
|
|
r2_val >>= 16;
|
|
set_low_register(r1, r2_val);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
break;
|
|
}
|
|
case ALCR: {
|
|
RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint32_t alu_out = 0;
|
|
bool isOF = false;
|
|
|
|
alu_out = r1_val + r2_val;
|
|
bool isOF_original = CheckOverflowForUIntAdd(r1_val, r2_val);
|
|
if (TestConditionCode((Condition)2) || TestConditionCode((Condition)3)) {
|
|
alu_out = alu_out + 1;
|
|
isOF = isOF_original || CheckOverflowForUIntAdd(alu_out, 1);
|
|
} else {
|
|
isOF = isOF_original;
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
|
|
break;
|
|
}
|
|
case SLBR: {
|
|
RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rrinst->R1Value();
|
|
int r2 = rrinst->R2Value();
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint32_t alu_out = 0;
|
|
bool isOF = false;
|
|
|
|
alu_out = r1_val - r2_val;
|
|
bool isOF_original = CheckOverflowForUIntSub(r1_val, r2_val);
|
|
if (TestConditionCode((Condition)2) || TestConditionCode((Condition)3)) {
|
|
alu_out = alu_out - 1;
|
|
isOF = isOF_original || CheckOverflowForUIntSub(alu_out, 1);
|
|
} else {
|
|
isOF = isOF_original;
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
|
|
break;
|
|
}
|
|
default: { return DecodeFourByteFloatingPoint(instr); }
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Simulator::DecodeFourByteFloatingPointIntConversion(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
switch (op) {
|
|
case CDLFBR:
|
|
case CDLGBR:
|
|
case CELGBR:
|
|
case CLFDBR:
|
|
case CLGDBR:
|
|
case CELFBR:
|
|
case CLGEBR:
|
|
case CLFEBR: {
|
|
RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreInstr->R1Value();
|
|
int r2 = rreInstr->R2Value();
|
|
if (op == CDLFBR) {
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
double r1_val = static_cast<double>(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
} else if (op == CELFBR) {
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
float r1_val = static_cast<float>(r2_val);
|
|
set_d_register_from_float32(r1, r1_val);
|
|
} else if (op == CDLGBR) {
|
|
uint64_t r2_val = get_register(r2);
|
|
double r1_val = static_cast<double>(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
} else if (op == CELGBR) {
|
|
uint64_t r2_val = get_register(r2);
|
|
float r1_val = static_cast<float>(r2_val);
|
|
set_d_register_from_float32(r1, r1_val);
|
|
} else if (op == CLFDBR) {
|
|
double r2_val = get_double_from_d_register(r2);
|
|
uint32_t r1_val = static_cast<uint32_t>(r2_val);
|
|
set_low_register(r1, r1_val);
|
|
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT32_MAX);
|
|
} else if (op == CLFEBR) {
|
|
float r2_val = get_float32_from_d_register(r2);
|
|
uint32_t r1_val = static_cast<uint32_t>(r2_val);
|
|
set_low_register(r1, r1_val);
|
|
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT32_MAX);
|
|
} else if (op == CLGDBR) {
|
|
double r2_val = get_double_from_d_register(r2);
|
|
uint64_t r1_val = static_cast<uint64_t>(r2_val);
|
|
set_register(r1, r1_val);
|
|
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT64_MAX);
|
|
} else if (op == CLGEBR) {
|
|
float r2_val = get_float32_from_d_register(r2);
|
|
uint64_t r1_val = static_cast<uint64_t>(r2_val);
|
|
set_register(r1, r1_val);
|
|
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT64_MAX);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void Simulator::DecodeFourByteFloatingPointRound(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreInstr->R1Value();
|
|
int r2 = rreInstr->R2Value();
|
|
double r2_val = get_double_from_d_register(r2);
|
|
float r2_fval = get_float32_from_d_register(r2);
|
|
|
|
switch (op) {
|
|
case CFDBR: {
|
|
int mask_val = rreInstr->M3Value();
|
|
int32_t r1_val = 0;
|
|
|
|
SetS390RoundConditionCode(r2_val, INT32_MAX, INT32_MIN);
|
|
|
|
switch (mask_val) {
|
|
case CURRENT_ROUNDING_MODE:
|
|
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
|
r1_val = static_cast<int32_t>(r2_val);
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
|
|
double ceil_val = std::ceil(r2_val);
|
|
double floor_val = std::floor(r2_val);
|
|
double sub_val1 = std::fabs(r2_val - floor_val);
|
|
double sub_val2 = std::fabs(r2_val - ceil_val);
|
|
if (sub_val1 > sub_val2) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else if (sub_val1 < sub_val2) {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
} else { // round away from zero:
|
|
if (r2_val > 0.0) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
|
double ceil_val = std::ceil(r2_val);
|
|
double floor_val = std::floor(r2_val);
|
|
double sub_val1 = std::fabs(r2_val - floor_val);
|
|
double sub_val2 = std::fabs(r2_val - ceil_val);
|
|
if (sub_val1 > sub_val2) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else if (sub_val1 < sub_val2) {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
} else { // check which one is even:
|
|
int32_t c_v = static_cast<int32_t>(ceil_val);
|
|
int32_t f_v = static_cast<int32_t>(floor_val);
|
|
if (f_v % 2 == 0)
|
|
r1_val = f_v;
|
|
else
|
|
r1_val = c_v;
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_0: {
|
|
// check for overflow, cast r2_val to 64bit integer
|
|
// then check value within the range of INT_MIN and INT_MAX
|
|
// and set condition code accordingly
|
|
int64_t temp = static_cast<int64_t>(r2_val);
|
|
if (temp < INT_MIN || temp > INT_MAX) {
|
|
condition_reg_ = CC_OF;
|
|
}
|
|
r1_val = static_cast<int32_t>(r2_val);
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_PLUS_INFINITE: {
|
|
r1_val = static_cast<int32_t>(std::ceil(r2_val));
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_MINUS_INFINITE: {
|
|
// check for overflow, cast r2_val to 64bit integer
|
|
// then check value within the range of INT_MIN and INT_MAX
|
|
// and set condition code accordingly
|
|
int64_t temp = static_cast<int64_t>(std::floor(r2_val));
|
|
if (temp < INT_MIN || temp > INT_MAX) {
|
|
condition_reg_ = CC_OF;
|
|
}
|
|
r1_val = static_cast<int32_t>(std::floor(r2_val));
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
set_low_register(r1, r1_val);
|
|
break;
|
|
}
|
|
case CGDBR: {
|
|
int mask_val = rreInstr->M3Value();
|
|
int64_t r1_val = 0;
|
|
|
|
SetS390RoundConditionCode(r2_val, INT64_MAX, INT64_MIN);
|
|
|
|
switch (mask_val) {
|
|
case CURRENT_ROUNDING_MODE:
|
|
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
|
|
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
|
double ceil_val = std::ceil(r2_val);
|
|
double floor_val = std::floor(r2_val);
|
|
if (std::abs(r2_val - floor_val) > std::abs(r2_val - ceil_val)) {
|
|
r1_val = static_cast<int64_t>(ceil_val);
|
|
} else if (std::abs(r2_val - floor_val) <
|
|
std::abs(r2_val - ceil_val)) {
|
|
r1_val = static_cast<int64_t>(floor_val);
|
|
} else { // check which one is even:
|
|
int64_t c_v = static_cast<int64_t>(ceil_val);
|
|
int64_t f_v = static_cast<int64_t>(floor_val);
|
|
if (f_v % 2 == 0)
|
|
r1_val = f_v;
|
|
else
|
|
r1_val = c_v;
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_0: {
|
|
r1_val = static_cast<int64_t>(r2_val);
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_PLUS_INFINITE: {
|
|
r1_val = static_cast<int64_t>(std::ceil(r2_val));
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_MINUS_INFINITE: {
|
|
r1_val = static_cast<int64_t>(std::floor(r2_val));
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
set_register(r1, r1_val);
|
|
break;
|
|
}
|
|
case CGEBR: {
|
|
int mask_val = rreInstr->M3Value();
|
|
int64_t r1_val = 0;
|
|
|
|
SetS390RoundConditionCode(r2_fval, INT64_MAX, INT64_MIN);
|
|
|
|
switch (mask_val) {
|
|
case CURRENT_ROUNDING_MODE:
|
|
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
|
|
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
|
float ceil_val = std::ceil(r2_fval);
|
|
float floor_val = std::floor(r2_fval);
|
|
if (std::abs(r2_fval - floor_val) > std::abs(r2_fval - ceil_val)) {
|
|
r1_val = static_cast<int64_t>(ceil_val);
|
|
} else if (std::abs(r2_fval - floor_val) <
|
|
std::abs(r2_fval - ceil_val)) {
|
|
r1_val = static_cast<int64_t>(floor_val);
|
|
} else { // check which one is even:
|
|
int64_t c_v = static_cast<int64_t>(ceil_val);
|
|
int64_t f_v = static_cast<int64_t>(floor_val);
|
|
if (f_v % 2 == 0)
|
|
r1_val = f_v;
|
|
else
|
|
r1_val = c_v;
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_0: {
|
|
r1_val = static_cast<int64_t>(r2_fval);
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_PLUS_INFINITE: {
|
|
r1_val = static_cast<int64_t>(std::ceil(r2_fval));
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_MINUS_INFINITE: {
|
|
r1_val = static_cast<int64_t>(std::floor(r2_fval));
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
set_register(r1, r1_val);
|
|
break;
|
|
}
|
|
case CFEBR: {
|
|
int mask_val = rreInstr->M3Value();
|
|
int32_t r1_val = 0;
|
|
|
|
SetS390RoundConditionCode(r2_fval, INT32_MAX, INT32_MIN);
|
|
|
|
switch (mask_val) {
|
|
case CURRENT_ROUNDING_MODE:
|
|
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
|
r1_val = static_cast<int32_t>(r2_fval);
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
|
|
float ceil_val = std::ceil(r2_fval);
|
|
float floor_val = std::floor(r2_fval);
|
|
float sub_val1 = std::fabs(r2_fval - floor_val);
|
|
float sub_val2 = std::fabs(r2_fval - ceil_val);
|
|
if (sub_val1 > sub_val2) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else if (sub_val1 < sub_val2) {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
} else { // round away from zero:
|
|
if (r2_fval > 0.0) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
|
float ceil_val = std::ceil(r2_fval);
|
|
float floor_val = std::floor(r2_fval);
|
|
float sub_val1 = std::fabs(r2_fval - floor_val);
|
|
float sub_val2 = std::fabs(r2_fval - ceil_val);
|
|
if (sub_val1 > sub_val2) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else if (sub_val1 < sub_val2) {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
} else { // check which one is even:
|
|
int32_t c_v = static_cast<int32_t>(ceil_val);
|
|
int32_t f_v = static_cast<int32_t>(floor_val);
|
|
if (f_v % 2 == 0)
|
|
r1_val = f_v;
|
|
else
|
|
r1_val = c_v;
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_0: {
|
|
// check for overflow, cast r2_fval to 64bit integer
|
|
// then check value within the range of INT_MIN and INT_MAX
|
|
// and set condition code accordingly
|
|
int64_t temp = static_cast<int64_t>(r2_fval);
|
|
if (temp < INT_MIN || temp > INT_MAX) {
|
|
condition_reg_ = CC_OF;
|
|
}
|
|
r1_val = static_cast<int32_t>(r2_fval);
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_PLUS_INFINITE: {
|
|
r1_val = static_cast<int32_t>(std::ceil(r2_fval));
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_MINUS_INFINITE: {
|
|
// check for overflow, cast r2_fval to 64bit integer
|
|
// then check value within the range of INT_MIN and INT_MAX
|
|
// and set condition code accordingly
|
|
int64_t temp = static_cast<int64_t>(std::floor(r2_fval));
|
|
if (temp < INT_MIN || temp > INT_MAX) {
|
|
condition_reg_ = CC_OF;
|
|
}
|
|
r1_val = static_cast<int32_t>(std::floor(r2_fval));
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
set_low_register(r1, r1_val);
|
|
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decodes and simulates four byte floating point instructions
|
|
*/
|
|
bool Simulator::DecodeFourByteFloatingPoint(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
|
|
switch (op) {
|
|
case ADBR:
|
|
case AEBR:
|
|
case SDBR:
|
|
case SEBR:
|
|
case MDBR:
|
|
case MEEBR:
|
|
case MADBR:
|
|
case DDBR:
|
|
case DEBR:
|
|
case CDBR:
|
|
case CEBR:
|
|
case CDFBR:
|
|
case CDGBR:
|
|
case CEGBR:
|
|
case CGEBR:
|
|
case CFDBR:
|
|
case CGDBR:
|
|
case SQDBR:
|
|
case SQEBR:
|
|
case CFEBR:
|
|
case CEFBR:
|
|
case LCDBR:
|
|
case LCEBR:
|
|
case LPDBR:
|
|
case LPEBR: {
|
|
RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreInstr->R1Value();
|
|
int r2 = rreInstr->R2Value();
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
float fr1_val = get_float32_from_d_register(r1);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
if (op == ADBR) {
|
|
r1_val += r2_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
} else if (op == AEBR) {
|
|
fr1_val += fr2_val;
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
SetS390ConditionCode<float>(fr1_val, 0);
|
|
} else if (op == SDBR) {
|
|
r1_val -= r2_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
} else if (op == SEBR) {
|
|
fr1_val -= fr2_val;
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
SetS390ConditionCode<float>(fr1_val, 0);
|
|
} else if (op == MDBR) {
|
|
r1_val *= r2_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
} else if (op == MEEBR) {
|
|
fr1_val *= fr2_val;
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
SetS390ConditionCode<float>(fr1_val, 0);
|
|
} else if (op == MADBR) {
|
|
RRDInstruction* rrdInstr = reinterpret_cast<RRDInstruction*>(instr);
|
|
int r1 = rrdInstr->R1Value();
|
|
int r2 = rrdInstr->R2Value();
|
|
int r3 = rrdInstr->R3Value();
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
double r3_val = get_double_from_d_register(r3);
|
|
r1_val += r2_val * r3_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
} else if (op == DDBR) {
|
|
r1_val /= r2_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
} else if (op == DEBR) {
|
|
fr1_val /= fr2_val;
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
SetS390ConditionCode<float>(fr1_val, 0);
|
|
} else if (op == CDBR) {
|
|
if (isNaN(r1_val) || isNaN(r2_val)) {
|
|
condition_reg_ = CC_OF;
|
|
} else {
|
|
SetS390ConditionCode<double>(r1_val, r2_val);
|
|
}
|
|
} else if (op == CEBR) {
|
|
if (isNaN(fr1_val) || isNaN(fr2_val)) {
|
|
condition_reg_ = CC_OF;
|
|
} else {
|
|
SetS390ConditionCode<float>(fr1_val, fr2_val);
|
|
}
|
|
} else if (op == CDGBR) {
|
|
int64_t r2_val = get_register(r2);
|
|
double r1_val = static_cast<double>(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
} else if (op == CEGBR) {
|
|
int64_t fr2_val = get_register(r2);
|
|
float fr1_val = static_cast<float>(fr2_val);
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
} else if (op == CDFBR) {
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
double r1_val = static_cast<double>(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
} else if (op == CEFBR) {
|
|
int32_t fr2_val = get_low_register<int32_t>(r2);
|
|
float fr1_val = static_cast<float>(fr2_val);
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
} else if (op == CFDBR) {
|
|
DecodeFourByteFloatingPointRound(instr);
|
|
} else if (op == CGDBR) {
|
|
DecodeFourByteFloatingPointRound(instr);
|
|
} else if (op == CGEBR) {
|
|
DecodeFourByteFloatingPointRound(instr);
|
|
} else if (op == SQDBR) {
|
|
r1_val = std::sqrt(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
} else if (op == SQEBR) {
|
|
fr1_val = std::sqrt(fr2_val);
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
} else if (op == CFEBR) {
|
|
DecodeFourByteFloatingPointRound(instr);
|
|
} else if (op == LCDBR) {
|
|
r1_val = -r2_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
if (r2_val != r2_val) { // input is NaN
|
|
condition_reg_ = CC_OF;
|
|
} else if (r2_val == 0) {
|
|
condition_reg_ = CC_EQ;
|
|
} else if (r2_val < 0) {
|
|
condition_reg_ = CC_LT;
|
|
} else if (r2_val > 0) {
|
|
condition_reg_ = CC_GT;
|
|
}
|
|
} else if (op == LCEBR) {
|
|
fr1_val = -fr2_val;
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
if (fr2_val != fr2_val) { // input is NaN
|
|
condition_reg_ = CC_OF;
|
|
} else if (fr2_val == 0) {
|
|
condition_reg_ = CC_EQ;
|
|
} else if (fr2_val < 0) {
|
|
condition_reg_ = CC_LT;
|
|
} else if (fr2_val > 0) {
|
|
condition_reg_ = CC_GT;
|
|
}
|
|
} else if (op == LPDBR) {
|
|
r1_val = std::fabs(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
if (r2_val != r2_val) { // input is NaN
|
|
condition_reg_ = CC_OF;
|
|
} else if (r2_val == 0) {
|
|
condition_reg_ = CC_EQ;
|
|
} else {
|
|
condition_reg_ = CC_GT;
|
|
}
|
|
} else if (op == LPEBR) {
|
|
fr1_val = std::fabs(fr2_val);
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
if (fr2_val != fr2_val) { // input is NaN
|
|
condition_reg_ = CC_OF;
|
|
} else if (fr2_val == 0) {
|
|
condition_reg_ = CC_EQ;
|
|
} else {
|
|
condition_reg_ = CC_GT;
|
|
}
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
break;
|
|
}
|
|
case CDLFBR:
|
|
case CDLGBR:
|
|
case CELGBR:
|
|
case CLFDBR:
|
|
case CELFBR:
|
|
case CLGDBR:
|
|
case CLGEBR:
|
|
case CLFEBR: {
|
|
DecodeFourByteFloatingPointIntConversion(instr);
|
|
break;
|
|
}
|
|
case TMLL: {
|
|
RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
|
int r1 = riinst->R1Value();
|
|
int mask = riinst->I2Value() & 0x0000FFFF;
|
|
if (mask == 0) {
|
|
condition_reg_ = 0x0;
|
|
break;
|
|
}
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
r1_val = r1_val & 0x0000FFFF; // uses only the last 16bits
|
|
|
|
// Test if all selected bits are Zero
|
|
bool allSelectedBitsAreZeros = true;
|
|
for (int i = 0; i < 15; i++) {
|
|
if (mask & (1 << i)) {
|
|
if (r1_val & (1 << i)) {
|
|
allSelectedBitsAreZeros = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (allSelectedBitsAreZeros) {
|
|
condition_reg_ = 0x8;
|
|
break; // Done!
|
|
}
|
|
|
|
// Test if all selected bits are one
|
|
bool allSelectedBitsAreOnes = true;
|
|
for (int i = 0; i < 15; i++) {
|
|
if (mask & (1 << i)) {
|
|
if (!(r1_val & (1 << i))) {
|
|
allSelectedBitsAreOnes = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (allSelectedBitsAreOnes) {
|
|
condition_reg_ = 0x1;
|
|
break; // Done!
|
|
}
|
|
|
|
// Now we know selected bits mixed zeros and ones
|
|
// Test if the leftmost bit is zero or one
|
|
for (int i = 14; i >= 0; i--) {
|
|
if (mask & (1 << i)) {
|
|
if (r1_val & (1 << i)) {
|
|
// leftmost bit is one
|
|
condition_reg_ = 0x2;
|
|
} else {
|
|
// leftmost bit is zero
|
|
condition_reg_ = 0x4;
|
|
}
|
|
break; // Done!
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case LEDBR: {
|
|
RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreInst->R1Value();
|
|
int r2 = rreInst->R2Value();
|
|
double r2_val = get_double_from_d_register(r2);
|
|
set_d_register_from_float32(r1, static_cast<float>(r2_val));
|
|
break;
|
|
}
|
|
case FIDBRA: {
|
|
RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
|
|
int r1 = rrfInst->R1Value();
|
|
int r2 = rrfInst->R2Value();
|
|
int m3 = rrfInst->M3Value();
|
|
double r2_val = get_double_from_d_register(r2);
|
|
DCHECK(rrfInst->M4Value() == 0);
|
|
switch (m3) {
|
|
case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
|
|
set_d_register_from_double(r1, round(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_0:
|
|
set_d_register_from_double(r1, trunc(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
|
|
set_d_register_from_double(r1, std::ceil(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
|
|
set_d_register_from_double(r1, std::floor(r2_val));
|
|
break;
|
|
default:
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case FIEBRA: {
|
|
RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
|
|
int r1 = rrfInst->R1Value();
|
|
int r2 = rrfInst->R2Value();
|
|
int m3 = rrfInst->M3Value();
|
|
float r2_val = get_float32_from_d_register(r2);
|
|
DCHECK(rrfInst->M4Value() == 0);
|
|
switch (m3) {
|
|
case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
|
|
set_d_register_from_float32(r1, round(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_0:
|
|
set_d_register_from_float32(r1, trunc(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
|
|
set_d_register_from_float32(r1, std::ceil(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
|
|
set_d_register_from_float32(r1, std::floor(r2_val));
|
|
break;
|
|
default:
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case MSDBR: {
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
case LDEBR: {
|
|
RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
|
|
int r1 = rreInstr->R1Value();
|
|
int r2 = rreInstr->R2Value();
|
|
float fp_val = get_float32_from_d_register(r2);
|
|
double db_val = static_cast<double>(fp_val);
|
|
set_d_register_from_double(r1, db_val);
|
|
break;
|
|
}
|
|
default: {
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Decode routine for six-byte instructions
|
|
bool Simulator::DecodeSixByte(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
|
|
// Pre-cast instruction to various types
|
|
RIEInstruction* rieInstr = reinterpret_cast<RIEInstruction*>(instr);
|
|
RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
|
|
RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
|
|
RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr);
|
|
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
|
SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr);
|
|
SILInstruction* silInstr = reinterpret_cast<SILInstruction*>(instr);
|
|
SSInstruction* ssInstr = reinterpret_cast<SSInstruction*>(instr);
|
|
|
|
switch (op) {
|
|
case CLIY: {
|
|
// Compare Immediate (Mem - Imm) (8)
|
|
int b1 = siyInstr->B1Value();
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t d1_val = siyInstr->D1Value();
|
|
intptr_t addr = b1_val + d1_val;
|
|
uint8_t mem_val = ReadB(addr);
|
|
uint8_t imm_val = siyInstr->I2Value();
|
|
SetS390ConditionCode<uint8_t>(mem_val, imm_val);
|
|
break;
|
|
}
|
|
case TMY: {
|
|
// Test Under Mask (Mem - Imm) (8)
|
|
int b1 = siyInstr->B1Value();
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t d1_val = siyInstr->D1Value();
|
|
intptr_t addr = b1_val + d1_val;
|
|
uint8_t mem_val = ReadB(addr);
|
|
uint8_t imm_val = siyInstr->I2Value();
|
|
uint8_t selected_bits = mem_val & imm_val;
|
|
// CC0: Selected bits are zero
|
|
// CC1: Selected bits mixed zeros and ones
|
|
// CC3: Selected bits all ones
|
|
if (0 == selected_bits) {
|
|
condition_reg_ = CC_EQ; // CC0
|
|
} else if (selected_bits == imm_val) {
|
|
condition_reg_ = 0x1; // CC3
|
|
} else {
|
|
condition_reg_ = 0x4; // CC1
|
|
}
|
|
break;
|
|
}
|
|
case LDEB: {
|
|
// Load Float
|
|
int r1 = rxeInstr->R1Value();
|
|
int rb = rxeInstr->B2Value();
|
|
int rx = rxeInstr->X2Value();
|
|
int offset = rxeInstr->D2Value();
|
|
int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
|
|
int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
|
|
double ret = static_cast<double>(
|
|
*reinterpret_cast<float*>(rx_val + rb_val + offset));
|
|
set_d_register_from_double(r1, ret);
|
|
break;
|
|
}
|
|
case LAY: {
|
|
// Load Address
|
|
int r1 = rxyInstr->R1Value();
|
|
int rb = rxyInstr->B2Value();
|
|
int rx = rxyInstr->X2Value();
|
|
int offset = rxyInstr->D2Value();
|
|
int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
|
|
int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
|
|
set_register(r1, rx_val + rb_val + offset);
|
|
break;
|
|
}
|
|
case LARL: {
|
|
// Load Addresss Relative Long
|
|
int r1 = rilInstr->R1Value();
|
|
intptr_t offset = rilInstr->I2Value() * 2;
|
|
set_register(r1, get_pc() + offset);
|
|
break;
|
|
}
|
|
case LLILF: {
|
|
// Load Logical into lower 32-bits (zero extend upper 32-bits)
|
|
int r1 = rilInstr->R1Value();
|
|
uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
|
|
set_register(r1, imm);
|
|
break;
|
|
}
|
|
case LLIHF: {
|
|
// Load Logical Immediate into high word
|
|
int r1 = rilInstr->R1Value();
|
|
uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
|
|
set_register(r1, imm << 32);
|
|
break;
|
|
}
|
|
case OILF:
|
|
case NILF:
|
|
case IILF: {
|
|
// Bitwise Op on lower 32-bits
|
|
int r1 = rilInstr->R1Value();
|
|
uint32_t imm = rilInstr->I2UnsignedValue();
|
|
uint32_t alu_out = get_low_register<uint32_t>(r1);
|
|
if (NILF == op) {
|
|
alu_out &= imm;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
} else if (OILF == op) {
|
|
alu_out |= imm;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
} else if (op == IILF) {
|
|
alu_out = imm;
|
|
} else {
|
|
DCHECK(false);
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
break;
|
|
}
|
|
case OIHF:
|
|
case NIHF:
|
|
case IIHF: {
|
|
// Bitwise Op on upper 32-bits
|
|
int r1 = rilInstr->R1Value();
|
|
uint32_t imm = rilInstr->I2Value();
|
|
uint32_t alu_out = get_high_register<uint32_t>(r1);
|
|
if (op == NIHF) {
|
|
alu_out &= imm;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
} else if (op == OIHF) {
|
|
alu_out |= imm;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
} else if (op == IIHF) {
|
|
alu_out = imm;
|
|
} else {
|
|
DCHECK(false);
|
|
}
|
|
set_high_register(r1, alu_out);
|
|
break;
|
|
}
|
|
case CLFI: {
|
|
// Compare Logical with Immediate (32)
|
|
int r1 = rilInstr->R1Value();
|
|
uint32_t imm = rilInstr->I2UnsignedValue();
|
|
SetS390ConditionCode<uint32_t>(get_low_register<uint32_t>(r1), imm);
|
|
break;
|
|
}
|
|
case CFI: {
|
|
// Compare with Immediate (32)
|
|
int r1 = rilInstr->R1Value();
|
|
int32_t imm = rilInstr->I2Value();
|
|
SetS390ConditionCode<int32_t>(get_low_register<int32_t>(r1), imm);
|
|
break;
|
|
}
|
|
case CLGFI: {
|
|
// Compare Logical with Immediate (64)
|
|
int r1 = rilInstr->R1Value();
|
|
uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
|
|
SetS390ConditionCode<uint64_t>(get_register(r1), imm);
|
|
break;
|
|
}
|
|
case CGFI: {
|
|
// Compare with Immediate (64)
|
|
int r1 = rilInstr->R1Value();
|
|
int64_t imm = static_cast<int64_t>(rilInstr->I2Value());
|
|
SetS390ConditionCode<int64_t>(get_register(r1), imm);
|
|
break;
|
|
}
|
|
case BRASL: {
|
|
// Branch and Save Relative Long
|
|
int r1 = rilInstr->R1Value();
|
|
intptr_t d2 = rilInstr->I2Value();
|
|
intptr_t pc = get_pc();
|
|
set_register(r1, pc + 6); // save next instruction to register
|
|
set_pc(pc + d2 * 2); // update register
|
|
break;
|
|
}
|
|
case BRCL: {
|
|
// Branch on Condition Relative Long
|
|
Condition m1 = (Condition)rilInstr->R1Value();
|
|
if (TestConditionCode((Condition)m1)) {
|
|
intptr_t offset = rilInstr->I2Value() * 2;
|
|
set_pc(get_pc() + offset);
|
|
}
|
|
break;
|
|
}
|
|
case LMG:
|
|
case STMG: {
|
|
// Store Multiple 64-bits.
|
|
int r1 = rsyInstr->R1Value();
|
|
int r3 = rsyInstr->R3Value();
|
|
int rb = rsyInstr->B2Value();
|
|
int offset = rsyInstr->D2Value();
|
|
|
|
// Regs roll around if r3 is less than r1.
|
|
// Artifically increase r3 by 16 so we can calculate
|
|
// the number of regs stored properly.
|
|
if (r3 < r1) r3 += 16;
|
|
|
|
int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
|
|
|
|
// Store each register in ascending order.
|
|
for (int i = 0; i <= r3 - r1; i++) {
|
|
if (op == LMG) {
|
|
int64_t value = ReadDW(rb_val + offset + 8 * i);
|
|
set_register((r1 + i) % 16, value);
|
|
} else if (op == STMG) {
|
|
int64_t value = get_register((r1 + i) % 16);
|
|
WriteDW(rb_val + offset + 8 * i, value);
|
|
} else {
|
|
DCHECK(false);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case SLLK:
|
|
case RLL:
|
|
case SRLK:
|
|
case SLLG:
|
|
case RLLG:
|
|
case SRLG: {
|
|
DecodeSixByteBitShift(instr);
|
|
break;
|
|
}
|
|
case SLAK:
|
|
case SRAK: {
|
|
// 32-bit non-clobbering shift-left/right arithmetic
|
|
int r1 = rsyInstr->R1Value();
|
|
int r3 = rsyInstr->R3Value();
|
|
int b2 = rsyInstr->B2Value();
|
|
intptr_t d2 = rsyInstr->D2Value();
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int32_t r3_val = get_low_register<int32_t>(r3);
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
if (op == SLAK) {
|
|
isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
|
|
alu_out = r3_val << shiftBits;
|
|
} else if (op == SRAK) {
|
|
alu_out = r3_val >> shiftBits;
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
}
|
|
case SLAG:
|
|
case SRAG: {
|
|
// 64-bit non-clobbering shift-left/right arithmetic
|
|
int r1 = rsyInstr->R1Value();
|
|
int r3 = rsyInstr->R3Value();
|
|
int b2 = rsyInstr->B2Value();
|
|
intptr_t d2 = rsyInstr->D2Value();
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int64_t r3_val = get_register(r3);
|
|
intptr_t alu_out = 0;
|
|
bool isOF = false;
|
|
if (op == SLAG) {
|
|
isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
|
|
alu_out = r3_val << shiftBits;
|
|
} else if (op == SRAG) {
|
|
alu_out = r3_val >> shiftBits;
|
|
}
|
|
set_register(r1, alu_out);
|
|
SetS390ConditionCode<intptr_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
}
|
|
case LMY:
|
|
case STMY: {
|
|
RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
|
|
// Load/Store Multiple (32)
|
|
int r1 = rsyInstr->R1Value();
|
|
int r3 = rsyInstr->R3Value();
|
|
int b2 = rsyInstr->B2Value();
|
|
int offset = rsyInstr->D2Value();
|
|
|
|
// Regs roll around if r3 is less than r1.
|
|
// Artifically increase r3 by 16 so we can calculate
|
|
// the number of regs stored properly.
|
|
if (r3 < r1) r3 += 16;
|
|
|
|
int32_t b2_val = (b2 == 0) ? 0 : get_low_register<int32_t>(b2);
|
|
|
|
// Store each register in ascending order.
|
|
for (int i = 0; i <= r3 - r1; i++) {
|
|
if (op == LMY) {
|
|
int32_t value = ReadW(b2_val + offset + 4 * i, instr);
|
|
set_low_register((r1 + i) % 16, value);
|
|
} else {
|
|
int32_t value = get_low_register<int32_t>((r1 + i) % 16);
|
|
WriteW(b2_val + offset + 4 * i, value, instr);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case LT:
|
|
case LTG: {
|
|
// Load and Test (32/64)
|
|
int r1 = rxyInstr->R1Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int b2 = rxyInstr->B2Value();
|
|
int d2 = rxyInstr->D2Value();
|
|
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
|
|
if (op == LT) {
|
|
int32_t value = ReadW(addr, instr);
|
|
set_low_register(r1, value);
|
|
SetS390ConditionCode<int32_t>(value, 0);
|
|
} else if (op == LTG) {
|
|
int64_t value = ReadDW(addr);
|
|
set_register(r1, value);
|
|
SetS390ConditionCode<int64_t>(value, 0);
|
|
}
|
|
break;
|
|
}
|
|
case LY:
|
|
case LB:
|
|
case LGB:
|
|
case LG:
|
|
case LGF:
|
|
case LGH:
|
|
case LLGF:
|
|
case STG:
|
|
case STY:
|
|
case STCY:
|
|
case STHY:
|
|
case STEY:
|
|
case LDY:
|
|
case LHY:
|
|
case STDY:
|
|
case LEY: {
|
|
// Miscellaneous Loads and Stores
|
|
int r1 = rxyInstr->R1Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int b2 = rxyInstr->B2Value();
|
|
int d2 = rxyInstr->D2Value();
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
if (op == LY) {
|
|
uint32_t mem_val = ReadWU(addr, instr);
|
|
set_low_register(r1, mem_val);
|
|
} else if (op == LB) {
|
|
int32_t mem_val = ReadB(addr);
|
|
set_low_register(r1, mem_val);
|
|
} else if (op == LGB) {
|
|
int64_t mem_val = ReadB(addr);
|
|
set_register(r1, mem_val);
|
|
} else if (op == LG) {
|
|
int64_t mem_val = ReadDW(addr);
|
|
set_register(r1, mem_val);
|
|
} else if (op == LGF) {
|
|
int64_t mem_val = static_cast<int64_t>(ReadW(addr, instr));
|
|
set_register(r1, mem_val);
|
|
} else if (op == LGH) {
|
|
int64_t mem_val = static_cast<int64_t>(ReadH(addr, instr));
|
|
set_register(r1, mem_val);
|
|
} else if (op == LLGF) {
|
|
// int r1 = rreInst->R1Value();
|
|
// int r2 = rreInst->R2Value();
|
|
// int32_t r2_val = get_low_register<int32_t>(r2);
|
|
// uint64_t r2_finalval = (static_cast<uint64_t>(r2_val)
|
|
// & 0x00000000ffffffff);
|
|
// set_register(r1, r2_finalval);
|
|
// break;
|
|
uint64_t mem_val = static_cast<uint64_t>(ReadWU(addr, instr));
|
|
set_register(r1, mem_val);
|
|
} else if (op == LDY) {
|
|
uint64_t dbl_val = *reinterpret_cast<uint64_t*>(addr);
|
|
set_d_register(r1, dbl_val);
|
|
} else if (op == STEY) {
|
|
int64_t frs_val = get_d_register(r1) >> 32;
|
|
WriteW(addr, static_cast<int32_t>(frs_val), instr);
|
|
} else if (op == LEY) {
|
|
float float_val = *reinterpret_cast<float*>(addr);
|
|
set_d_register_from_float32(r1, float_val);
|
|
} else if (op == STY) {
|
|
uint32_t value = get_low_register<uint32_t>(r1);
|
|
WriteW(addr, value, instr);
|
|
} else if (op == STG) {
|
|
uint64_t value = get_register(r1);
|
|
WriteDW(addr, value);
|
|
} else if (op == STDY) {
|
|
int64_t frs_val = get_d_register(r1);
|
|
WriteDW(addr, frs_val);
|
|
} else if (op == STCY) {
|
|
uint8_t value = get_low_register<uint32_t>(r1);
|
|
WriteB(addr, value);
|
|
} else if (op == STHY) {
|
|
uint16_t value = get_low_register<uint32_t>(r1);
|
|
WriteH(addr, value, instr);
|
|
} else if (op == LHY) {
|
|
int32_t result = static_cast<int32_t>(ReadH(addr, instr));
|
|
set_low_register(r1, result);
|
|
}
|
|
break;
|
|
}
|
|
case MVC: {
|
|
// Move Character
|
|
int b1 = ssInstr->B1Value();
|
|
intptr_t d1 = ssInstr->D1Value();
|
|
int b2 = ssInstr->B2Value();
|
|
intptr_t d2 = ssInstr->D2Value();
|
|
int length = ssInstr->Length();
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t src_addr = b2_val + d2;
|
|
intptr_t dst_addr = b1_val + d1;
|
|
// remember that the length is the actual length - 1
|
|
for (int i = 0; i < length + 1; ++i) {
|
|
WriteB(dst_addr++, ReadB(src_addr++));
|
|
}
|
|
break;
|
|
}
|
|
case MVHI: {
|
|
// Move Integer (32)
|
|
int b1 = silInstr->B1Value();
|
|
intptr_t d1 = silInstr->D1Value();
|
|
int16_t i2 = silInstr->I2Value();
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t src_addr = b1_val + d1;
|
|
WriteW(src_addr, i2, instr);
|
|
break;
|
|
}
|
|
case MVGHI: {
|
|
// Move Integer (64)
|
|
int b1 = silInstr->B1Value();
|
|
intptr_t d1 = silInstr->D1Value();
|
|
int16_t i2 = silInstr->I2Value();
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t src_addr = b1_val + d1;
|
|
WriteDW(src_addr, i2);
|
|
break;
|
|
}
|
|
case LLH:
|
|
case LLGH: {
|
|
// Load Logical Halfworld
|
|
int r1 = rxyInstr->R1Value();
|
|
int b2 = rxyInstr->B2Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxyInstr->D2Value();
|
|
uint16_t mem_val = ReadHU(b2_val + d2_val + x2_val, instr);
|
|
if (op == LLH) {
|
|
set_low_register(r1, mem_val);
|
|
} else if (op == LLGH) {
|
|
set_register(r1, mem_val);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
break;
|
|
}
|
|
case LLC:
|
|
case LLGC: {
|
|
// Load Logical Character - loads a byte and zero extends.
|
|
int r1 = rxyInstr->R1Value();
|
|
int b2 = rxyInstr->B2Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxyInstr->D2Value();
|
|
uint8_t mem_val = ReadBU(b2_val + d2_val + x2_val);
|
|
if (op == LLC) {
|
|
set_low_register(r1, static_cast<uint32_t>(mem_val));
|
|
} else if (op == LLGC) {
|
|
set_register(r1, static_cast<uint64_t>(mem_val));
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
break;
|
|
}
|
|
case XIHF:
|
|
case XILF: {
|
|
int r1 = rilInstr->R1Value();
|
|
uint32_t imm = rilInstr->I2UnsignedValue();
|
|
uint32_t alu_out = 0;
|
|
if (op == XILF) {
|
|
alu_out = get_low_register<uint32_t>(r1);
|
|
alu_out = alu_out ^ imm;
|
|
set_low_register(r1, alu_out);
|
|
} else if (op == XIHF) {
|
|
alu_out = get_high_register<uint32_t>(r1);
|
|
alu_out = alu_out ^ imm;
|
|
set_high_register(r1, alu_out);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
break;
|
|
}
|
|
case RISBG: {
|
|
// Rotate then insert selected bits
|
|
int r1 = rieInstr->R1Value();
|
|
int r2 = rieInstr->R2Value();
|
|
// Starting Bit Position is Bits 2-7 of I3 field
|
|
uint32_t start_bit = rieInstr->I3Value() & 0x3F;
|
|
// Ending Bit Position is Bits 2-7 of I4 field
|
|
uint32_t end_bit = rieInstr->I4Value() & 0x3F;
|
|
// Shift Amount is Bits 2-7 of I5 field
|
|
uint32_t shift_amount = rieInstr->I5Value() & 0x3F;
|
|
// Zero out Remaining (unslected) bits if Bit 0 of I4 is 1.
|
|
bool zero_remaining = (0 != (rieInstr->I4Value() & 0x80));
|
|
|
|
uint64_t src_val = get_register(r2);
|
|
|
|
// Rotate Left by Shift Amount first
|
|
uint64_t rotated_val =
|
|
(src_val << shift_amount) | (src_val >> (64 - shift_amount));
|
|
int32_t width = end_bit - start_bit + 1;
|
|
|
|
uint64_t selection_mask = 0;
|
|
if (width < 64) {
|
|
selection_mask = (static_cast<uint64_t>(1) << width) - 1;
|
|
} else {
|
|
selection_mask = static_cast<uint64_t>(static_cast<int64_t>(-1));
|
|
}
|
|
selection_mask = selection_mask << (63 - end_bit);
|
|
|
|
uint64_t selected_val = rotated_val & selection_mask;
|
|
|
|
if (!zero_remaining) {
|
|
// Merged the unselected bits from the original value
|
|
selected_val = (src_val & ~selection_mask) | selected_val;
|
|
}
|
|
|
|
// Condition code is set by treating result as 64-bit signed int
|
|
SetS390ConditionCode<int64_t>(selected_val, 0);
|
|
set_register(r1, selected_val);
|
|
break;
|
|
}
|
|
default:
|
|
return DecodeSixByteArithmetic(instr);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Simulator::DecodeSixByteBitShift(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
|
|
// Pre-cast instruction to various types
|
|
|
|
RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
|
|
|
|
switch (op) {
|
|
case SLLK:
|
|
case RLL:
|
|
case SRLK: {
|
|
// For SLLK/SRLL, the 32-bit third operand is shifted the number
|
|
// of bits specified by the second-operand address, and the result is
|
|
// placed at the first-operand location. Except for when the R1 and R3
|
|
// fields designate the same register, the third operand remains
|
|
// unchanged in general register R3.
|
|
int r1 = rsyInstr->R1Value();
|
|
int r3 = rsyInstr->R3Value();
|
|
int b2 = rsyInstr->B2Value();
|
|
intptr_t d2 = rsyInstr->D2Value();
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
// unsigned
|
|
uint32_t r3_val = get_low_register<uint32_t>(r3);
|
|
uint32_t alu_out = 0;
|
|
if (SLLK == op) {
|
|
alu_out = r3_val << shiftBits;
|
|
} else if (SRLK == op) {
|
|
alu_out = r3_val >> shiftBits;
|
|
} else if (RLL == op) {
|
|
uint32_t rotateBits = r3_val >> (32 - shiftBits);
|
|
alu_out = (r3_val << shiftBits) | (rotateBits);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
break;
|
|
}
|
|
case SLLG:
|
|
case RLLG:
|
|
case SRLG: {
|
|
// For SLLG/SRLG, the 64-bit third operand is shifted the number
|
|
// of bits specified by the second-operand address, and the result is
|
|
// placed at the first-operand location. Except for when the R1 and R3
|
|
// fields designate the same register, the third operand remains
|
|
// unchanged in general register R3.
|
|
int r1 = rsyInstr->R1Value();
|
|
int r3 = rsyInstr->R3Value();
|
|
int b2 = rsyInstr->B2Value();
|
|
intptr_t d2 = rsyInstr->D2Value();
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
// unsigned
|
|
uint64_t r3_val = get_register(r3);
|
|
uint64_t alu_out = 0;
|
|
if (op == SLLG) {
|
|
alu_out = r3_val << shiftBits;
|
|
} else if (op == SRLG) {
|
|
alu_out = r3_val >> shiftBits;
|
|
} else if (op == RLLG) {
|
|
uint64_t rotateBits = r3_val >> (64 - shiftBits);
|
|
alu_out = (r3_val << shiftBits) | (rotateBits);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
set_register(r1, alu_out);
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decodes and simulates six byte arithmetic instructions
|
|
*/
|
|
bool Simulator::DecodeSixByteArithmetic(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
|
|
// Pre-cast instruction to various types
|
|
SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr);
|
|
|
|
switch (op) {
|
|
case CDB:
|
|
case ADB:
|
|
case SDB:
|
|
case MDB:
|
|
case DDB:
|
|
case SQDB: {
|
|
RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr);
|
|
int b2 = rxeInstr->B2Value();
|
|
int x2 = rxeInstr->X2Value();
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxeInstr->D2Value();
|
|
double r1_val = get_double_from_d_register(rxeInstr->R1Value());
|
|
double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
|
|
|
|
switch (op) {
|
|
case CDB:
|
|
SetS390ConditionCode<double>(r1_val, dbl_val);
|
|
break;
|
|
case ADB:
|
|
r1_val += dbl_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
break;
|
|
case SDB:
|
|
r1_val -= dbl_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
break;
|
|
case MDB:
|
|
r1_val *= dbl_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
break;
|
|
case DDB:
|
|
r1_val /= dbl_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
break;
|
|
case SQDB:
|
|
r1_val = std::sqrt(dbl_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case LRV:
|
|
case LRVH:
|
|
case STRV:
|
|
case STRVH: {
|
|
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
|
int r1 = rxyInstr->R1Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int b2 = rxyInstr->B2Value();
|
|
int d2 = rxyInstr->D2Value();
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t mem_addr = b2_val + x2_val + d2;
|
|
|
|
if (op == LRVH) {
|
|
int16_t mem_val = ReadH(mem_addr, instr);
|
|
int32_t result = ByteReverse(mem_val) & 0x0000ffff;
|
|
result |= r1_val & 0xffff0000;
|
|
set_low_register(r1, result);
|
|
} else if (op == LRV) {
|
|
int32_t mem_val = ReadW(mem_addr, instr);
|
|
set_low_register(r1, ByteReverse(mem_val));
|
|
} else if (op == STRVH) {
|
|
int16_t result = static_cast<int16_t>(r1_val >> 16);
|
|
WriteH(mem_addr, ByteReverse(result), instr);
|
|
} else if (op == STRV) {
|
|
WriteW(mem_addr, ByteReverse(r1_val), instr);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case AHIK:
|
|
case AGHIK: {
|
|
// Non-clobbering Add Halfword Immediate
|
|
RIEInstruction* rieInst = reinterpret_cast<RIEInstruction*>(instr);
|
|
int r1 = rieInst->R1Value();
|
|
int r2 = rieInst->R2Value();
|
|
bool isOF = false;
|
|
if (AHIK == op) {
|
|
// 32-bit Add
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int32_t imm = rieInst->I6Value();
|
|
isOF = CheckOverflowForIntAdd(r2_val, imm, int32_t);
|
|
set_low_register(r1, r2_val + imm);
|
|
SetS390ConditionCode<int32_t>(r2_val + imm, 0);
|
|
} else if (AGHIK == op) {
|
|
// 64-bit Add
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t imm = static_cast<int64_t>(rieInst->I6Value());
|
|
isOF = CheckOverflowForIntAdd(r2_val, imm, int64_t);
|
|
set_register(r1, r2_val + imm);
|
|
SetS390ConditionCode<int64_t>(r2_val + imm, 0);
|
|
}
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
}
|
|
case ALFI:
|
|
case SLFI: {
|
|
RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
|
|
int r1 = rilInstr->R1Value();
|
|
uint32_t imm = rilInstr->I2UnsignedValue();
|
|
uint32_t alu_out = get_low_register<uint32_t>(r1);
|
|
if (op == ALFI) {
|
|
alu_out += imm;
|
|
} else if (op == SLFI) {
|
|
alu_out -= imm;
|
|
}
|
|
SetS390ConditionCode<uint32_t>(alu_out, 0);
|
|
set_low_register(r1, alu_out);
|
|
break;
|
|
}
|
|
case ML: {
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
case AY:
|
|
case SY:
|
|
case NY:
|
|
case OY:
|
|
case XY:
|
|
case CY: {
|
|
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
|
int r1 = rxyInstr->R1Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int b2 = rxyInstr->B2Value();
|
|
int d2 = rxyInstr->D2Value();
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int32_t alu_out = get_low_register<int32_t>(r1);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
|
|
bool isOF = false;
|
|
if (op == AY) {
|
|
isOF = CheckOverflowForIntAdd(alu_out, mem_val, int32_t);
|
|
alu_out += mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
} else if (op == SY) {
|
|
isOF = CheckOverflowForIntSub(alu_out, mem_val, int32_t);
|
|
alu_out -= mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
} else if (op == NY) {
|
|
alu_out &= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
} else if (op == OY) {
|
|
alu_out |= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
} else if (op == XY) {
|
|
alu_out ^= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
} else if (op == CY) {
|
|
SetS390ConditionCode<int32_t>(alu_out, mem_val);
|
|
}
|
|
if (op != CY) {
|
|
set_low_register(r1, alu_out);
|
|
}
|
|
break;
|
|
}
|
|
case AHY:
|
|
case SHY: {
|
|
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
|
int32_t r1_val = get_low_register<int32_t>(rxyInstr->R1Value());
|
|
int b2 = rxyInstr->B2Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxyInstr->D2Value();
|
|
int32_t mem_val =
|
|
static_cast<int32_t>(ReadH(b2_val + d2_val + x2_val, instr));
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
switch (op) {
|
|
case AHY:
|
|
alu_out = r1_val + mem_val;
|
|
isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
|
|
break;
|
|
case SHY:
|
|
alu_out = r1_val - mem_val;
|
|
isOF = CheckOverflowForIntSub(r1_val, mem_val, int64_t);
|
|
break;
|
|
default:
|
|
UNREACHABLE();
|
|
break;
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
}
|
|
case AG:
|
|
case SG:
|
|
case NG:
|
|
case OG:
|
|
case XG:
|
|
case CG:
|
|
case CLG: {
|
|
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
|
int r1 = rxyInstr->R1Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int b2 = rxyInstr->B2Value();
|
|
int d2 = rxyInstr->D2Value();
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t alu_out = get_register(r1);
|
|
int64_t mem_val = ReadDW(b2_val + x2_val + d2);
|
|
|
|
switch (op) {
|
|
case AG: {
|
|
alu_out += mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
break;
|
|
}
|
|
case SG: {
|
|
alu_out -= mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
break;
|
|
}
|
|
case NG: {
|
|
alu_out &= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
break;
|
|
}
|
|
case OG: {
|
|
alu_out |= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
break;
|
|
}
|
|
case XG: {
|
|
alu_out ^= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
break;
|
|
}
|
|
case CG: {
|
|
SetS390ConditionCode<int64_t>(alu_out, mem_val);
|
|
break;
|
|
}
|
|
case CLG: {
|
|
SetS390ConditionCode<uint64_t>(alu_out, mem_val);
|
|
break;
|
|
}
|
|
default: {
|
|
DCHECK(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (op != CG) {
|
|
set_register(r1, alu_out);
|
|
}
|
|
break;
|
|
}
|
|
case ALY:
|
|
case SLY:
|
|
case CLY: {
|
|
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
|
int r1 = rxyInstr->R1Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int b2 = rxyInstr->B2Value();
|
|
int d2 = rxyInstr->D2Value();
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
uint32_t alu_out = get_low_register<uint32_t>(r1);
|
|
uint32_t mem_val = ReadWU(b2_val + x2_val + d2, instr);
|
|
|
|
if (op == ALY) {
|
|
alu_out += mem_val;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<uint32_t>(alu_out, 0);
|
|
} else if (op == SLY) {
|
|
alu_out -= mem_val;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<uint32_t>(alu_out, 0);
|
|
} else if (op == CLY) {
|
|
SetS390ConditionCode<uint32_t>(alu_out, mem_val);
|
|
}
|
|
break;
|
|
}
|
|
case AGFI:
|
|
case AFI: {
|
|
// Clobbering Add Word Immediate
|
|
RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
|
|
int32_t r1 = rilInstr->R1Value();
|
|
bool isOF = false;
|
|
if (AFI == op) {
|
|
// 32-bit Add (Register + 32-bit Immediate)
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t i2 = rilInstr->I2Value();
|
|
isOF = CheckOverflowForIntAdd(r1_val, i2, int32_t);
|
|
int32_t alu_out = r1_val + i2;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
} else if (AGFI == op) {
|
|
// 64-bit Add (Register + 32-bit Imm)
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t i2 = static_cast<int64_t>(rilInstr->I2Value());
|
|
isOF = CheckOverflowForIntAdd(r1_val, i2, int64_t);
|
|
int64_t alu_out = r1_val + i2;
|
|
set_register(r1, alu_out);
|
|
SetS390ConditionCode<int64_t>(alu_out, 0);
|
|
}
|
|
SetS390OverflowCode(isOF);
|
|
break;
|
|
}
|
|
case ASI: {
|
|
// TODO(bcleung): Change all fooInstr->I2Value() to template functions.
|
|
// The below static cast to 8 bit and then to 32 bit is necessary
|
|
// because siyInstr->I2Value() returns a uint8_t, which a direct
|
|
// cast to int32_t could incorrectly interpret.
|
|
int8_t i2_8bit = static_cast<int8_t>(siyInstr->I2Value());
|
|
int32_t i2 = static_cast<int32_t>(i2_8bit);
|
|
int b1 = siyInstr->B1Value();
|
|
intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
|
|
int d1_val = siyInstr->D1Value();
|
|
intptr_t addr = b1_val + d1_val;
|
|
|
|
int32_t mem_val = ReadW(addr, instr);
|
|
bool isOF = CheckOverflowForIntAdd(mem_val, i2, int32_t);
|
|
int32_t alu_out = mem_val + i2;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
WriteW(addr, alu_out, instr);
|
|
break;
|
|
}
|
|
case AGSI: {
|
|
// TODO(bcleung): Change all fooInstr->I2Value() to template functions.
|
|
// The below static cast to 8 bit and then to 32 bit is necessary
|
|
// because siyInstr->I2Value() returns a uint8_t, which a direct
|
|
// cast to int32_t could incorrectly interpret.
|
|
int8_t i2_8bit = static_cast<int8_t>(siyInstr->I2Value());
|
|
int64_t i2 = static_cast<int64_t>(i2_8bit);
|
|
int b1 = siyInstr->B1Value();
|
|
intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
|
|
int d1_val = siyInstr->D1Value();
|
|
intptr_t addr = b1_val + d1_val;
|
|
|
|
int64_t mem_val = ReadDW(addr);
|
|
int isOF = CheckOverflowForIntAdd(mem_val, i2, int64_t);
|
|
int64_t alu_out = mem_val + i2;
|
|
SetS390ConditionCode<uint64_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
WriteDW(addr, alu_out);
|
|
break;
|
|
}
|
|
case AGF:
|
|
case SGF:
|
|
case ALG:
|
|
case SLG: {
|
|
#ifndef V8_TARGET_ARCH_S390X
|
|
DCHECK(false);
|
|
#endif
|
|
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
|
int r1 = rxyInstr->R1Value();
|
|
uint64_t r1_val = get_register(rxyInstr->R1Value());
|
|
int b2 = rxyInstr->B2Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxyInstr->D2Value();
|
|
uint64_t alu_out = r1_val;
|
|
if (op == ALG) {
|
|
uint64_t mem_val =
|
|
static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
|
|
alu_out += mem_val;
|
|
SetS390ConditionCode<uint64_t>(alu_out, 0);
|
|
} else if (op == SLG) {
|
|
uint64_t mem_val =
|
|
static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
|
|
alu_out -= mem_val;
|
|
SetS390ConditionCode<uint64_t>(alu_out, 0);
|
|
} else if (op == AGF) {
|
|
uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
|
|
alu_out += mem_val;
|
|
SetS390ConditionCode<int64_t>(alu_out, 0);
|
|
} else if (op == SGF) {
|
|
uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
|
|
alu_out -= mem_val;
|
|
SetS390ConditionCode<int64_t>(alu_out, 0);
|
|
} else {
|
|
DCHECK(false);
|
|
}
|
|
set_register(r1, alu_out);
|
|
break;
|
|
}
|
|
case ALGFI:
|
|
case SLGFI: {
|
|
#ifndef V8_TARGET_ARCH_S390X
|
|
// should only be called on 64bit
|
|
DCHECK(false);
|
|
#endif
|
|
RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
|
|
int r1 = rilInstr->R1Value();
|
|
uint32_t i2 = rilInstr->I2UnsignedValue();
|
|
uint64_t r1_val = (uint64_t)(get_register(r1));
|
|
uint64_t alu_out;
|
|
if (op == ALGFI)
|
|
alu_out = r1_val + i2;
|
|
else
|
|
alu_out = r1_val - i2;
|
|
set_register(r1, (intptr_t)alu_out);
|
|
SetS390ConditionCode<uint64_t>(alu_out, 0);
|
|
break;
|
|
}
|
|
case MSY:
|
|
case MSG: {
|
|
RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
|
int r1 = rxyInstr->R1Value();
|
|
int b2 = rxyInstr->B2Value();
|
|
int x2 = rxyInstr->X2Value();
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = rxyInstr->D2Value();
|
|
if (op == MSY) {
|
|
int32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
set_low_register(r1, mem_val * r1_val);
|
|
} else if (op == MSG) {
|
|
int64_t mem_val = ReadDW(b2_val + d2_val + x2_val);
|
|
int64_t r1_val = get_register(r1);
|
|
set_register(r1, mem_val * r1_val);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
break;
|
|
}
|
|
case MSFI:
|
|
case MSGFI: {
|
|
RILInstruction* rilinst = reinterpret_cast<RILInstruction*>(instr);
|
|
int r1 = rilinst->R1Value();
|
|
int32_t i2 = rilinst->I2Value();
|
|
if (op == MSFI) {
|
|
int32_t alu_out = get_low_register<int32_t>(r1);
|
|
alu_out = alu_out * i2;
|
|
set_low_register(r1, alu_out);
|
|
} else if (op == MSGFI) {
|
|
int64_t alu_out = get_register(r1);
|
|
alu_out = alu_out * i2;
|
|
set_register(r1, alu_out);
|
|
} else {
|
|
UNREACHABLE();
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int16_t Simulator::ByteReverse(int16_t hword) {
|
|
#if defined(__GNUC__)
|
|
return __builtin_bswap16(hword);
|
|
#else
|
|
return (hword << 8) | ((hword >> 8) & 0x00ff);
|
|
#endif
|
|
}
|
|
|
|
int32_t Simulator::ByteReverse(int32_t word) {
|
|
#if defined(__GNUC__)
|
|
return __builtin_bswap32(word);
|
|
#else
|
|
int32_t result = word << 24;
|
|
result |= (word << 8) & 0x00ff0000;
|
|
result |= (word >> 8) & 0x0000ff00;
|
|
result |= (word >> 24) & 0x00000ff;
|
|
return result;
|
|
#endif
|
|
}
|
|
|
|
int64_t Simulator::ByteReverse(int64_t dword) {
|
|
#if defined(__GNUC__)
|
|
return __builtin_bswap64(dword);
|
|
#else
|
|
#error unsupport __builtin_bswap64
|
|
#endif
|
|
}
|
|
|
|
int Simulator::DecodeInstructionOriginal(Instruction* instr) {
|
|
int instrLength = instr->InstructionLength();
|
|
bool processed = true;
|
|
if (instrLength == 2)
|
|
processed = DecodeTwoByte(instr);
|
|
else if (instrLength == 4)
|
|
processed = DecodeFourByte(instr);
|
|
else if (instrLength == 6)
|
|
processed = DecodeSixByte(instr);
|
|
return instrLength;
|
|
}
|
|
|
|
int Simulator::DecodeInstruction(Instruction* instr) {
|
|
Opcode op = instr->S390OpcodeValue();
|
|
DCHECK(EvalTable[op] != NULL);
|
|
return (this->*EvalTable[op])(instr);
|
|
}
|
|
|
|
// Executes the current instruction.
|
|
void Simulator::ExecuteInstruction(Instruction* instr, bool auto_incr_pc) {
|
|
icount_++;
|
|
|
|
if (v8::internal::FLAG_check_icache) {
|
|
CheckICache(isolate_->simulator_i_cache(), instr);
|
|
}
|
|
|
|
pc_modified_ = false;
|
|
|
|
if (::v8::internal::FLAG_trace_sim) {
|
|
disasm::NameConverter converter;
|
|
disasm::Disassembler dasm(converter);
|
|
// use a reasonably large buffer
|
|
v8::internal::EmbeddedVector<char, 256> buffer;
|
|
dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
|
|
PrintF("%05" PRId64 " %08" V8PRIxPTR " %s\n", icount_,
|
|
reinterpret_cast<intptr_t>(instr), buffer.start());
|
|
|
|
// Flush stdout to prevent incomplete file output during abnormal exits
|
|
// This is caused by the output being buffered before being written to file
|
|
fflush(stdout);
|
|
}
|
|
|
|
// Try to simulate as S390 Instruction first.
|
|
int length = DecodeInstruction(instr);
|
|
|
|
if (!pc_modified_ && auto_incr_pc) {
|
|
DCHECK(length == instr->InstructionLength());
|
|
set_pc(reinterpret_cast<intptr_t>(instr) + length);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void Simulator::DebugStart() {
|
|
S390Debugger dbg(this);
|
|
dbg.Debug();
|
|
}
|
|
|
|
void Simulator::Execute() {
|
|
// Get the PC to simulate. Cannot use the accessor here as we need the
|
|
// raw PC value and not the one used as input to arithmetic instructions.
|
|
intptr_t program_counter = get_pc();
|
|
|
|
if (::v8::internal::FLAG_stop_sim_at == 0) {
|
|
// Fast version of the dispatch loop without checking whether the simulator
|
|
// should be stopping at a particular executed instruction.
|
|
while (program_counter != end_sim_pc) {
|
|
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
|
ExecuteInstruction(instr);
|
|
program_counter = get_pc();
|
|
}
|
|
} else {
|
|
// FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
|
|
// we reach the particular instuction count.
|
|
while (program_counter != end_sim_pc) {
|
|
Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
|
if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
|
|
S390Debugger dbg(this);
|
|
dbg.Debug();
|
|
} else {
|
|
ExecuteInstruction(instr);
|
|
}
|
|
program_counter = get_pc();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Simulator::CallInternal(byte* entry, int reg_arg_count) {
|
|
// Adjust JS-based stack limit to C-based stack limit.
|
|
isolate_->stack_guard()->AdjustStackLimitForSimulator();
|
|
|
|
// Prepare to execute the code at entry
|
|
if (ABI_USES_FUNCTION_DESCRIPTORS) {
|
|
// entry is the function descriptor
|
|
set_pc(*(reinterpret_cast<intptr_t*>(entry)));
|
|
} else {
|
|
// entry is the instruction address
|
|
set_pc(reinterpret_cast<intptr_t>(entry));
|
|
}
|
|
// Remember the values of non-volatile registers.
|
|
int64_t r6_val = get_register(r6);
|
|
int64_t r7_val = get_register(r7);
|
|
int64_t r8_val = get_register(r8);
|
|
int64_t r9_val = get_register(r9);
|
|
int64_t r10_val = get_register(r10);
|
|
int64_t r11_val = get_register(r11);
|
|
int64_t r12_val = get_register(r12);
|
|
int64_t r13_val = get_register(r13);
|
|
|
|
if (ABI_CALL_VIA_IP) {
|
|
// Put target address in ip (for JS prologue).
|
|
set_register(ip, get_pc());
|
|
}
|
|
|
|
// Put down marker for end of simulation. The simulator will stop simulation
|
|
// when the PC reaches this value. By saving the "end simulation" value into
|
|
// the LR the simulation stops when returning to this call point.
|
|
registers_[14] = end_sim_pc;
|
|
|
|
// Set up the non-volatile registers with a known value. To be able to check
|
|
// that they are preserved properly across JS execution.
|
|
uintptr_t callee_saved_value = icount_;
|
|
if (reg_arg_count < 5) {
|
|
set_register(r6, callee_saved_value + 6);
|
|
}
|
|
set_register(r7, callee_saved_value + 7);
|
|
set_register(r8, callee_saved_value + 8);
|
|
set_register(r9, callee_saved_value + 9);
|
|
set_register(r10, callee_saved_value + 10);
|
|
set_register(r11, callee_saved_value + 11);
|
|
set_register(r12, callee_saved_value + 12);
|
|
set_register(r13, callee_saved_value + 13);
|
|
|
|
// Start the simulation
|
|
Execute();
|
|
|
|
// Check that the non-volatile registers have been preserved.
|
|
#ifndef V8_TARGET_ARCH_S390X
|
|
if (reg_arg_count < 5) {
|
|
DCHECK_EQ(callee_saved_value + 6, get_low_register<uint32_t>(r6));
|
|
}
|
|
DCHECK_EQ(callee_saved_value + 7, get_low_register<uint32_t>(r7));
|
|
DCHECK_EQ(callee_saved_value + 8, get_low_register<uint32_t>(r8));
|
|
DCHECK_EQ(callee_saved_value + 9, get_low_register<uint32_t>(r9));
|
|
DCHECK_EQ(callee_saved_value + 10, get_low_register<uint32_t>(r10));
|
|
DCHECK_EQ(callee_saved_value + 11, get_low_register<uint32_t>(r11));
|
|
DCHECK_EQ(callee_saved_value + 12, get_low_register<uint32_t>(r12));
|
|
DCHECK_EQ(callee_saved_value + 13, get_low_register<uint32_t>(r13));
|
|
#else
|
|
if (reg_arg_count < 5) {
|
|
DCHECK_EQ(callee_saved_value + 6, get_register(r6));
|
|
}
|
|
DCHECK_EQ(callee_saved_value + 7, get_register(r7));
|
|
DCHECK_EQ(callee_saved_value + 8, get_register(r8));
|
|
DCHECK_EQ(callee_saved_value + 9, get_register(r9));
|
|
DCHECK_EQ(callee_saved_value + 10, get_register(r10));
|
|
DCHECK_EQ(callee_saved_value + 11, get_register(r11));
|
|
DCHECK_EQ(callee_saved_value + 12, get_register(r12));
|
|
DCHECK_EQ(callee_saved_value + 13, get_register(r13));
|
|
#endif
|
|
|
|
// Restore non-volatile registers with the original value.
|
|
set_register(r6, r6_val);
|
|
set_register(r7, r7_val);
|
|
set_register(r8, r8_val);
|
|
set_register(r9, r9_val);
|
|
set_register(r10, r10_val);
|
|
set_register(r11, r11_val);
|
|
set_register(r12, r12_val);
|
|
set_register(r13, r13_val);
|
|
}
|
|
|
|
intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
|
|
// Adjust JS-based stack limit to C-based stack limit.
|
|
isolate_->stack_guard()->AdjustStackLimitForSimulator();
|
|
|
|
// Remember the values of non-volatile registers.
|
|
int64_t r6_val = get_register(r6);
|
|
int64_t r7_val = get_register(r7);
|
|
int64_t r8_val = get_register(r8);
|
|
int64_t r9_val = get_register(r9);
|
|
int64_t r10_val = get_register(r10);
|
|
int64_t r11_val = get_register(r11);
|
|
int64_t r12_val = get_register(r12);
|
|
int64_t r13_val = get_register(r13);
|
|
|
|
va_list parameters;
|
|
va_start(parameters, argument_count);
|
|
// Set up arguments
|
|
|
|
// First 5 arguments passed in registers r2-r6.
|
|
int reg_arg_count = (argument_count > 5) ? 5 : argument_count;
|
|
int stack_arg_count = argument_count - reg_arg_count;
|
|
for (int i = 0; i < reg_arg_count; i++) {
|
|
intptr_t value = va_arg(parameters, intptr_t);
|
|
set_register(i + 2, value);
|
|
}
|
|
|
|
// Remaining arguments passed on stack.
|
|
int64_t original_stack = get_register(sp);
|
|
// Compute position of stack on entry to generated code.
|
|
uintptr_t entry_stack =
|
|
(original_stack -
|
|
(kCalleeRegisterSaveAreaSize + stack_arg_count * sizeof(intptr_t)));
|
|
if (base::OS::ActivationFrameAlignment() != 0) {
|
|
entry_stack &= -base::OS::ActivationFrameAlignment();
|
|
}
|
|
|
|
// Store remaining arguments on stack, from low to high memory.
|
|
intptr_t* stack_argument =
|
|
reinterpret_cast<intptr_t*>(entry_stack + kCalleeRegisterSaveAreaSize);
|
|
for (int i = 0; i < stack_arg_count; i++) {
|
|
intptr_t value = va_arg(parameters, intptr_t);
|
|
stack_argument[i] = value;
|
|
}
|
|
va_end(parameters);
|
|
set_register(sp, entry_stack);
|
|
|
|
// Prepare to execute the code at entry
|
|
#if ABI_USES_FUNCTION_DESCRIPTORS
|
|
// entry is the function descriptor
|
|
set_pc(*(reinterpret_cast<intptr_t*>(entry)));
|
|
#else
|
|
// entry is the instruction address
|
|
set_pc(reinterpret_cast<intptr_t>(entry));
|
|
#endif
|
|
|
|
// Put target address in ip (for JS prologue).
|
|
set_register(r12, get_pc());
|
|
|
|
// Put down marker for end of simulation. The simulator will stop simulation
|
|
// when the PC reaches this value. By saving the "end simulation" value into
|
|
// the LR the simulation stops when returning to this call point.
|
|
registers_[14] = end_sim_pc;
|
|
|
|
// Set up the non-volatile registers with a known value. To be able to check
|
|
// that they are preserved properly across JS execution.
|
|
uintptr_t callee_saved_value = icount_;
|
|
if (reg_arg_count < 5) {
|
|
set_register(r6, callee_saved_value + 6);
|
|
}
|
|
set_register(r7, callee_saved_value + 7);
|
|
set_register(r8, callee_saved_value + 8);
|
|
set_register(r9, callee_saved_value + 9);
|
|
set_register(r10, callee_saved_value + 10);
|
|
set_register(r11, callee_saved_value + 11);
|
|
set_register(r12, callee_saved_value + 12);
|
|
set_register(r13, callee_saved_value + 13);
|
|
|
|
// Start the simulation
|
|
Execute();
|
|
|
|
// Check that the non-volatile registers have been preserved.
|
|
#ifndef V8_TARGET_ARCH_S390X
|
|
if (reg_arg_count < 5) {
|
|
DCHECK_EQ(callee_saved_value + 6, get_low_register<uint32_t>(r6));
|
|
}
|
|
DCHECK_EQ(callee_saved_value + 7, get_low_register<uint32_t>(r7));
|
|
DCHECK_EQ(callee_saved_value + 8, get_low_register<uint32_t>(r8));
|
|
DCHECK_EQ(callee_saved_value + 9, get_low_register<uint32_t>(r9));
|
|
DCHECK_EQ(callee_saved_value + 10, get_low_register<uint32_t>(r10));
|
|
DCHECK_EQ(callee_saved_value + 11, get_low_register<uint32_t>(r11));
|
|
DCHECK_EQ(callee_saved_value + 12, get_low_register<uint32_t>(r12));
|
|
DCHECK_EQ(callee_saved_value + 13, get_low_register<uint32_t>(r13));
|
|
#else
|
|
if (reg_arg_count < 5) {
|
|
DCHECK_EQ(callee_saved_value + 6, get_register(r6));
|
|
}
|
|
DCHECK_EQ(callee_saved_value + 7, get_register(r7));
|
|
DCHECK_EQ(callee_saved_value + 8, get_register(r8));
|
|
DCHECK_EQ(callee_saved_value + 9, get_register(r9));
|
|
DCHECK_EQ(callee_saved_value + 10, get_register(r10));
|
|
DCHECK_EQ(callee_saved_value + 11, get_register(r11));
|
|
DCHECK_EQ(callee_saved_value + 12, get_register(r12));
|
|
DCHECK_EQ(callee_saved_value + 13, get_register(r13));
|
|
#endif
|
|
|
|
// Restore non-volatile registers with the original value.
|
|
set_register(r6, r6_val);
|
|
set_register(r7, r7_val);
|
|
set_register(r8, r8_val);
|
|
set_register(r9, r9_val);
|
|
set_register(r10, r10_val);
|
|
set_register(r11, r11_val);
|
|
set_register(r12, r12_val);
|
|
set_register(r13, r13_val);
|
|
// Pop stack passed arguments.
|
|
|
|
#ifndef V8_TARGET_ARCH_S390X
|
|
DCHECK_EQ(entry_stack, get_low_register<uint32_t>(sp));
|
|
#else
|
|
DCHECK_EQ(entry_stack, get_register(sp));
|
|
#endif
|
|
set_register(sp, original_stack);
|
|
|
|
// Return value register
|
|
intptr_t result = get_register(r2);
|
|
return result;
|
|
}
|
|
|
|
void Simulator::CallFP(byte* entry, double d0, double d1) {
|
|
set_d_register_from_double(0, d0);
|
|
set_d_register_from_double(1, d1);
|
|
CallInternal(entry);
|
|
}
|
|
|
|
int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
|
|
CallFP(entry, d0, d1);
|
|
int32_t result = get_register(r2);
|
|
return result;
|
|
}
|
|
|
|
double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
|
|
CallFP(entry, d0, d1);
|
|
return get_double_from_d_register(0);
|
|
}
|
|
|
|
uintptr_t Simulator::PushAddress(uintptr_t address) {
|
|
uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
|
|
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
|
|
*stack_slot = address;
|
|
set_register(sp, new_sp);
|
|
return new_sp;
|
|
}
|
|
|
|
uintptr_t Simulator::PopAddress() {
|
|
uintptr_t current_sp = get_register(sp);
|
|
uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
|
|
uintptr_t address = *stack_slot;
|
|
set_register(sp, current_sp + sizeof(uintptr_t));
|
|
return address;
|
|
}
|
|
|
|
#define EVALUATE(name) \
|
|
int Simulator::Evaluate_##name(Instruction* instr)
|
|
|
|
#define DCHECK_OPCODE(op) DCHECK(instr->S390OpcodeValue() == op)
|
|
|
|
#define AS(type) reinterpret_cast<type*>(instr)
|
|
|
|
#define DECODE_RIL_A_INSTRUCTION(r1, i2) \
|
|
int r1 = AS(RILInstruction)->R1Value(); \
|
|
uint32_t i2 = AS(RILInstruction)->I2UnsignedValue(); \
|
|
int length = 6;
|
|
|
|
#define DECODE_RIL_B_INSTRUCTION(r1, i2) \
|
|
int r1 = AS(RILInstruction)->R1Value(); \
|
|
int32_t i2 = AS(RILInstruction)->I2Value(); \
|
|
int length = 6;
|
|
|
|
#define DECODE_RIL_C_INSTRUCTION(m1, ri2) \
|
|
Condition m1 = static_cast<Condition>(AS(RILInstruction)->R1Value()); \
|
|
uint64_t ri2 = AS(RILInstruction)->I2Value(); \
|
|
int length = 6;
|
|
|
|
#define DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2) \
|
|
int r1 = AS(RXYInstruction)->R1Value(); \
|
|
int x2 = AS(RXYInstruction)->X2Value(); \
|
|
int b2 = AS(RXYInstruction)->B2Value(); \
|
|
int d2 = AS(RXYInstruction)->D2Value(); \
|
|
int length = 6;
|
|
|
|
#define DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val) \
|
|
int x2 = AS(RXInstruction)->X2Value(); \
|
|
int b2 = AS(RXInstruction)->B2Value(); \
|
|
int r1 = AS(RXInstruction)->R1Value(); \
|
|
intptr_t d2_val = AS(RXInstruction)->D2Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RS_A_INSTRUCTION(r1, r3, b2, d2) \
|
|
int r3 = AS(RSInstruction)->R3Value(); \
|
|
int b2 = AS(RSInstruction)->B2Value(); \
|
|
int r1 = AS(RSInstruction)->R1Value(); \
|
|
intptr_t d2 = AS(RSInstruction)->D2Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RS_A_INSTRUCTION_NO_R3(r1, b2, d2) \
|
|
int b2 = AS(RSInstruction)->B2Value(); \
|
|
int r1 = AS(RSInstruction)->R1Value(); \
|
|
int d2 = AS(RSInstruction)->D2Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_SI_INSTRUCTION_I_UINT8(b1, d1_val, imm_val) \
|
|
int b1 = AS(SIInstruction)->B1Value(); \
|
|
intptr_t d1_val = AS(SIInstruction)->D1Value(); \
|
|
uint8_t imm_val = AS(SIInstruction)->I2Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_SIL_INSTRUCTION(b1, d1, i2) \
|
|
int b1 = AS(SILInstruction)->B1Value(); \
|
|
intptr_t d1 = AS(SILInstruction)->D1Value(); \
|
|
int16_t i2 = AS(SILInstruction)->I2Value(); \
|
|
int length = 6;
|
|
|
|
#define DECODE_SIY_INSTRUCTION(b1, d1, i2) \
|
|
int b1 = AS(SIYInstruction)->B1Value(); \
|
|
intptr_t d1 = AS(SIYInstruction)->D1Value(); \
|
|
uint8_t i2 = AS(SIYInstruction)->I2Value(); \
|
|
int length = 6;
|
|
|
|
#define DECODE_RRE_INSTRUCTION(r1, r2) \
|
|
int r1 = AS(RREInstruction)->R1Value(); \
|
|
int r2 = AS(RREInstruction)->R2Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RRE_INSTRUCTION_M3(r1, r2, m3) \
|
|
int r1 = AS(RREInstruction)->R1Value(); \
|
|
int r2 = AS(RREInstruction)->R2Value(); \
|
|
int m3 = AS(RREInstruction)->M3Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RRE_INSTRUCTION_NO_R2(r1) \
|
|
int r1 = AS(RREInstruction)->R1Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RRD_INSTRUCTION(r1, r2, r3) \
|
|
int r1 = AS(RRDInstruction)->R1Value(); \
|
|
int r2 = AS(RRDInstruction)->R2Value(); \
|
|
int r3 = AS(RRDInstruction)->R3Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RRF_E_INSTRUCTION(r1, r2, m3, m4) \
|
|
int r1 = AS(RRFInstruction)->R1Value(); \
|
|
int r2 = AS(RRFInstruction)->R2Value(); \
|
|
int m3 = AS(RRFInstruction)->M3Value(); \
|
|
int m4 = AS(RRFInstruction)->M4Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RRF_A_INSTRUCTION(r1, r2, r3) \
|
|
int r1 = AS(RRFInstruction)->R1Value(); \
|
|
int r2 = AS(RRFInstruction)->R2Value(); \
|
|
int r3 = AS(RRFInstruction)->R3Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RRF_C_INSTRUCTION(r1, r2, m3) \
|
|
int r1 = AS(RRFInstruction)->R1Value(); \
|
|
int r2 = AS(RRFInstruction)->R2Value(); \
|
|
Condition m3 = static_cast<Condition>(AS(RRFInstruction)->M3Value()); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RR_INSTRUCTION(r1, r2) \
|
|
int r1 = AS(RRInstruction)->R1Value(); \
|
|
int r2 = AS(RRInstruction)->R2Value(); \
|
|
int length = 2;
|
|
|
|
#define DECODE_RIE_D_INSTRUCTION(r1, r2, i2) \
|
|
int r1 = AS(RIEInstruction)->R1Value(); \
|
|
int r2 = AS(RIEInstruction)->R2Value(); \
|
|
int32_t i2 = AS(RIEInstruction)->I6Value(); \
|
|
int length = 6;
|
|
|
|
#define DECODE_RIE_F_INSTRUCTION(r1, r2, i3, i4, i5) \
|
|
int r1 = AS(RIEInstruction)->R1Value(); \
|
|
int r2 = AS(RIEInstruction)->R2Value(); \
|
|
uint32_t i3 = AS(RIEInstruction)->I3Value(); \
|
|
uint32_t i4 = AS(RIEInstruction)->I4Value(); \
|
|
uint32_t i5 = AS(RIEInstruction)->I5Value(); \
|
|
int length = 6;
|
|
|
|
#define DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2) \
|
|
int r1 = AS(RSYInstruction)->R1Value(); \
|
|
int r3 = AS(RSYInstruction)->R3Value(); \
|
|
int b2 = AS(RSYInstruction)->B2Value(); \
|
|
intptr_t d2 = AS(RSYInstruction)->D2Value(); \
|
|
int length = 6;
|
|
|
|
#define DECODE_RI_A_INSTRUCTION(instr, r1, i2) \
|
|
int32_t r1 = AS(RIInstruction)->R1Value(); \
|
|
int16_t i2 = AS(RIInstruction)->I2Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RI_B_INSTRUCTION(instr, r1, i2) \
|
|
int32_t r1 = AS(RILInstruction)->R1Value(); \
|
|
int16_t i2 = AS(RILInstruction)->I2Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RI_C_INSTRUCTION(instr, m1, i2) \
|
|
Condition m1 = static_cast<Condition>(AS(RIInstruction)->R1Value()); \
|
|
int16_t i2 = AS(RIInstruction)->I2Value(); \
|
|
int length = 4;
|
|
|
|
#define DECODE_RXE_INSTRUCTION(r1, b2, x2, d2) \
|
|
int r1 = AS(RXEInstruction)->R1Value(); \
|
|
int b2 = AS(RXEInstruction)->B2Value(); \
|
|
int x2 = AS(RXEInstruction)->X2Value(); \
|
|
int d2 = AS(RXEInstruction)->D2Value(); \
|
|
int length = 6;
|
|
|
|
#define GET_ADDRESS(index_reg, base_reg, offset) \
|
|
(((index_reg) == 0) ? 0 : get_register(index_reg)) + \
|
|
(((base_reg) == 0) ? 0 : get_register(base_reg)) + offset
|
|
|
|
int Simulator::Evaluate_Unknown(Instruction* instr) {
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DUMY) {
|
|
DCHECK_OPCODE(DUMY);
|
|
// dummy instruction does nothing.
|
|
return 6;
|
|
}
|
|
|
|
EVALUATE(CLR) {
|
|
DCHECK_OPCODE(CLR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
SetS390ConditionCode<uint32_t>(r1_val, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LR) {
|
|
DCHECK_OPCODE(LR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
set_low_register(r1, get_low_register<int32_t>(r2));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AR) {
|
|
DCHECK_OPCODE(AR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
bool isOF = CheckOverflowForIntAdd(r1_val, r2_val, int32_t);
|
|
r1_val += r2_val;
|
|
SetS390ConditionCode<int32_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(L) {
|
|
DCHECK_OPCODE(L);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int32_t mem_val = ReadW(addr, instr);
|
|
set_low_register(r1, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BRC) {
|
|
DCHECK_OPCODE(BRC);
|
|
DECODE_RI_C_INSTRUCTION(instr, m1, i2);
|
|
|
|
if (TestConditionCode(m1)) {
|
|
intptr_t offset = 2 * i2;
|
|
set_pc(get_pc() + offset);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AHI) {
|
|
DCHECK_OPCODE(AHI);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
bool isOF = CheckOverflowForIntAdd(r1_val, i2, int32_t);
|
|
r1_val += i2;
|
|
set_low_register(r1, r1_val);
|
|
SetS390ConditionCode<int32_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AGHI) {
|
|
DCHECK_OPCODE(AGHI);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i2);
|
|
int64_t r1_val = get_register(r1);
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntAdd(r1_val, i2, int64_t);
|
|
r1_val += i2;
|
|
set_register(r1, r1_val);
|
|
SetS390ConditionCode<int64_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BRCL) {
|
|
DCHECK_OPCODE(BRCL);
|
|
DECODE_RIL_C_INSTRUCTION(m1, ri2);
|
|
|
|
if (TestConditionCode(m1)) {
|
|
intptr_t offset = 2 * ri2;
|
|
set_pc(get_pc() + offset);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(IIHF) {
|
|
DCHECK_OPCODE(IIHF);
|
|
DECODE_RIL_A_INSTRUCTION(r1, imm);
|
|
set_high_register(r1, imm);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(IILF) {
|
|
DCHECK_OPCODE(IILF);
|
|
DECODE_RIL_A_INSTRUCTION(r1, imm);
|
|
set_low_register(r1, imm);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LGR) {
|
|
DCHECK_OPCODE(LGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
set_register(r1, get_register(r2));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LG) {
|
|
DCHECK_OPCODE(LG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
intptr_t addr = GET_ADDRESS(x2, b2, d2);
|
|
int64_t mem_val = ReadDW(addr);
|
|
set_register(r1, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AGR) {
|
|
DCHECK_OPCODE(AGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = get_register(r2);
|
|
bool isOF = CheckOverflowForIntAdd(r1_val, r2_val, int64_t);
|
|
r1_val += r2_val;
|
|
set_register(r1, r1_val);
|
|
SetS390ConditionCode<int64_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LGFR) {
|
|
DCHECK_OPCODE(LGFR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int64_t result = static_cast<int64_t>(r2_val);
|
|
set_register(r1, result);
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LBR) {
|
|
DCHECK_OPCODE(LBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
r2_val <<= 24;
|
|
r2_val >>= 24;
|
|
set_low_register(r1, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LGBR) {
|
|
DCHECK_OPCODE(LGBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_low_register<int64_t>(r2);
|
|
r2_val <<= 56;
|
|
r2_val >>= 56;
|
|
set_register(r1, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LHR) {
|
|
DCHECK_OPCODE(LHR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
r2_val <<= 16;
|
|
r2_val >>= 16;
|
|
set_low_register(r1, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LGHR) {
|
|
DCHECK_OPCODE(LGHR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_low_register<int64_t>(r2);
|
|
r2_val <<= 48;
|
|
r2_val >>= 48;
|
|
set_register(r1, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LGF) {
|
|
DCHECK_OPCODE(LGF);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
intptr_t addr = GET_ADDRESS(x2, b2, d2);
|
|
int64_t mem_val = static_cast<int64_t>(ReadW(addr, instr));
|
|
set_register(r1, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ST) {
|
|
DCHECK_OPCODE(ST);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
WriteW(addr, r1_val, instr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STG) {
|
|
DCHECK_OPCODE(STG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
intptr_t addr = GET_ADDRESS(x2, b2, d2);
|
|
uint64_t value = get_register(r1);
|
|
WriteDW(addr, value);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STY) {
|
|
DCHECK_OPCODE(STY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
intptr_t addr = GET_ADDRESS(x2, b2, d2);
|
|
uint32_t value = get_low_register<uint32_t>(r1);
|
|
WriteW(addr, value, instr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LY) {
|
|
DCHECK_OPCODE(LY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
intptr_t addr = GET_ADDRESS(x2, b2, d2);
|
|
uint32_t mem_val = ReadWU(addr, instr);
|
|
set_low_register(r1, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLGC) {
|
|
DCHECK_OPCODE(LLGC);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
uint8_t mem_val = ReadBU(GET_ADDRESS(x2, b2, d2));
|
|
set_register(r1, static_cast<uint64_t>(mem_val));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLC) {
|
|
DCHECK_OPCODE(LLC);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
uint8_t mem_val = ReadBU(GET_ADDRESS(x2, b2, d2));
|
|
set_low_register(r1, static_cast<uint32_t>(mem_val));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(RLL) {
|
|
DCHECK_OPCODE(RLL);
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// only takes rightmost 6 bits
|
|
int shiftBits = GET_ADDRESS(0, b2, d2) & 0x3F;
|
|
// unsigned
|
|
uint32_t r3_val = get_low_register<uint32_t>(r3);
|
|
uint32_t alu_out = 0;
|
|
uint32_t rotateBits = r3_val >> (32 - shiftBits);
|
|
alu_out = (r3_val << shiftBits) | (rotateBits);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(RISBG) {
|
|
DCHECK_OPCODE(RISBG);
|
|
DECODE_RIE_F_INSTRUCTION(r1, r2, i3, i4, i5);
|
|
// Starting Bit Position is Bits 2-7 of I3 field
|
|
uint32_t start_bit = i3 & 0x3F;
|
|
// Ending Bit Position is Bits 2-7 of I4 field
|
|
uint32_t end_bit = i4 & 0x3F;
|
|
// Shift Amount is Bits 2-7 of I5 field
|
|
uint32_t shift_amount = i5 & 0x3F;
|
|
// Zero out Remaining (unslected) bits if Bit 0 of I4 is 1.
|
|
bool zero_remaining = (0 != (i4 & 0x80));
|
|
|
|
uint64_t src_val = get_register(r2);
|
|
|
|
// Rotate Left by Shift Amount first
|
|
uint64_t rotated_val =
|
|
(src_val << shift_amount) | (src_val >> (64 - shift_amount));
|
|
int32_t width = end_bit - start_bit + 1;
|
|
|
|
uint64_t selection_mask = 0;
|
|
if (width < 64) {
|
|
selection_mask = (static_cast<uint64_t>(1) << width) - 1;
|
|
} else {
|
|
selection_mask = static_cast<uint64_t>(static_cast<int64_t>(-1));
|
|
}
|
|
selection_mask = selection_mask << (63 - end_bit);
|
|
|
|
uint64_t selected_val = rotated_val & selection_mask;
|
|
|
|
if (!zero_remaining) {
|
|
// Merged the unselected bits from the original value
|
|
selected_val = (src_val & ~selection_mask) | selected_val;
|
|
}
|
|
|
|
// Condition code is set by treating result as 64-bit signed int
|
|
SetS390ConditionCode<int64_t>(selected_val, 0);
|
|
set_register(r1, selected_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AHIK) {
|
|
DCHECK_OPCODE(AHIK);
|
|
DECODE_RIE_D_INSTRUCTION(r1, r2, i2);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int32_t imm = static_cast<int32_t>(i2);
|
|
bool isOF = CheckOverflowForIntAdd(r2_val, imm, int32_t);
|
|
set_low_register(r1, r2_val + imm);
|
|
SetS390ConditionCode<int32_t>(r2_val + imm, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AGHIK) {
|
|
// 64-bit Add
|
|
DCHECK_OPCODE(AGHIK);
|
|
DECODE_RIE_D_INSTRUCTION(r1, r2, i2);
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t imm = static_cast<int64_t>(i2);
|
|
bool isOF = CheckOverflowForIntAdd(r2_val, imm, int64_t);
|
|
set_register(r1, r2_val + imm);
|
|
SetS390ConditionCode<int64_t>(r2_val + imm, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BKPT) {
|
|
DCHECK_OPCODE(BKPT);
|
|
set_pc(get_pc() + 2);
|
|
S390Debugger dbg(this);
|
|
dbg.Debug();
|
|
int length = 2;
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SPM) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BALR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BCTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BCR) {
|
|
DCHECK_OPCODE(BCR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
if (TestConditionCode(Condition(r1))) {
|
|
intptr_t r2_val = get_register(r2);
|
|
#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
|
|
// On 31-bit, the top most bit may be 0 or 1, but is ignored by the
|
|
// hardware. Cleanse the top bit before jumping to it, unless it's one
|
|
// of the special PCs
|
|
if (r2_val != bad_lr && r2_val != end_sim_pc) r2_val &= 0x7FFFFFFF;
|
|
#endif
|
|
set_pc(r2_val);
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SVC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BSM) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BASSM) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BASR) {
|
|
DCHECK_OPCODE(BASR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
intptr_t link_addr = get_pc() + 2;
|
|
// If R2 is zero, the BASR does not branch.
|
|
int64_t r2_val = (r2 == 0) ? link_addr : get_register(r2);
|
|
#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
|
|
// On 31-bit, the top most bit may be 0 or 1, which can cause issues
|
|
// for stackwalker. The top bit should either be cleanse before being
|
|
// pushed onto the stack, or during stack walking when dereferenced.
|
|
// For simulator, we'll take the worst case scenario and always tag
|
|
// the high bit, to flush out more problems.
|
|
link_addr |= 0x80000000;
|
|
#endif
|
|
set_register(r1, link_addr);
|
|
set_pc(r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MVCL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLCL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LPR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LNR) {
|
|
DCHECK_OPCODE(LNR);
|
|
// Load Negative (32)
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it.
|
|
set_low_register(r1, r2_val);
|
|
condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero
|
|
// CC1 - result is negative
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LTR) {
|
|
DCHECK_OPCODE(LTR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
SetS390ConditionCode<int32_t>(r2_val, 0);
|
|
set_low_register(r1, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LCR) {
|
|
DCHECK_OPCODE(LCR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
r2_val = ~r2_val;
|
|
r2_val = r2_val + 1;
|
|
set_low_register(r1, r2_val);
|
|
SetS390ConditionCode<int32_t>(r2_val, 0);
|
|
// Checks for overflow where r2_val = -2147483648.
|
|
// Cannot do int comparison due to GCC 4.8 bug on x86.
|
|
// Detect INT_MIN alternatively, as it is the only value where both
|
|
// original and result are negative due to overflow.
|
|
if (r2_val == (static_cast<int32_t>(1) << 31)) {
|
|
SetS390OverflowCode(true);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(NR) {
|
|
DCHECK_OPCODE(NR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
r1_val &= r2_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(r1_val);
|
|
set_low_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OR) {
|
|
DCHECK_OPCODE(OR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
r1_val |= r2_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(r1_val);
|
|
set_low_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(XR) {
|
|
DCHECK_OPCODE(XR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
r1_val ^= r2_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(r1_val);
|
|
set_low_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CR) {
|
|
DCHECK_OPCODE(CR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
SetS390ConditionCode<int32_t>(r1_val, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SR) {
|
|
DCHECK_OPCODE(SR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntSub(r1_val, r2_val, int32_t);
|
|
r1_val -= r2_val;
|
|
SetS390ConditionCode<int32_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MR) {
|
|
DCHECK_OPCODE(MR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
DCHECK(r1 % 2 == 0);
|
|
r1_val = get_low_register<int32_t>(r1 + 1);
|
|
int64_t product = static_cast<int64_t>(r1_val) * static_cast<int64_t>(r2_val);
|
|
int32_t high_bits = product >> 32;
|
|
r1_val = high_bits;
|
|
int32_t low_bits = product & 0x00000000FFFFFFFF;
|
|
set_low_register(r1, high_bits);
|
|
set_low_register(r1 + 1, low_bits);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(DR) {
|
|
DCHECK_OPCODE(DR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
// reg-reg pair should be even-odd pair, assert r1 is an even register
|
|
DCHECK(r1 % 2 == 0);
|
|
// leftmost 32 bits of the dividend are in r1
|
|
// rightmost 32 bits of the dividend are in r1+1
|
|
// get the signed value from r1
|
|
int64_t dividend = static_cast<int64_t>(r1_val) << 32;
|
|
// get unsigned value from r1+1
|
|
// avoid addition with sign-extended r1+1 value
|
|
dividend += get_low_register<uint32_t>(r1 + 1);
|
|
int32_t remainder = dividend % r2_val;
|
|
int32_t quotient = dividend / r2_val;
|
|
r1_val = remainder;
|
|
set_low_register(r1, remainder);
|
|
set_low_register(r1 + 1, quotient);
|
|
set_low_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALR) {
|
|
DCHECK_OPCODE(ALR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint32_t alu_out = 0;
|
|
bool isOF = false;
|
|
alu_out = r1_val + r2_val;
|
|
isOF = CheckOverflowForUIntAdd(r1_val, r2_val);
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLR) {
|
|
DCHECK_OPCODE(SLR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint32_t alu_out = 0;
|
|
bool isOF = false;
|
|
alu_out = r1_val - r2_val;
|
|
isOF = CheckOverflowForUIntSub(r1_val, r2_val);
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LDR) {
|
|
DCHECK_OPCODE(LDR);
|
|
DECODE_RR_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_d_register(r2);
|
|
set_d_register(r1, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CDR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LER) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STH) {
|
|
DCHECK_OPCODE(STH);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int16_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t mem_addr = b2_val + x2_val + d2_val;
|
|
WriteH(mem_addr, r1_val, instr);
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LA) {
|
|
DCHECK_OPCODE(LA);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
set_register(r1, addr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STC) {
|
|
DCHECK_OPCODE(STC);
|
|
// Store Character/Byte
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
uint8_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t mem_addr = b2_val + x2_val + d2_val;
|
|
WriteB(mem_addr, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(IC_z) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(EX) {
|
|
DCHECK_OPCODE(EX);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
|
|
SixByteInstr the_instr = Instruction::InstructionBits(
|
|
reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
|
|
int inst_length = Instruction::InstructionLength(
|
|
reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
|
|
|
|
char new_instr_buf[8];
|
|
char* addr = reinterpret_cast<char*>(&new_instr_buf[0]);
|
|
the_instr |= static_cast<SixByteInstr>(r1_val & 0xff)
|
|
<< (8 * inst_length - 16);
|
|
Instruction::SetInstructionBits<SixByteInstr>(
|
|
reinterpret_cast<byte*>(addr), static_cast<SixByteInstr>(the_instr));
|
|
ExecuteInstruction(reinterpret_cast<Instruction*>(addr), false);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BAL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BCT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LH) {
|
|
DCHECK_OPCODE(LH);
|
|
// Load Halfword
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t mem_addr = x2_val + b2_val + d2_val;
|
|
|
|
int32_t result = static_cast<int32_t>(ReadH(mem_addr, instr));
|
|
set_low_register(r1, result);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AH) {
|
|
DCHECK_OPCODE(AH);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int32_t mem_val = static_cast<int32_t>(ReadH(addr, instr));
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
|
|
alu_out = r1_val + mem_val;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SH) {
|
|
DCHECK_OPCODE(SH);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int32_t mem_val = static_cast<int32_t>(ReadH(addr, instr));
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntSub(r1_val, mem_val, int32_t);
|
|
alu_out = r1_val - mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MH) {
|
|
DCHECK_OPCODE(MH);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int32_t mem_val = static_cast<int32_t>(ReadH(addr, instr));
|
|
int32_t alu_out = 0;
|
|
alu_out = r1_val * mem_val;
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BAS) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CVD) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CVB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(N) {
|
|
DCHECK_OPCODE(N);
|
|
// 32-bit Reg-Mem instructions
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
|
|
int32_t alu_out = 0;
|
|
alu_out = r1_val & mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CL) {
|
|
DCHECK_OPCODE(CL);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int32_t mem_val = ReadW(addr, instr);
|
|
SetS390ConditionCode<uint32_t>(r1_val, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(O) {
|
|
DCHECK_OPCODE(O);
|
|
// 32-bit Reg-Mem instructions
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
|
|
int32_t alu_out = 0;
|
|
alu_out = r1_val | mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(X) {
|
|
DCHECK_OPCODE(X);
|
|
// 32-bit Reg-Mem instructions
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
|
|
int32_t alu_out = 0;
|
|
alu_out = r1_val ^ mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(C) {
|
|
DCHECK_OPCODE(C);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int32_t mem_val = ReadW(addr, instr);
|
|
SetS390ConditionCode<int32_t>(r1_val, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(A) {
|
|
DCHECK_OPCODE(A);
|
|
// 32-bit Reg-Mem instructions
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
|
|
alu_out = r1_val + mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(S) {
|
|
DCHECK_OPCODE(S);
|
|
// 32-bit Reg-Mem instructions
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntSub(r1_val, mem_val, int32_t);
|
|
alu_out = r1_val - mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(M) {
|
|
DCHECK_OPCODE(M);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
DCHECK(r1 % 2 == 0);
|
|
int32_t mem_val = ReadW(addr, instr);
|
|
int32_t r1_val = get_low_register<int32_t>(r1 + 1);
|
|
int64_t product =
|
|
static_cast<int64_t>(r1_val) * static_cast<int64_t>(mem_val);
|
|
int32_t high_bits = product >> 32;
|
|
r1_val = high_bits;
|
|
int32_t low_bits = product & 0x00000000FFFFFFFF;
|
|
set_low_register(r1, high_bits);
|
|
set_low_register(r1 + 1, low_bits);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(D) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STD) {
|
|
DCHECK_OPCODE(STD);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int64_t frs_val = get_d_register(r1);
|
|
WriteDW(addr, frs_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LD) {
|
|
DCHECK_OPCODE(LD);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int64_t dbl_val = *reinterpret_cast<int64_t*>(addr);
|
|
set_d_register(r1, dbl_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CD) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STE) {
|
|
DCHECK_OPCODE(STE);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
int64_t frs_val = get_d_register(r1) >> 32;
|
|
WriteW(addr, static_cast<int32_t>(frs_val), instr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MS) {
|
|
DCHECK_OPCODE(MS);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
set_low_register(r1, r1_val * mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LE) {
|
|
DCHECK_OPCODE(LE);
|
|
DECODE_RX_A_INSTRUCTION(x2, b2, r1, d2_val);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t addr = b2_val + x2_val + d2_val;
|
|
float float_val = *reinterpret_cast<float*>(addr);
|
|
set_d_register_from_float32(r1, float_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BRXH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BRXLE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BXH) {
|
|
DCHECK_OPCODE(BXH);
|
|
DECODE_RS_A_INSTRUCTION(r1, r3, b2, d2);
|
|
|
|
// r1_val is the first operand, r3_val is the increment
|
|
int32_t r1_val = r1 == 0 ? 0 : get_register(r1);
|
|
int32_t r3_val = r2 == 0 ? 0 : get_register(r3);
|
|
intptr_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
intptr_t branch_address = b2_val + d2;
|
|
// increment r1_val
|
|
r1_val += r3_val;
|
|
|
|
// if the increment is even, then it designates a pair of registers
|
|
// and the contents of the even and odd registers of the pair are used as
|
|
// the increment and compare value respectively. If the increment is odd,
|
|
// the increment itself is used as both the increment and compare value
|
|
int32_t compare_val = r3 % 2 == 0 ? get_register(r3 + 1) : r3_val;
|
|
if (r1_val > compare_val) {
|
|
// branch to address if r1_val is greater than compare value
|
|
set_pc(branch_address);
|
|
}
|
|
|
|
// update contents of register in r1 with the new incremented value
|
|
set_register(r1, r1_val);
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BXLE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SRL) {
|
|
DCHECK_OPCODE(SRL);
|
|
DECODE_RS_A_INSTRUCTION_NO_R3(r1, b2, d2);
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t alu_out = 0;
|
|
alu_out = r1_val >> shiftBits;
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLL) {
|
|
DCHECK_OPCODE(SLL);
|
|
DECODE_RS_A_INSTRUCTION_NO_R3(r1, b2, d2)
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t alu_out = 0;
|
|
alu_out = r1_val << shiftBits;
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SRA) {
|
|
DCHECK_OPCODE(SRA);
|
|
DECODE_RS_A_INSTRUCTION_NO_R3(r1, b2, d2);
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
alu_out = r1_val >> shiftBits;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLA) {
|
|
DCHECK_OPCODE(SLA);
|
|
DECODE_RS_A_INSTRUCTION_NO_R3(r1, b2, d2);
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForShiftLeft(r1_val, shiftBits);
|
|
alu_out = r1_val << shiftBits;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SRDL) {
|
|
DCHECK_OPCODE(SRDL);
|
|
DECODE_RS_A_INSTRUCTION_NO_R3(r1, b2, d2);
|
|
DCHECK(r1 % 2 == 0); // must be a reg pair
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
uint64_t opnd1 = static_cast<uint64_t>(get_low_register<uint32_t>(r1)) << 32;
|
|
uint64_t opnd2 = static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
|
|
uint64_t r1_val = opnd1 | opnd2;
|
|
uint64_t alu_out = r1_val >> shiftBits;
|
|
set_low_register(r1, alu_out >> 32);
|
|
set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLDL) {
|
|
DCHECK_OPCODE(SLDL);
|
|
DECODE_RS_A_INSTRUCTION_NO_R3(r1, b2, d2);
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
|
|
DCHECK(r1 % 2 == 0);
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r1_next_val = get_low_register<uint32_t>(r1 + 1);
|
|
uint64_t alu_out = (static_cast<uint64_t>(r1_val) << 32) |
|
|
(static_cast<uint64_t>(r1_next_val));
|
|
alu_out <<= shiftBits;
|
|
set_low_register(r1 + 1, static_cast<uint32_t>(alu_out));
|
|
set_low_register(r1, static_cast<uint32_t>(alu_out >> 32));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SRDA) {
|
|
DCHECK_OPCODE(SRDA);
|
|
DECODE_RS_A_INSTRUCTION_NO_R3(r1, b2, d2);
|
|
DCHECK(r1 % 2 == 0); // must be a reg pair
|
|
// only takes rightmost 6bits
|
|
int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int64_t opnd1 = static_cast<int64_t>(get_low_register<int32_t>(r1)) << 32;
|
|
int64_t opnd2 = static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
|
|
int64_t r1_val = opnd1 + opnd2;
|
|
int64_t alu_out = r1_val >> shiftBits;
|
|
set_low_register(r1, alu_out >> 32);
|
|
set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLDA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STM) {
|
|
DCHECK_OPCODE(STM);
|
|
DECODE_RS_A_INSTRUCTION(r1, r3, rb, d2);
|
|
// Store Multiple 32-bits.
|
|
int offset = d2;
|
|
// Regs roll around if r3 is less than r1.
|
|
// Artifically increase r3 by 16 so we can calculate
|
|
// the number of regs stored properly.
|
|
if (r3 < r1) r3 += 16;
|
|
|
|
int32_t rb_val = (rb == 0) ? 0 : get_low_register<int32_t>(rb);
|
|
|
|
// Store each register in ascending order.
|
|
for (int i = 0; i <= r3 - r1; i++) {
|
|
int32_t value = get_low_register<int32_t>((r1 + i) % 16);
|
|
WriteW(rb_val + offset + 4 * i, value, instr);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(TM) {
|
|
DCHECK_OPCODE(TM);
|
|
// Test Under Mask (Mem - Imm) (8)
|
|
DECODE_SI_INSTRUCTION_I_UINT8(b1, d1_val, imm_val)
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t addr = b1_val + d1_val;
|
|
uint8_t mem_val = ReadB(addr);
|
|
uint8_t selected_bits = mem_val & imm_val;
|
|
// CC0: Selected bits are zero
|
|
// CC1: Selected bits mixed zeros and ones
|
|
// CC3: Selected bits all ones
|
|
if (0 == selected_bits) {
|
|
condition_reg_ = CC_EQ; // CC0
|
|
} else if (selected_bits == imm_val) {
|
|
condition_reg_ = 0x1; // CC3
|
|
} else {
|
|
condition_reg_ = 0x4; // CC1
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MVI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TS) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(NI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLI) {
|
|
DCHECK_OPCODE(CLI);
|
|
// Compare Immediate (Mem - Imm) (8)
|
|
DECODE_SI_INSTRUCTION_I_UINT8(b1, d1_val, imm_val)
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t addr = b1_val + d1_val;
|
|
uint8_t mem_val = ReadB(addr);
|
|
SetS390ConditionCode<uint8_t>(mem_val, imm_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(XI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LM) {
|
|
DCHECK_OPCODE(LM);
|
|
DECODE_RS_A_INSTRUCTION(r1, r3, rb, d2);
|
|
// Store Multiple 32-bits.
|
|
int offset = d2;
|
|
// Regs roll around if r3 is less than r1.
|
|
// Artifically increase r3 by 16 so we can calculate
|
|
// the number of regs stored properly.
|
|
if (r3 < r1) r3 += 16;
|
|
|
|
int32_t rb_val = (rb == 0) ? 0 : get_low_register<int32_t>(rb);
|
|
|
|
// Store each register in ascending order.
|
|
for (int i = 0; i <= r3 - r1; i++) {
|
|
int32_t value = ReadW(rb_val + offset + 4 * i, instr);
|
|
set_low_register((r1 + i) % 16, value);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MVCLE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLCLE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDS) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STCM) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ICM) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BPRP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BPP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TRTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MVN) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MVC) {
|
|
DCHECK_OPCODE(MVC);
|
|
// Move Character
|
|
SSInstruction* ssInstr = reinterpret_cast<SSInstruction*>(instr);
|
|
int b1 = ssInstr->B1Value();
|
|
intptr_t d1 = ssInstr->D1Value();
|
|
int b2 = ssInstr->B2Value();
|
|
intptr_t d2 = ssInstr->D2Value();
|
|
int length = ssInstr->Length();
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t src_addr = b2_val + d2;
|
|
intptr_t dst_addr = b1_val + d1;
|
|
// remember that the length is the actual length - 1
|
|
for (int i = 0; i < length + 1; ++i) {
|
|
WriteB(dst_addr++, ReadB(src_addr++));
|
|
}
|
|
length = 6;
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MVZ) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(NC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(OC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(XC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MVCP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TRT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ED) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(EDMK) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(PKU) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(UNPKU) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MVCIN) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(PKA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(UNPKA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(PLO) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LMD) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SRP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MVO) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(PACK) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(UNPK) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ZAP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(UPT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(PFPO) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(IIHH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(IIHL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(IILH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(IILL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(NIHH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(NIHL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(NILH) {
|
|
DCHECK_OPCODE(NILH);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
// CC is set based on the 16 bits that are AND'd
|
|
SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) & i);
|
|
i = (i << 16) | 0x0000FFFF;
|
|
set_low_register(r1, r1_val & i);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(NILL) {
|
|
DCHECK_OPCODE(NILL);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
// CC is set based on the 16 bits that are AND'd
|
|
SetS390BitWiseConditionCode<uint16_t>(r1_val & i);
|
|
i |= 0xFFFF0000;
|
|
set_low_register(r1, r1_val & i);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OIHH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(OIHL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(OILH) {
|
|
DCHECK_OPCODE(OILH);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
// CC is set based on the 16 bits that are AND'd
|
|
SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) | i);
|
|
i = i << 16;
|
|
set_low_register(r1, r1_val | i);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OILL) {
|
|
DCHECK_OPCODE(OILL);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
// CC is set based on the 16 bits that are AND'd
|
|
SetS390BitWiseConditionCode<uint16_t>(r1_val | i);
|
|
set_low_register(r1, r1_val | i);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLIHH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLIHL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLILH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLILL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TMLH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TMLL) {
|
|
DCHECK_OPCODE(TMLL);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i2);
|
|
int mask = i2 & 0x0000FFFF;
|
|
if (mask == 0) {
|
|
condition_reg_ = 0x0;
|
|
return length;
|
|
}
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
r1_val = r1_val & 0x0000FFFF; // uses only the last 16bits
|
|
|
|
// Test if all selected bits are Zero
|
|
bool allSelectedBitsAreZeros = true;
|
|
for (int i = 0; i < 15; i++) {
|
|
if (mask & (1 << i)) {
|
|
if (r1_val & (1 << i)) {
|
|
allSelectedBitsAreZeros = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (allSelectedBitsAreZeros) {
|
|
condition_reg_ = 0x8;
|
|
return length; // Done!
|
|
}
|
|
|
|
// Test if all selected bits are one
|
|
bool allSelectedBitsAreOnes = true;
|
|
for (int i = 0; i < 15; i++) {
|
|
if (mask & (1 << i)) {
|
|
if (!(r1_val & (1 << i))) {
|
|
allSelectedBitsAreOnes = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (allSelectedBitsAreOnes) {
|
|
condition_reg_ = 0x1;
|
|
return length; // Done!
|
|
}
|
|
|
|
// Now we know selected bits mixed zeros and ones
|
|
// Test if the leftmost bit is zero or one
|
|
for (int i = 14; i >= 0; i--) {
|
|
if (mask & (1 << i)) {
|
|
if (r1_val & (1 << i)) {
|
|
// leftmost bit is one
|
|
condition_reg_ = 0x2;
|
|
} else {
|
|
// leftmost bit is zero
|
|
condition_reg_ = 0x4;
|
|
}
|
|
return length; // Done!
|
|
}
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(TMHH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TMHL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BRAS) {
|
|
DCHECK_OPCODE(BRAS);
|
|
// Branch Relative and Save
|
|
DECODE_RI_B_INSTRUCTION(instr, r1, d2)
|
|
intptr_t pc = get_pc();
|
|
// Set PC of next instruction to register
|
|
set_register(r1, pc + sizeof(FourByteInstr));
|
|
// Update PC to branch target
|
|
set_pc(pc + d2 * 2);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BRCT) {
|
|
DCHECK_OPCODE(BRCT);
|
|
// Branch On Count (32/64).
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i2);
|
|
int64_t value = get_low_register<int32_t>(r1);
|
|
set_low_register(r1, --value);
|
|
// Branch if value != 0
|
|
if (value != 0) {
|
|
intptr_t offset = i2 * 2;
|
|
set_pc(get_pc() + offset);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BRCTG) {
|
|
DCHECK_OPCODE(BRCTG);
|
|
// Branch On Count (32/64).
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i2);
|
|
int64_t value = get_register(r1);
|
|
set_register(r1, --value);
|
|
// Branch if value != 0
|
|
if (value != 0) {
|
|
intptr_t offset = i2 * 2;
|
|
set_pc(get_pc() + offset);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LHI) {
|
|
DCHECK_OPCODE(LHI);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i);
|
|
set_low_register(r1, i);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LGHI) {
|
|
DCHECK_OPCODE(LGHI);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i2);
|
|
int64_t i = static_cast<int64_t>(i2);
|
|
set_register(r1, i);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MHI) {
|
|
DCHECK_OPCODE(MHI);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForMul(r1_val, i);
|
|
r1_val *= i;
|
|
set_low_register(r1, r1_val);
|
|
SetS390ConditionCode<int32_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MGHI) {
|
|
DCHECK_OPCODE(MGHI);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i2);
|
|
int64_t i = static_cast<int64_t>(i2);
|
|
int64_t r1_val = get_register(r1);
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForMul(r1_val, i);
|
|
r1_val *= i;
|
|
set_register(r1, r1_val);
|
|
SetS390ConditionCode<int32_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CHI) {
|
|
DCHECK_OPCODE(CHI);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
SetS390ConditionCode<int32_t>(r1_val, i);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CGHI) {
|
|
DCHECK_OPCODE(CGHI);
|
|
DECODE_RI_A_INSTRUCTION(instr, r1, i2);
|
|
int64_t i = static_cast<int64_t>(i2);
|
|
int64_t r1_val = get_register(r1);
|
|
SetS390ConditionCode<int64_t>(r1_val, i);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LARL) {
|
|
DCHECK_OPCODE(LARL);
|
|
DECODE_RIL_B_INSTRUCTION(r1, i2);
|
|
intptr_t offset = i2 * 2;
|
|
set_register(r1, get_pc() + offset);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LGFI) {
|
|
DCHECK_OPCODE(LGFI);
|
|
DECODE_RIL_A_INSTRUCTION(r1, imm);
|
|
set_register(r1, static_cast<int64_t>(static_cast<int32_t>(imm)));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BRASL) {
|
|
DCHECK_OPCODE(BRASL);
|
|
// Branch and Save Relative Long
|
|
DECODE_RIL_B_INSTRUCTION(r1, i2);
|
|
intptr_t d2 = i2;
|
|
intptr_t pc = get_pc();
|
|
set_register(r1, pc + 6); // save next instruction to register
|
|
set_pc(pc + d2 * 2); // update register
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(XIHF) {
|
|
DCHECK_OPCODE(XIHF);
|
|
DECODE_RIL_A_INSTRUCTION(r1, imm);
|
|
uint32_t alu_out = 0;
|
|
alu_out = get_high_register<uint32_t>(r1);
|
|
alu_out = alu_out ^ imm;
|
|
set_high_register(r1, alu_out);
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(XILF) {
|
|
DCHECK_OPCODE(XILF);
|
|
DECODE_RIL_A_INSTRUCTION(r1, imm);
|
|
uint32_t alu_out = 0;
|
|
alu_out = get_low_register<uint32_t>(r1);
|
|
alu_out = alu_out ^ imm;
|
|
set_low_register(r1, alu_out);
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(NIHF) {
|
|
DCHECK_OPCODE(NIHF);
|
|
// Bitwise Op on upper 32-bits
|
|
DECODE_RIL_A_INSTRUCTION(r1, imm);
|
|
uint32_t alu_out = get_high_register<uint32_t>(r1);
|
|
alu_out &= imm;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_high_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(NILF) {
|
|
DCHECK_OPCODE(NILF);
|
|
// Bitwise Op on lower 32-bits
|
|
DECODE_RIL_A_INSTRUCTION(r1, imm);
|
|
uint32_t alu_out = get_low_register<uint32_t>(r1);
|
|
alu_out &= imm;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OIHF) {
|
|
DCHECK_OPCODE(OIHF);
|
|
// Bitwise Op on upper 32-bits
|
|
DECODE_RIL_B_INSTRUCTION(r1, imm);
|
|
uint32_t alu_out = get_high_register<uint32_t>(r1);
|
|
alu_out |= imm;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_high_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OILF) {
|
|
DCHECK_OPCODE(OILF);
|
|
// Bitwise Op on lower 32-bits
|
|
DECODE_RIL_B_INSTRUCTION(r1, imm);
|
|
uint32_t alu_out = get_low_register<uint32_t>(r1);
|
|
alu_out |= imm;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLIHF) {
|
|
DCHECK_OPCODE(LLIHF);
|
|
// Load Logical Immediate into high word
|
|
DECODE_RIL_A_INSTRUCTION(r1, i2);
|
|
uint64_t imm = static_cast<uint64_t>(i2);
|
|
set_register(r1, imm << 32);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLILF) {
|
|
DCHECK_OPCODE(LLILF);
|
|
// Load Logical into lower 32-bits (zero extend upper 32-bits)
|
|
DECODE_RIL_A_INSTRUCTION(r1, i2);
|
|
uint64_t imm = static_cast<uint64_t>(i2);
|
|
set_register(r1, imm);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MSGFI) {
|
|
DCHECK_OPCODE(MSGFI);
|
|
DECODE_RIL_B_INSTRUCTION(r1, i2);
|
|
int64_t alu_out = get_register(r1);
|
|
alu_out = alu_out * i2;
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MSFI) {
|
|
DCHECK_OPCODE(MSFI);
|
|
DECODE_RIL_B_INSTRUCTION(r1, i2);
|
|
int32_t alu_out = get_low_register<int32_t>(r1);
|
|
alu_out = alu_out * i2;
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLGFI) {
|
|
DCHECK_OPCODE(SLGFI);
|
|
#ifndef V8_TARGET_ARCH_S390X
|
|
// should only be called on 64bit
|
|
DCHECK(false);
|
|
#endif
|
|
DECODE_RIL_A_INSTRUCTION(r1, i2);
|
|
uint64_t r1_val = (uint64_t)(get_register(r1));
|
|
uint64_t alu_out;
|
|
alu_out = r1_val - i2;
|
|
set_register(r1, (intptr_t)alu_out);
|
|
SetS390ConditionCode<uint64_t>(alu_out, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLFI) {
|
|
DCHECK_OPCODE(SLFI);
|
|
DECODE_RIL_A_INSTRUCTION(r1, imm);
|
|
uint32_t alu_out = get_low_register<uint32_t>(r1);
|
|
alu_out -= imm;
|
|
SetS390ConditionCode<uint32_t>(alu_out, 0);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AGFI) {
|
|
DCHECK_OPCODE(AGFI);
|
|
// Clobbering Add Word Immediate
|
|
DECODE_RIL_B_INSTRUCTION(r1, i2_val);
|
|
bool isOF = false;
|
|
// 64-bit Add (Register + 32-bit Imm)
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t i2 = static_cast<int64_t>(i2_val);
|
|
isOF = CheckOverflowForIntAdd(r1_val, i2, int64_t);
|
|
int64_t alu_out = r1_val + i2;
|
|
set_register(r1, alu_out);
|
|
SetS390ConditionCode<int64_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AFI) {
|
|
DCHECK_OPCODE(AFI);
|
|
// Clobbering Add Word Immediate
|
|
DECODE_RIL_B_INSTRUCTION(r1, i2);
|
|
bool isOF = false;
|
|
// 32-bit Add (Register + 32-bit Immediate)
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
isOF = CheckOverflowForIntAdd(r1_val, i2, int32_t);
|
|
int32_t alu_out = r1_val + i2;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALGFI) {
|
|
DCHECK_OPCODE(ALGFI);
|
|
#ifndef V8_TARGET_ARCH_S390X
|
|
// should only be called on 64bit
|
|
DCHECK(false);
|
|
#endif
|
|
DECODE_RIL_A_INSTRUCTION(r1, i2);
|
|
uint64_t r1_val = (uint64_t)(get_register(r1));
|
|
uint64_t alu_out;
|
|
alu_out = r1_val + i2;
|
|
set_register(r1, (intptr_t)alu_out);
|
|
SetS390ConditionCode<uint64_t>(alu_out, 0);
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALFI) {
|
|
DCHECK_OPCODE(ALFI);
|
|
DECODE_RIL_A_INSTRUCTION(r1, imm);
|
|
uint32_t alu_out = get_low_register<uint32_t>(r1);
|
|
alu_out += imm;
|
|
SetS390ConditionCode<uint32_t>(alu_out, 0);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CGFI) {
|
|
DCHECK_OPCODE(CGFI);
|
|
// Compare with Immediate (64)
|
|
DECODE_RIL_B_INSTRUCTION(r1, i2);
|
|
int64_t imm = static_cast<int64_t>(i2);
|
|
SetS390ConditionCode<int64_t>(get_register(r1), imm);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CFI) {
|
|
DCHECK_OPCODE(CFI);
|
|
// Compare with Immediate (32)
|
|
DECODE_RIL_B_INSTRUCTION(r1, imm);
|
|
SetS390ConditionCode<int32_t>(get_low_register<int32_t>(r1), imm);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CLGFI) {
|
|
DCHECK_OPCODE(CLGFI);
|
|
// Compare Logical with Immediate (64)
|
|
DECODE_RIL_A_INSTRUCTION(r1, i2);
|
|
uint64_t imm = static_cast<uint64_t>(i2);
|
|
SetS390ConditionCode<uint64_t>(get_register(r1), imm);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CLFI) {
|
|
DCHECK_OPCODE(CLFI);
|
|
// Compare Logical with Immediate (32)
|
|
DECODE_RIL_A_INSTRUCTION(r1, imm);
|
|
SetS390ConditionCode<uint32_t>(get_low_register<uint32_t>(r1), imm);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLHRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LGHRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LHRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLGHRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STHRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LGRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STGRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LGFRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLGFRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(EXRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(PFDRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGHRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CHRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGFRL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ECTG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CSST) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LPD) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LPDG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BRCTH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AIH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ALSIH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ALSIHN) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CIH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STCK) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CFC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(IPM) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(HSCH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MSCH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SSCH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STSCH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TSCH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TPI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SAL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(RSCH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STCRW) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STCPS) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(RCHP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SCHM) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CKSM) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SAR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(EAR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MSR) {
|
|
DCHECK_OPCODE(MSR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
set_low_register(r1, r1_val * r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MVST) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CUSE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SRST) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(XSCH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STCKE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STCKF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SRNM) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STFPC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LFPC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TRE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CUUTF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CUTFU) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STFLE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SRNMB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SRNMT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LFAS) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(PPA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ETND) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TEND) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(NIAI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TABORT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TRAP4) {
|
|
DCHECK_OPCODE(TRAP4);
|
|
int length = 4;
|
|
// whack the space of the caller allocated stack
|
|
int64_t sp_addr = get_register(sp);
|
|
for (int i = 0; i < kCalleeRegisterSaveAreaSize / kPointerSize; ++i) {
|
|
// we dont want to whack the RA (r14)
|
|
if (i != 14) (reinterpret_cast<intptr_t*>(sp_addr))[i] = 0xdeadbabe;
|
|
}
|
|
SoftwareInterrupt(instr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LPEBR) {
|
|
DCHECK_OPCODE(LPEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float fr1_val = get_float32_from_d_register(r1);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
fr1_val = std::fabs(fr2_val);
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
if (fr2_val != fr2_val) { // input is NaN
|
|
condition_reg_ = CC_OF;
|
|
} else if (fr2_val == 0) {
|
|
condition_reg_ = CC_EQ;
|
|
} else {
|
|
condition_reg_ = CC_GT;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LNEBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LTEBR) {
|
|
DCHECK_OPCODE(LTEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_d_register(r2);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
SetS390ConditionCode<float>(fr2_val, 0.0);
|
|
set_d_register(r1, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LCEBR) {
|
|
DCHECK_OPCODE(LCEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float fr1_val = get_float32_from_d_register(r1);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
fr1_val = -fr2_val;
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
if (fr2_val != fr2_val) { // input is NaN
|
|
condition_reg_ = CC_OF;
|
|
} else if (fr2_val == 0) {
|
|
condition_reg_ = CC_EQ;
|
|
} else if (fr2_val < 0) {
|
|
condition_reg_ = CC_LT;
|
|
} else if (fr2_val > 0) {
|
|
condition_reg_ = CC_GT;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LDEBR) {
|
|
DCHECK_OPCODE(LDEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float fp_val = get_float32_from_d_register(r2);
|
|
double db_val = static_cast<double>(fp_val);
|
|
set_d_register_from_double(r1, db_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LXDBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LXEBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MXDBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KEBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CEBR) {
|
|
DCHECK_OPCODE(CEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float fr1_val = get_float32_from_d_register(r1);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
if (isNaN(fr1_val) || isNaN(fr2_val)) {
|
|
condition_reg_ = CC_OF;
|
|
} else {
|
|
SetS390ConditionCode<float>(fr1_val, fr2_val);
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AEBR) {
|
|
DCHECK_OPCODE(AEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float fr1_val = get_float32_from_d_register(r1);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
fr1_val += fr2_val;
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
SetS390ConditionCode<float>(fr1_val, 0);
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SEBR) {
|
|
DCHECK_OPCODE(SEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float fr1_val = get_float32_from_d_register(r1);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
fr1_val -= fr2_val;
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
SetS390ConditionCode<float>(fr1_val, 0);
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MDEBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DEBR) {
|
|
DCHECK_OPCODE(DEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float fr1_val = get_float32_from_d_register(r1);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
fr1_val /= fr2_val;
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
SetS390ConditionCode<float>(fr1_val, 0);
|
|
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MAEBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MSEBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LPDBR) {
|
|
DCHECK_OPCODE(LPDBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
r1_val = std::fabs(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
if (r2_val != r2_val) { // input is NaN
|
|
condition_reg_ = CC_OF;
|
|
} else if (r2_val == 0) {
|
|
condition_reg_ = CC_EQ;
|
|
} else {
|
|
condition_reg_ = CC_GT;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LNDBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LTDBR) {
|
|
DCHECK_OPCODE(LTDBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_d_register(r2);
|
|
SetS390ConditionCode<double>(bit_cast<double, int64_t>(r2_val), 0.0);
|
|
set_d_register(r1, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LCDBR) {
|
|
DCHECK_OPCODE(LCDBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
r1_val = -r2_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
if (r2_val != r2_val) { // input is NaN
|
|
condition_reg_ = CC_OF;
|
|
} else if (r2_val == 0) {
|
|
condition_reg_ = CC_EQ;
|
|
} else if (r2_val < 0) {
|
|
condition_reg_ = CC_LT;
|
|
} else if (r2_val > 0) {
|
|
condition_reg_ = CC_GT;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SQEBR) {
|
|
DCHECK_OPCODE(SQEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float fr1_val = get_float32_from_d_register(r1);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
fr1_val = std::sqrt(fr2_val);
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SQDBR) {
|
|
DCHECK_OPCODE(SQDBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
r1_val = std::sqrt(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SQXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MEEBR) {
|
|
DCHECK_OPCODE(MEEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float fr1_val = get_float32_from_d_register(r1);
|
|
float fr2_val = get_float32_from_d_register(r2);
|
|
fr1_val *= fr2_val;
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
SetS390ConditionCode<float>(fr1_val, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(KDBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDBR) {
|
|
DCHECK_OPCODE(CDBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
if (isNaN(r1_val) || isNaN(r2_val)) {
|
|
condition_reg_ = CC_OF;
|
|
} else {
|
|
SetS390ConditionCode<double>(r1_val, r2_val);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ADBR) {
|
|
DCHECK_OPCODE(ADBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
r1_val += r2_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SDBR) {
|
|
DCHECK_OPCODE(SDBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
r1_val -= r2_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MDBR) {
|
|
DCHECK_OPCODE(MDBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
r1_val *= r2_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(DDBR) {
|
|
DCHECK_OPCODE(DDBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
r1_val /= r2_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MADBR) {
|
|
DCHECK_OPCODE(MADBR);
|
|
DECODE_RRD_INSTRUCTION(r1, r2, r3);
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
double r3_val = get_double_from_d_register(r3);
|
|
r1_val += r2_val * r3_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MSDBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LPXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LNXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LTXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LCXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LEDBRA) {
|
|
DCHECK_OPCODE(LEDBRA);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
set_d_register_from_float32(r1, static_cast<float>(r2_val));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LDXBRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LEXBRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(FIXBRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TBEDR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TBDR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DIEBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(FIEBRA) {
|
|
DCHECK_OPCODE(FIEBRA);
|
|
DECODE_RRF_E_INSTRUCTION(r1, r2, m3, m4);
|
|
float r2_val = get_float32_from_d_register(r2);
|
|
CHECK(m4 == 0);
|
|
switch (m3) {
|
|
case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
|
|
set_d_register_from_float32(r1, round(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_0:
|
|
set_d_register_from_float32(r1, trunc(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
|
|
set_d_register_from_float32(r1, std::ceil(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
|
|
set_d_register_from_float32(r1, std::floor(r2_val));
|
|
break;
|
|
default:
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(THDER) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(THDR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DIDBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(FIDBRA) {
|
|
DCHECK_OPCODE(FIDBRA);
|
|
DECODE_RRF_E_INSTRUCTION(r1, r2, m3, m4);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
CHECK(m4 == 0);
|
|
switch (m3) {
|
|
case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
|
|
set_d_register_from_double(r1, round(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_0:
|
|
set_d_register_from_double(r1, trunc(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
|
|
set_d_register_from_double(r1, std::ceil(r2_val));
|
|
break;
|
|
case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
|
|
set_d_register_from_double(r1, std::floor(r2_val));
|
|
break;
|
|
default:
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LXR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LPDFR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LNDFR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LCDFR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LZER) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LZDR) {
|
|
DCHECK_OPCODE(LZDR);
|
|
DECODE_RRE_INSTRUCTION_NO_R2(r1);
|
|
set_d_register_from_double(r1, 0.0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LZXR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SFPC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SFASR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(EFPC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CELFBR) {
|
|
DCHECK_OPCODE(CELFBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
float r1_val = static_cast<float>(r2_val);
|
|
set_d_register_from_float32(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CDLFBR) {
|
|
DCHECK_OPCODE(CDLFBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
double r1_val = static_cast<double>(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CXLFBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CEFBRA) {
|
|
DCHECK_OPCODE(CEFBRA);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int32_t fr2_val = get_low_register<int32_t>(r2);
|
|
float fr1_val = static_cast<float>(fr2_val);
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CDFBRA) {
|
|
DCHECK_OPCODE(CDFBRA);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
double r1_val = static_cast<double>(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CXFBRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CFEBRA) {
|
|
DCHECK_OPCODE(CFEBRA);
|
|
DECODE_RRE_INSTRUCTION_M3(r1, r2, mask_val);
|
|
float r2_fval = get_float32_from_d_register(r2);
|
|
int32_t r1_val = 0;
|
|
|
|
SetS390RoundConditionCode(r2_fval, INT32_MAX, INT32_MIN);
|
|
|
|
switch (mask_val) {
|
|
case CURRENT_ROUNDING_MODE:
|
|
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
|
r1_val = static_cast<int32_t>(r2_fval);
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
|
|
float ceil_val = std::ceil(r2_fval);
|
|
float floor_val = std::floor(r2_fval);
|
|
float sub_val1 = std::fabs(r2_fval - floor_val);
|
|
float sub_val2 = std::fabs(r2_fval - ceil_val);
|
|
if (sub_val1 > sub_val2) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else if (sub_val1 < sub_val2) {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
} else { // round away from zero:
|
|
if (r2_fval > 0.0) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
|
float ceil_val = std::ceil(r2_fval);
|
|
float floor_val = std::floor(r2_fval);
|
|
float sub_val1 = std::fabs(r2_fval - floor_val);
|
|
float sub_val2 = std::fabs(r2_fval - ceil_val);
|
|
if (sub_val1 > sub_val2) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else if (sub_val1 < sub_val2) {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
} else { // check which one is even:
|
|
int32_t c_v = static_cast<int32_t>(ceil_val);
|
|
int32_t f_v = static_cast<int32_t>(floor_val);
|
|
if (f_v % 2 == 0)
|
|
r1_val = f_v;
|
|
else
|
|
r1_val = c_v;
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_0: {
|
|
// check for overflow, cast r2_fval to 64bit integer
|
|
// then check value within the range of INT_MIN and INT_MAX
|
|
// and set condition code accordingly
|
|
int64_t temp = static_cast<int64_t>(r2_fval);
|
|
if (temp < INT_MIN || temp > INT_MAX) {
|
|
condition_reg_ = CC_OF;
|
|
}
|
|
r1_val = static_cast<int32_t>(r2_fval);
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_PLUS_INFINITE: {
|
|
r1_val = static_cast<int32_t>(std::ceil(r2_fval));
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_MINUS_INFINITE: {
|
|
// check for overflow, cast r2_fval to 64bit integer
|
|
// then check value within the range of INT_MIN and INT_MAX
|
|
// and set condition code accordingly
|
|
int64_t temp = static_cast<int64_t>(std::floor(r2_fval));
|
|
if (temp < INT_MIN || temp > INT_MAX) {
|
|
condition_reg_ = CC_OF;
|
|
}
|
|
r1_val = static_cast<int32_t>(std::floor(r2_fval));
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
set_low_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CFDBRA) {
|
|
DCHECK_OPCODE(CFDBRA);
|
|
DECODE_RRE_INSTRUCTION_M3(r1, r2, mask_val);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
int32_t r1_val = 0;
|
|
|
|
SetS390RoundConditionCode(r2_val, INT32_MAX, INT32_MIN);
|
|
|
|
switch (mask_val) {
|
|
case CURRENT_ROUNDING_MODE:
|
|
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
|
r1_val = static_cast<int32_t>(r2_val);
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
|
|
double ceil_val = std::ceil(r2_val);
|
|
double floor_val = std::floor(r2_val);
|
|
double sub_val1 = std::fabs(r2_val - floor_val);
|
|
double sub_val2 = std::fabs(r2_val - ceil_val);
|
|
if (sub_val1 > sub_val2) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else if (sub_val1 < sub_val2) {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
} else { // round away from zero:
|
|
if (r2_val > 0.0) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
|
double ceil_val = std::ceil(r2_val);
|
|
double floor_val = std::floor(r2_val);
|
|
double sub_val1 = std::fabs(r2_val - floor_val);
|
|
double sub_val2 = std::fabs(r2_val - ceil_val);
|
|
if (sub_val1 > sub_val2) {
|
|
r1_val = static_cast<int32_t>(ceil_val);
|
|
} else if (sub_val1 < sub_val2) {
|
|
r1_val = static_cast<int32_t>(floor_val);
|
|
} else { // check which one is even:
|
|
int32_t c_v = static_cast<int32_t>(ceil_val);
|
|
int32_t f_v = static_cast<int32_t>(floor_val);
|
|
if (f_v % 2 == 0)
|
|
r1_val = f_v;
|
|
else
|
|
r1_val = c_v;
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_0: {
|
|
// check for overflow, cast r2_val to 64bit integer
|
|
// then check value within the range of INT_MIN and INT_MAX
|
|
// and set condition code accordingly
|
|
int64_t temp = static_cast<int64_t>(r2_val);
|
|
if (temp < INT_MIN || temp > INT_MAX) {
|
|
condition_reg_ = CC_OF;
|
|
}
|
|
r1_val = static_cast<int32_t>(r2_val);
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_PLUS_INFINITE: {
|
|
r1_val = static_cast<int32_t>(std::ceil(r2_val));
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_MINUS_INFINITE: {
|
|
// check for overflow, cast r2_val to 64bit integer
|
|
// then check value within the range of INT_MIN and INT_MAX
|
|
// and set condition code accordingly
|
|
int64_t temp = static_cast<int64_t>(std::floor(r2_val));
|
|
if (temp < INT_MIN || temp > INT_MAX) {
|
|
condition_reg_ = CC_OF;
|
|
}
|
|
r1_val = static_cast<int32_t>(std::floor(r2_val));
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
set_low_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CFXBRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLFEBR) {
|
|
DCHECK_OPCODE(CLFEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float r2_val = get_float32_from_d_register(r2);
|
|
uint32_t r1_val = static_cast<uint32_t>(r2_val);
|
|
set_low_register(r1, r1_val);
|
|
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT32_MAX);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CLFDBR) {
|
|
DCHECK_OPCODE(CLFDBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
uint32_t r1_val = static_cast<uint32_t>(r2_val);
|
|
set_low_register(r1, r1_val);
|
|
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT32_MAX);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CLFXBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CELGBR) {
|
|
DCHECK_OPCODE(CELGBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
uint64_t r2_val = get_register(r2);
|
|
float r1_val = static_cast<float>(r2_val);
|
|
set_d_register_from_float32(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CDLGBR) {
|
|
DCHECK_OPCODE(CDLGBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
uint64_t r2_val = get_register(r2);
|
|
double r1_val = static_cast<double>(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CXLGBR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CEGBRA) {
|
|
DCHECK_OPCODE(CEGBRA);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t fr2_val = get_register(r2);
|
|
float fr1_val = static_cast<float>(fr2_val);
|
|
set_d_register_from_float32(r1, fr1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CDGBRA) {
|
|
DCHECK_OPCODE(CDGBRA);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_register(r2);
|
|
double r1_val = static_cast<double>(r2_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CXGBRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGEBRA) {
|
|
DCHECK_OPCODE(CGEBRA);
|
|
DECODE_RRE_INSTRUCTION_M3(r1, r2, mask_val);
|
|
float r2_fval = get_float32_from_d_register(r2);
|
|
int64_t r1_val = 0;
|
|
|
|
SetS390RoundConditionCode(r2_fval, INT64_MAX, INT64_MIN);
|
|
|
|
switch (mask_val) {
|
|
case CURRENT_ROUNDING_MODE:
|
|
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
|
|
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
|
float ceil_val = std::ceil(r2_fval);
|
|
float floor_val = std::floor(r2_fval);
|
|
if (std::abs(r2_fval - floor_val) > std::abs(r2_fval - ceil_val)) {
|
|
r1_val = static_cast<int64_t>(ceil_val);
|
|
} else if (std::abs(r2_fval - floor_val) < std::abs(r2_fval - ceil_val)) {
|
|
r1_val = static_cast<int64_t>(floor_val);
|
|
} else { // check which one is even:
|
|
int64_t c_v = static_cast<int64_t>(ceil_val);
|
|
int64_t f_v = static_cast<int64_t>(floor_val);
|
|
if (f_v % 2 == 0)
|
|
r1_val = f_v;
|
|
else
|
|
r1_val = c_v;
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_0: {
|
|
r1_val = static_cast<int64_t>(r2_fval);
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_PLUS_INFINITE: {
|
|
r1_val = static_cast<int64_t>(std::ceil(r2_fval));
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_MINUS_INFINITE: {
|
|
r1_val = static_cast<int64_t>(std::floor(r2_fval));
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
set_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CGDBRA) {
|
|
DCHECK_OPCODE(CGDBRA);
|
|
DECODE_RRE_INSTRUCTION_M3(r1, r2, mask_val);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
int64_t r1_val = 0;
|
|
|
|
SetS390RoundConditionCode(r2_val, INT64_MAX, INT64_MIN);
|
|
|
|
switch (mask_val) {
|
|
case CURRENT_ROUNDING_MODE:
|
|
case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
|
|
case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
|
UNIMPLEMENTED();
|
|
break;
|
|
}
|
|
case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
|
double ceil_val = std::ceil(r2_val);
|
|
double floor_val = std::floor(r2_val);
|
|
if (std::abs(r2_val - floor_val) > std::abs(r2_val - ceil_val)) {
|
|
r1_val = static_cast<int64_t>(ceil_val);
|
|
} else if (std::abs(r2_val - floor_val) < std::abs(r2_val - ceil_val)) {
|
|
r1_val = static_cast<int64_t>(floor_val);
|
|
} else { // check which one is even:
|
|
int64_t c_v = static_cast<int64_t>(ceil_val);
|
|
int64_t f_v = static_cast<int64_t>(floor_val);
|
|
if (f_v % 2 == 0)
|
|
r1_val = f_v;
|
|
else
|
|
r1_val = c_v;
|
|
}
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_0: {
|
|
r1_val = static_cast<int64_t>(r2_val);
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_PLUS_INFINITE: {
|
|
r1_val = static_cast<int64_t>(std::ceil(r2_val));
|
|
break;
|
|
}
|
|
case ROUND_TOWARD_MINUS_INFINITE: {
|
|
r1_val = static_cast<int64_t>(std::floor(r2_val));
|
|
break;
|
|
}
|
|
default:
|
|
UNREACHABLE();
|
|
}
|
|
set_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CGXBRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLGEBR) {
|
|
DCHECK_OPCODE(CLGEBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
float r2_val = get_float32_from_d_register(r2);
|
|
uint64_t r1_val = static_cast<uint64_t>(r2_val);
|
|
set_register(r1, r1_val);
|
|
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT64_MAX);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CLGDBR) {
|
|
DCHECK_OPCODE(CLGDBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
double r2_val = get_double_from_d_register(r2);
|
|
uint64_t r1_val = static_cast<uint64_t>(r2_val);
|
|
set_register(r1, r1_val);
|
|
SetS390ConvertConditionCode<double>(r2_val, r1_val, UINT64_MAX);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CFER) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CFDR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CFXR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LDGR) {
|
|
DCHECK_OPCODE(LDGR);
|
|
// Load FPR from GPR (L <- 64)
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
uint64_t int_val = get_register(r2);
|
|
// double double_val = bit_cast<double, uint64_t>(int_val);
|
|
// set_d_register_from_double(rreInst->R1Value(), double_val);
|
|
set_d_register(r1, int_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CGER) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGDR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGXR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LGDR) {
|
|
DCHECK_OPCODE(LGDR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
// Load GPR from FPR (64 <- L)
|
|
int64_t double_val = get_d_register(r2);
|
|
set_register(r1, double_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MDTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DDTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ADTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SDTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LDETR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LEDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LTDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(FIDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MXTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DXTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AXTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SXTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LXDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LDXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LTXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(FIXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGDTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CUDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(EEDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ESDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGXTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CUXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CSXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(EEXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ESXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDGTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDUTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDSTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CEDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(QADTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(IEDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(RRDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CXGTRA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CXUTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CXSTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CEXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(QAXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(IEXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(RRXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LPGR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LNGR) {
|
|
DCHECK_OPCODE(LNGR);
|
|
// Load Negative (64)
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_register(r2);
|
|
r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it.
|
|
set_register(r1, r2_val);
|
|
condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero
|
|
// CC1 - result is negative
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LTGR) {
|
|
DCHECK_OPCODE(LTGR);
|
|
// Load Register (64)
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_register(r2);
|
|
SetS390ConditionCode<int64_t>(r2_val, 0);
|
|
set_register(r1, get_register(r2));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LCGR) {
|
|
DCHECK_OPCODE(LCGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_register(r2);
|
|
r2_val = ~r2_val;
|
|
r2_val = r2_val + 1;
|
|
set_register(r1, r2_val);
|
|
SetS390ConditionCode<int64_t>(r2_val, 0);
|
|
// if the input is INT_MIN, loading its compliment would be overflowing
|
|
if (r2_val == (static_cast<int64_t>(1) << 63)) {
|
|
SetS390OverflowCode(true);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SGR) {
|
|
DCHECK_OPCODE(SGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = get_register(r2);
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntSub(r1_val, r2_val, int64_t);
|
|
r1_val -= r2_val;
|
|
SetS390ConditionCode<int64_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALGR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SLGR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MSGR) {
|
|
DCHECK_OPCODE(MSGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = get_register(r2);
|
|
set_register(r1, r1_val * r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(DSGR) {
|
|
DCHECK_OPCODE(DSGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
|
|
DCHECK(r1 % 2 == 0);
|
|
|
|
int64_t dividend = get_register(r1 + 1);
|
|
int64_t divisor = get_register(r2);
|
|
set_register(r1, dividend % divisor);
|
|
set_register(r1 + 1, dividend / divisor);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LRVGR) {
|
|
DCHECK_OPCODE(LRVGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t r1_val = ByteReverse(r2_val);
|
|
|
|
set_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LPGFR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LNGFR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LTGFR) {
|
|
DCHECK_OPCODE(LTGFR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
// Load and Test Register (64 <- 32) (Sign Extends 32-bit val)
|
|
// Load Register (64 <- 32) (Sign Extends 32-bit val)
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int64_t result = static_cast<int64_t>(r2_val);
|
|
set_register(r1, result);
|
|
SetS390ConditionCode<int64_t>(result, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LCGFR) {
|
|
DCHECK_OPCODE(LCGFR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
// Load and Test Register (64 <- 32) (Sign Extends 32-bit val)
|
|
// Load Register (64 <- 32) (Sign Extends 32-bit val)
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int64_t result = static_cast<int64_t>(r2_val);
|
|
set_register(r1, result);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLGFR) {
|
|
DCHECK_OPCODE(LLGFR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
uint64_t r2_finalval = (static_cast<uint64_t>(r2_val) & 0x00000000ffffffff);
|
|
set_register(r1, r2_finalval);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLGTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AGFR) {
|
|
DCHECK_OPCODE(AGFR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
// Add Register (64 <- 32) (Sign Extends 32-bit val)
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
|
|
bool isOF = CheckOverflowForIntAdd(r1_val, r2_val, int64_t);
|
|
r1_val += r2_val;
|
|
SetS390ConditionCode<int64_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SGFR) {
|
|
DCHECK_OPCODE(SGFR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
// Sub Reg (64 <- 32)
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntSub(r1_val, r2_val, int64_t);
|
|
r1_val -= r2_val;
|
|
SetS390ConditionCode<int64_t>(r1_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALGFR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SLGFR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MSGFR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DSGFR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KMAC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LRVR) {
|
|
DCHECK_OPCODE(LRVR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int32_t r1_val = ByteReverse(r2_val);
|
|
|
|
set_low_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CGR) {
|
|
DCHECK_OPCODE(CGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
// Compare (64)
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = get_register(r2);
|
|
SetS390ConditionCode<int64_t>(r1_val, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CLGR) {
|
|
DCHECK_OPCODE(CLGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
// Compare Logical (64)
|
|
uint64_t r1_val = static_cast<uint64_t>(get_register(r1));
|
|
uint64_t r2_val = static_cast<uint64_t>(get_register(r2));
|
|
SetS390ConditionCode<uint64_t>(r1_val, r2_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(KMF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KMO) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(PCC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KMCTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KM) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KMC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGFR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KIMD) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KLMD) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CFDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLGDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLFDTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BCTGR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CFXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLFXTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDFTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDLGTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDLFTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CXFTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CXLGTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CXLFTR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGRT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(NGR) {
|
|
DCHECK_OPCODE(NGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = get_register(r2);
|
|
r1_val &= r2_val;
|
|
SetS390BitWiseConditionCode<uint64_t>(r1_val);
|
|
set_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OGR) {
|
|
DCHECK_OPCODE(OGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = get_register(r2);
|
|
r1_val |= r2_val;
|
|
SetS390BitWiseConditionCode<uint64_t>(r1_val);
|
|
set_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(XGR) {
|
|
DCHECK_OPCODE(XGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t r2_val = get_register(r2);
|
|
r1_val ^= r2_val;
|
|
SetS390BitWiseConditionCode<uint64_t>(r1_val);
|
|
set_register(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(FLOGR) {
|
|
DCHECK_OPCODE(FLOGR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
|
|
DCHECK(r1 % 2 == 0);
|
|
|
|
int64_t r2_val = get_register(r2);
|
|
|
|
int i = 0;
|
|
for (; i < 64; i++) {
|
|
if (r2_val < 0) break;
|
|
r2_val <<= 1;
|
|
}
|
|
|
|
r2_val = get_register(r2);
|
|
|
|
int64_t mask = ~(1 << (63 - i));
|
|
set_register(r1, i);
|
|
set_register(r1 + 1, r2_val & mask);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLGCR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLGHR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MLGR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DLGR) {
|
|
DCHECK_OPCODE(DLGR);
|
|
#ifdef V8_TARGET_ARCH_S390X
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
uint64_t r1_val = get_register(r1);
|
|
uint64_t r2_val = get_register(r2);
|
|
DCHECK(r1 % 2 == 0);
|
|
unsigned __int128 dividend = static_cast<unsigned __int128>(r1_val) << 64;
|
|
dividend += get_register(r1 + 1);
|
|
uint64_t remainder = dividend % r2_val;
|
|
uint64_t quotient = dividend / r2_val;
|
|
r1_val = remainder;
|
|
set_register(r1, remainder);
|
|
set_register(r1 + 1, quotient);
|
|
return length;
|
|
#else
|
|
UNREACHABLE();
|
|
#endif
|
|
}
|
|
|
|
EVALUATE(ALCGR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SLBGR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(EPSW) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TRTT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TRTO) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TROT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TROO) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLCR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLHR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MLR) {
|
|
DCHECK_OPCODE(MLR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
DCHECK(r1 % 2 == 0);
|
|
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1 + 1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint64_t product =
|
|
static_cast<uint64_t>(r1_val) * static_cast<uint64_t>(r2_val);
|
|
int32_t high_bits = product >> 32;
|
|
int32_t low_bits = product & 0x00000000FFFFFFFF;
|
|
set_low_register(r1, high_bits);
|
|
set_low_register(r1 + 1, low_bits);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(DLR) {
|
|
DCHECK_OPCODE(DLR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
DCHECK(r1 % 2 == 0);
|
|
uint64_t dividend = static_cast<uint64_t>(r1_val) << 32;
|
|
dividend += get_low_register<uint32_t>(r1 + 1);
|
|
uint32_t remainder = dividend % r2_val;
|
|
uint32_t quotient = dividend / r2_val;
|
|
r1_val = remainder;
|
|
set_low_register(r1, remainder);
|
|
set_low_register(r1 + 1, quotient);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALCR) {
|
|
DCHECK_OPCODE(ALCR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint32_t alu_out = 0;
|
|
bool isOF = false;
|
|
|
|
alu_out = r1_val + r2_val;
|
|
bool isOF_original = CheckOverflowForUIntAdd(r1_val, r2_val);
|
|
if (TestConditionCode((Condition)2) || TestConditionCode((Condition)3)) {
|
|
alu_out = alu_out + 1;
|
|
isOF = isOF_original || CheckOverflowForUIntAdd(alu_out, 1);
|
|
} else {
|
|
isOF = isOF_original;
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLBR) {
|
|
DCHECK_OPCODE(SLBR);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1);
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint32_t alu_out = 0;
|
|
bool isOF = false;
|
|
|
|
alu_out = r1_val - r2_val;
|
|
bool isOF_original = CheckOverflowForUIntSub(r1_val, r2_val);
|
|
if (TestConditionCode((Condition)2) || TestConditionCode((Condition)3)) {
|
|
alu_out = alu_out - 1;
|
|
isOF = isOF_original || CheckOverflowForUIntSub(alu_out, 1);
|
|
} else {
|
|
isOF = isOF_original;
|
|
}
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCodeCarry<uint32_t>(alu_out, isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CU14) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CU24) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CU41) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CU42) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TRTRE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SRSTU) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TRTE) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AHHHR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SHHHR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ALHHHR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SLHHHR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CHHR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AHHLR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SHHLR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ALHHLR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SLHHLR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CHLR) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(POPCNT_Z) {
|
|
DCHECK_OPCODE(POPCNT_Z);
|
|
DECODE_RRE_INSTRUCTION(r1, r2);
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t r1_val = 0;
|
|
|
|
uint8_t* r2_val_ptr = reinterpret_cast<uint8_t*>(&r2_val);
|
|
uint8_t* r1_val_ptr = reinterpret_cast<uint8_t*>(&r1_val);
|
|
for (int i = 0; i < 8; i++) {
|
|
uint32_t x = static_cast<uint32_t>(r2_val_ptr[i]);
|
|
#if defined(__GNUC__)
|
|
r1_val_ptr[i] = __builtin_popcount(x);
|
|
#else
|
|
#error unsupport __builtin_popcount
|
|
#endif
|
|
}
|
|
set_register(r1, static_cast<uint64_t>(r1_val));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LOCGR) {
|
|
DCHECK_OPCODE(LOCGR);
|
|
DECODE_RRF_C_INSTRUCTION(r1, r2, m3);
|
|
if (TestConditionCode(m3)) {
|
|
set_register(r1, get_register(r2));
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(NGRK) {
|
|
DCHECK_OPCODE(NGRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 64-bit Non-clobbering arithmetics / bitwise ops.
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t r3_val = get_register(r3);
|
|
uint64_t bitwise_result = 0;
|
|
bitwise_result = r2_val & r3_val;
|
|
SetS390BitWiseConditionCode<uint64_t>(bitwise_result);
|
|
set_register(r1, bitwise_result);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OGRK) {
|
|
DCHECK_OPCODE(OGRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 64-bit Non-clobbering arithmetics / bitwise ops.
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t r3_val = get_register(r3);
|
|
uint64_t bitwise_result = 0;
|
|
bitwise_result = r2_val | r3_val;
|
|
SetS390BitWiseConditionCode<uint64_t>(bitwise_result);
|
|
set_register(r1, bitwise_result);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(XGRK) {
|
|
DCHECK_OPCODE(XGRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 64-bit Non-clobbering arithmetics / bitwise ops.
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t r3_val = get_register(r3);
|
|
uint64_t bitwise_result = 0;
|
|
bitwise_result = r2_val ^ r3_val;
|
|
SetS390BitWiseConditionCode<uint64_t>(bitwise_result);
|
|
set_register(r1, bitwise_result);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AGRK) {
|
|
DCHECK_OPCODE(AGRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 64-bit Non-clobbering arithmetics / bitwise ops.
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t r3_val = get_register(r3);
|
|
bool isOF = CheckOverflowForIntAdd(r2_val, r3_val, int64_t);
|
|
SetS390ConditionCode<int64_t>(r2_val + r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r2_val + r3_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SGRK) {
|
|
DCHECK_OPCODE(SGRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 64-bit Non-clobbering arithmetics / bitwise ops.
|
|
int64_t r2_val = get_register(r2);
|
|
int64_t r3_val = get_register(r3);
|
|
bool isOF = CheckOverflowForIntSub(r2_val, r3_val, int64_t);
|
|
SetS390ConditionCode<int64_t>(r2_val - r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r2_val - r3_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALGRK) {
|
|
DCHECK_OPCODE(ALGRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 64-bit Non-clobbering unsigned arithmetics
|
|
uint64_t r2_val = get_register(r2);
|
|
uint64_t r3_val = get_register(r3);
|
|
bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
|
|
SetS390ConditionCode<uint64_t>(r2_val + r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r2_val + r3_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLGRK) {
|
|
DCHECK_OPCODE(SLGRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 64-bit Non-clobbering unsigned arithmetics
|
|
uint64_t r2_val = get_register(r2);
|
|
uint64_t r3_val = get_register(r3);
|
|
bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
|
|
SetS390ConditionCode<uint64_t>(r2_val - r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_register(r1, r2_val - r3_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LOCR) {
|
|
DCHECK_OPCODE(LOCR);
|
|
DECODE_RRF_C_INSTRUCTION(r1, r2, m3);
|
|
if (TestConditionCode(m3)) {
|
|
set_low_register(r1, get_low_register<int32_t>(r2));
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(NRK) {
|
|
DCHECK_OPCODE(NRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 32-bit Non-clobbering arithmetics / bitwise ops
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int32_t r3_val = get_low_register<int32_t>(r3);
|
|
// Assume bitwise operation here
|
|
uint32_t bitwise_result = 0;
|
|
bitwise_result = r2_val & r3_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(bitwise_result);
|
|
set_low_register(r1, bitwise_result);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ORK) {
|
|
DCHECK_OPCODE(ORK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 32-bit Non-clobbering arithmetics / bitwise ops
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int32_t r3_val = get_low_register<int32_t>(r3);
|
|
// Assume bitwise operation here
|
|
uint32_t bitwise_result = 0;
|
|
bitwise_result = r2_val | r3_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(bitwise_result);
|
|
set_low_register(r1, bitwise_result);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(XRK) {
|
|
DCHECK_OPCODE(XRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 32-bit Non-clobbering arithmetics / bitwise ops
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int32_t r3_val = get_low_register<int32_t>(r3);
|
|
// Assume bitwise operation here
|
|
uint32_t bitwise_result = 0;
|
|
bitwise_result = r2_val ^ r3_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(bitwise_result);
|
|
set_low_register(r1, bitwise_result);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ARK) {
|
|
DCHECK_OPCODE(ARK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 32-bit Non-clobbering arithmetics / bitwise ops
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int32_t r3_val = get_low_register<int32_t>(r3);
|
|
bool isOF = CheckOverflowForIntAdd(r2_val, r3_val, int32_t);
|
|
SetS390ConditionCode<int32_t>(r2_val + r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, r2_val + r3_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SRK) {
|
|
DCHECK_OPCODE(SRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 32-bit Non-clobbering arithmetics / bitwise ops
|
|
int32_t r2_val = get_low_register<int32_t>(r2);
|
|
int32_t r3_val = get_low_register<int32_t>(r3);
|
|
bool isOF = CheckOverflowForIntSub(r2_val, r3_val, int32_t);
|
|
SetS390ConditionCode<int32_t>(r2_val - r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, r2_val - r3_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALRK) {
|
|
DCHECK_OPCODE(ALRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 32-bit Non-clobbering unsigned arithmetics
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint32_t r3_val = get_low_register<uint32_t>(r3);
|
|
bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
|
|
SetS390ConditionCode<uint32_t>(r2_val + r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, r2_val + r3_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLRK) {
|
|
DCHECK_OPCODE(SLRK);
|
|
DECODE_RRF_A_INSTRUCTION(r1, r2, r3);
|
|
// 32-bit Non-clobbering unsigned arithmetics
|
|
uint32_t r2_val = get_low_register<uint32_t>(r2);
|
|
uint32_t r3_val = get_low_register<uint32_t>(r3);
|
|
bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
|
|
SetS390ConditionCode<uint32_t>(r2_val - r3_val, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, r2_val - r3_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LTG) {
|
|
DCHECK_OPCODE(LTG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
int64_t value = ReadDW(addr);
|
|
set_register(r1, value);
|
|
SetS390ConditionCode<int64_t>(value, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CVBY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AG) {
|
|
DCHECK_OPCODE(AG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t alu_out = get_register(r1);
|
|
int64_t mem_val = ReadDW(b2_val + x2_val + d2);
|
|
alu_out += mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SG) {
|
|
DCHECK_OPCODE(SG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t alu_out = get_register(r1);
|
|
int64_t mem_val = ReadDW(b2_val + x2_val + d2);
|
|
alu_out -= mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALG) {
|
|
DCHECK_OPCODE(ALG);
|
|
#ifndef V8_TARGET_ARCH_S390X
|
|
DCHECK(false);
|
|
#endif
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
uint64_t r1_val = get_register(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
uint64_t alu_out = r1_val;
|
|
uint64_t mem_val = static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
|
|
alu_out += mem_val;
|
|
SetS390ConditionCode<uint64_t>(alu_out, 0);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLG) {
|
|
DCHECK_OPCODE(SLG);
|
|
#ifndef V8_TARGET_ARCH_S390X
|
|
DCHECK(false);
|
|
#endif
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
uint64_t r1_val = get_register(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
uint64_t alu_out = r1_val;
|
|
uint64_t mem_val = static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
|
|
alu_out -= mem_val;
|
|
SetS390ConditionCode<uint64_t>(alu_out, 0);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MSG) {
|
|
DCHECK_OPCODE(MSG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
int64_t mem_val = ReadDW(b2_val + d2_val + x2_val);
|
|
int64_t r1_val = get_register(r1);
|
|
set_register(r1, mem_val * r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(DSG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CVBG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LT) {
|
|
DCHECK_OPCODE(LT);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
int32_t value = ReadW(addr, instr);
|
|
set_low_register(r1, value);
|
|
SetS390ConditionCode<int32_t>(value, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LGH) {
|
|
DCHECK_OPCODE(LGH);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Miscellaneous Loads and Stores
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
int64_t mem_val = static_cast<int64_t>(ReadH(addr, instr));
|
|
set_register(r1, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLGF) {
|
|
DCHECK_OPCODE(LLGF);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Miscellaneous Loads and Stores
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
uint64_t mem_val = static_cast<uint64_t>(ReadWU(addr, instr));
|
|
set_register(r1, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLGT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AGF) {
|
|
DCHECK_OPCODE(AGF);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
uint64_t r1_val = get_register(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
uint64_t alu_out = r1_val;
|
|
uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
|
|
alu_out += mem_val;
|
|
SetS390ConditionCode<int64_t>(alu_out, 0);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SGF) {
|
|
DCHECK_OPCODE(SGF);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
uint64_t r1_val = get_register(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
uint64_t alu_out = r1_val;
|
|
uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
|
|
alu_out -= mem_val;
|
|
SetS390ConditionCode<int64_t>(alu_out, 0);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALGF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SLGF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MSGF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DSGF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LRVG) {
|
|
DCHECK_OPCODE(LRVG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t mem_addr = b2_val + x2_val + d2;
|
|
int64_t mem_val = ReadW64(mem_addr, instr);
|
|
set_register(r1, ByteReverse(mem_val));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LRV) {
|
|
DCHECK_OPCODE(LRV);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t mem_addr = b2_val + x2_val + d2;
|
|
int32_t mem_val = ReadW(mem_addr, instr);
|
|
set_low_register(r1, ByteReverse(mem_val));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LRVH) {
|
|
DCHECK_OPCODE(LRVH);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t mem_addr = b2_val + x2_val + d2;
|
|
int16_t mem_val = ReadH(mem_addr, instr);
|
|
int32_t result = ByteReverse(mem_val) & 0x0000ffff;
|
|
result |= r1_val & 0xffff0000;
|
|
set_low_register(r1, result);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CG) {
|
|
DCHECK_OPCODE(CG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t alu_out = get_register(r1);
|
|
int64_t mem_val = ReadDW(b2_val + x2_val + d2);
|
|
SetS390ConditionCode<int64_t>(alu_out, mem_val);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CLG) {
|
|
DCHECK_OPCODE(CLG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t alu_out = get_register(r1);
|
|
int64_t mem_val = ReadDW(b2_val + x2_val + d2);
|
|
SetS390ConditionCode<uint64_t>(alu_out, mem_val);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(NTSTG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CVDY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CVDG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLGF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LTGF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(PFD) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STRV) {
|
|
DCHECK_OPCODE(STRV);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t mem_addr = b2_val + x2_val + d2;
|
|
WriteW(mem_addr, ByteReverse(r1_val), instr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STRVG) {
|
|
DCHECK_OPCODE(STRVG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t r1_val = get_register(r1);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t mem_addr = b2_val + x2_val + d2;
|
|
WriteDW(mem_addr, ByteReverse(r1_val));
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STRVH) {
|
|
DCHECK_OPCODE(STRVH);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t mem_addr = b2_val + x2_val + d2;
|
|
int16_t result = static_cast<int16_t>(r1_val >> 16);
|
|
WriteH(mem_addr, ByteReverse(result), instr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(BCTG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MSY) {
|
|
DCHECK_OPCODE(MSY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
int32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
set_low_register(r1, mem_val * r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(NY) {
|
|
DCHECK_OPCODE(NY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int32_t alu_out = get_low_register<int32_t>(r1);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
|
|
alu_out &= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CLY) {
|
|
DCHECK_OPCODE(CLY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
uint32_t alu_out = get_low_register<uint32_t>(r1);
|
|
uint32_t mem_val = ReadWU(b2_val + x2_val + d2, instr);
|
|
SetS390ConditionCode<uint32_t>(alu_out, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OY) {
|
|
DCHECK_OPCODE(OY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int32_t alu_out = get_low_register<int32_t>(r1);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
|
|
alu_out |= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(XY) {
|
|
DCHECK_OPCODE(XY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int32_t alu_out = get_low_register<int32_t>(r1);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
|
|
alu_out ^= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CY) {
|
|
DCHECK_OPCODE(CY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int32_t alu_out = get_low_register<int32_t>(r1);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
|
|
SetS390ConditionCode<int32_t>(alu_out, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(AY) {
|
|
DCHECK_OPCODE(AY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int32_t alu_out = get_low_register<int32_t>(r1);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntAdd(alu_out, mem_val, int32_t);
|
|
alu_out += mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SY) {
|
|
DCHECK_OPCODE(SY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int32_t alu_out = get_low_register<int32_t>(r1);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForIntSub(alu_out, mem_val, int32_t);
|
|
alu_out -= mem_val;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MFY) {
|
|
DCHECK_OPCODE(MFY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
DCHECK(r1 % 2 == 0);
|
|
int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
|
|
int32_t r1_val = get_low_register<int32_t>(r1 + 1);
|
|
int64_t product =
|
|
static_cast<int64_t>(r1_val) * static_cast<int64_t>(mem_val);
|
|
int32_t high_bits = product >> 32;
|
|
r1_val = high_bits;
|
|
int32_t low_bits = product & 0x00000000FFFFFFFF;
|
|
set_low_register(r1, high_bits);
|
|
set_low_register(r1 + 1, low_bits);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALY) {
|
|
DCHECK_OPCODE(ALY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
uint32_t alu_out = get_low_register<uint32_t>(r1);
|
|
uint32_t mem_val = ReadWU(b2_val + x2_val + d2, instr);
|
|
alu_out += mem_val;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<uint32_t>(alu_out, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLY) {
|
|
DCHECK_OPCODE(SLY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
uint32_t alu_out = get_low_register<uint32_t>(r1);
|
|
uint32_t mem_val = ReadWU(b2_val + x2_val + d2, instr);
|
|
alu_out -= mem_val;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<uint32_t>(alu_out, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STHY) {
|
|
DCHECK_OPCODE(STHY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Miscellaneous Loads and Stores
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
uint16_t value = get_low_register<uint32_t>(r1);
|
|
WriteH(addr, value, instr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LAY) {
|
|
DCHECK_OPCODE(LAY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Load Address
|
|
int rb = b2;
|
|
int rx = x2;
|
|
int offset = d2;
|
|
int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
|
|
int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
|
|
set_register(r1, rx_val + rb_val + offset);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STCY) {
|
|
DCHECK_OPCODE(STCY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Miscellaneous Loads and Stores
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
uint8_t value = get_low_register<uint32_t>(r1);
|
|
WriteB(addr, value);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ICY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAEY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LB) {
|
|
DCHECK_OPCODE(LB);
|
|
// Miscellaneous Loads and Stores
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
int32_t mem_val = ReadB(addr);
|
|
set_low_register(r1, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LGB) {
|
|
DCHECK_OPCODE(LGB);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Miscellaneous Loads and Stores
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
int64_t mem_val = ReadB(addr);
|
|
set_register(r1, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LHY) {
|
|
DCHECK_OPCODE(LHY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Miscellaneous Loads and Stores
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
int32_t result = static_cast<int32_t>(ReadH(addr, instr));
|
|
set_low_register(r1, result);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CHY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AHY) {
|
|
DCHECK_OPCODE(AHY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
int32_t mem_val =
|
|
static_cast<int32_t>(ReadH(b2_val + d2_val + x2_val, instr));
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
alu_out = r1_val + mem_val;
|
|
isOF = CheckOverflowForIntAdd(r1_val, mem_val, int32_t);
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SHY) {
|
|
DCHECK_OPCODE(SHY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int32_t r1_val = get_low_register<int32_t>(r1);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
int32_t mem_val =
|
|
static_cast<int32_t>(ReadH(b2_val + d2_val + x2_val, instr));
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
alu_out = r1_val - mem_val;
|
|
isOF = CheckOverflowForIntSub(r1_val, mem_val, int64_t);
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MHY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(NG) {
|
|
DCHECK_OPCODE(NG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t alu_out = get_register(r1);
|
|
int64_t mem_val = ReadDW(b2_val + x2_val + d2);
|
|
alu_out &= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OG) {
|
|
DCHECK_OPCODE(OG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t alu_out = get_register(r1);
|
|
int64_t mem_val = ReadDW(b2_val + x2_val + d2);
|
|
alu_out |= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(XG) {
|
|
DCHECK_OPCODE(XG);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t alu_out = get_register(r1);
|
|
int64_t mem_val = ReadDW(b2_val + x2_val + d2);
|
|
alu_out ^= mem_val;
|
|
SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LGAT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MLG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DLG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ALCG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SLBG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STPQ) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LPQ) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLGH) {
|
|
DCHECK_OPCODE(LLGH);
|
|
// Load Logical Halfword
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
uint16_t mem_val = ReadHU(b2_val + d2_val + x2_val, instr);
|
|
set_register(r1, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LLH) {
|
|
DCHECK_OPCODE(LLH);
|
|
// Load Logical Halfword
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
uint16_t mem_val = ReadHU(b2_val + d2_val + x2_val, instr);
|
|
set_low_register(r1, mem_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ML) {
|
|
DCHECK_OPCODE(ML);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
DCHECK(r1 % 2 == 0);
|
|
uint32_t mem_val = ReadWU(b2_val + x2_val + d2, instr);
|
|
uint32_t r1_val = get_low_register<uint32_t>(r1 + 1);
|
|
uint64_t product =
|
|
static_cast<uint64_t>(r1_val) * static_cast<uint64_t>(mem_val);
|
|
uint32_t high_bits = product >> 32;
|
|
r1_val = high_bits;
|
|
uint32_t low_bits = product & 0x00000000FFFFFFFF;
|
|
set_low_register(r1, high_bits);
|
|
set_low_register(r1 + 1, low_bits);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(DL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ALC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SLB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLGTAT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLGFAT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LBH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLCH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STCH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LHH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LLHH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STHH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LFHAT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LFH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STFH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CHF) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MVCDK) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MVHHI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MVGHI) {
|
|
DCHECK_OPCODE(MVGHI);
|
|
// Move Integer (64)
|
|
DECODE_SIL_INSTRUCTION(b1, d1, i2);
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t src_addr = b1_val + d1;
|
|
WriteDW(src_addr, i2);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MVHI) {
|
|
DCHECK_OPCODE(MVHI);
|
|
// Move Integer (32)
|
|
DECODE_SIL_INSTRUCTION(b1, d1, i2);
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t src_addr = b1_val + d1;
|
|
WriteW(src_addr, i2, instr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CHHSI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGHSI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CHSI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLFHSI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TBEGIN) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TBEGINC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LMG) {
|
|
DCHECK_OPCODE(LMG);
|
|
// Store Multiple 64-bits.
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
int rb = b2;
|
|
int offset = d2;
|
|
|
|
// Regs roll around if r3 is less than r1.
|
|
// Artifically increase r3 by 16 so we can calculate
|
|
// the number of regs stored properly.
|
|
if (r3 < r1) r3 += 16;
|
|
|
|
int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
|
|
|
|
// Store each register in ascending order.
|
|
for (int i = 0; i <= r3 - r1; i++) {
|
|
int64_t value = ReadDW(rb_val + offset + 8 * i);
|
|
set_register((r1 + i) % 16, value);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SRAG) {
|
|
DCHECK_OPCODE(SRAG);
|
|
// 64-bit non-clobbering shift-left/right arithmetic
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int64_t r3_val = get_register(r3);
|
|
intptr_t alu_out = 0;
|
|
bool isOF = false;
|
|
alu_out = r3_val >> shiftBits;
|
|
set_register(r1, alu_out);
|
|
SetS390ConditionCode<intptr_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLAG) {
|
|
DCHECK_OPCODE(SLAG);
|
|
// 64-bit non-clobbering shift-left/right arithmetic
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int64_t r3_val = get_register(r3);
|
|
intptr_t alu_out = 0;
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
|
|
alu_out = r3_val << shiftBits;
|
|
set_register(r1, alu_out);
|
|
SetS390ConditionCode<intptr_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SRLG) {
|
|
DCHECK_OPCODE(SRLG);
|
|
// For SLLG/SRLG, the 64-bit third operand is shifted the number
|
|
// of bits specified by the second-operand address, and the result is
|
|
// placed at the first-operand location. Except for when the R1 and R3
|
|
// fields designate the same register, the third operand remains
|
|
// unchanged in general register R3.
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
// unsigned
|
|
uint64_t r3_val = get_register(r3);
|
|
uint64_t alu_out = 0;
|
|
alu_out = r3_val >> shiftBits;
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLLG) {
|
|
DCHECK_OPCODE(SLLG);
|
|
// For SLLG/SRLG, the 64-bit third operand is shifted the number
|
|
// of bits specified by the second-operand address, and the result is
|
|
// placed at the first-operand location. Except for when the R1 and R3
|
|
// fields designate the same register, the third operand remains
|
|
// unchanged in general register R3.
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
// unsigned
|
|
uint64_t r3_val = get_register(r3);
|
|
uint64_t alu_out = 0;
|
|
alu_out = r3_val << shiftBits;
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CSY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(RLLG) {
|
|
DCHECK_OPCODE(RLLG);
|
|
// For SLLG/SRLG, the 64-bit third operand is shifted the number
|
|
// of bits specified by the second-operand address, and the result is
|
|
// placed at the first-operand location. Except for when the R1 and R3
|
|
// fields designate the same register, the third operand remains
|
|
// unchanged in general register R3.
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
// unsigned
|
|
uint64_t r3_val = get_register(r3);
|
|
uint64_t alu_out = 0;
|
|
uint64_t rotateBits = r3_val >> (64 - shiftBits);
|
|
alu_out = (r3_val << shiftBits) | (rotateBits);
|
|
set_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STMG) {
|
|
DCHECK_OPCODE(STMG);
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
int rb = b2;
|
|
int offset = d2;
|
|
|
|
// Regs roll around if r3 is less than r1.
|
|
// Artifically increase r3 by 16 so we can calculate
|
|
// the number of regs stored properly.
|
|
if (r3 < r1) r3 += 16;
|
|
|
|
int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
|
|
|
|
// Store each register in ascending order.
|
|
for (int i = 0; i <= r3 - r1; i++) {
|
|
int64_t value = get_register((r1 + i) % 16);
|
|
WriteDW(rb_val + offset + 8 * i, value);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STMH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STCMH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STCMY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDSY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDSG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BXHG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BXLEG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ECAG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TMY) {
|
|
DCHECK_OPCODE(TMY);
|
|
// Test Under Mask (Mem - Imm) (8)
|
|
DECODE_SIY_INSTRUCTION(b1, d1, i2);
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t d1_val = d1;
|
|
intptr_t addr = b1_val + d1_val;
|
|
uint8_t mem_val = ReadB(addr);
|
|
uint8_t imm_val = i2;
|
|
uint8_t selected_bits = mem_val & imm_val;
|
|
// CC0: Selected bits are zero
|
|
// CC1: Selected bits mixed zeros and ones
|
|
// CC3: Selected bits all ones
|
|
if (0 == selected_bits) {
|
|
condition_reg_ = CC_EQ; // CC0
|
|
} else if (selected_bits == imm_val) {
|
|
condition_reg_ = 0x1; // CC3
|
|
} else {
|
|
condition_reg_ = 0x4; // CC1
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MVIY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(NIY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLIY) {
|
|
DCHECK_OPCODE(CLIY);
|
|
DECODE_SIY_INSTRUCTION(b1, d1, i2);
|
|
// Compare Immediate (Mem - Imm) (8)
|
|
int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
intptr_t d1_val = d1;
|
|
intptr_t addr = b1_val + d1_val;
|
|
uint8_t mem_val = ReadB(addr);
|
|
uint8_t imm_val = i2;
|
|
SetS390ConditionCode<uint8_t>(mem_val, imm_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(OIY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(XIY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ASI) {
|
|
DCHECK_OPCODE(ASI);
|
|
// TODO(bcleung): Change all fooInstr->I2Value() to template functions.
|
|
// The below static cast to 8 bit and then to 32 bit is necessary
|
|
// because siyInstr->I2Value() returns a uint8_t, which a direct
|
|
// cast to int32_t could incorrectly interpret.
|
|
DECODE_SIY_INSTRUCTION(b1, d1, i2_unsigned);
|
|
int8_t i2_8bit = static_cast<int8_t>(i2_unsigned);
|
|
int32_t i2 = static_cast<int32_t>(i2_8bit);
|
|
intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
|
|
int d1_val = d1;
|
|
intptr_t addr = b1_val + d1_val;
|
|
|
|
int32_t mem_val = ReadW(addr, instr);
|
|
bool isOF = CheckOverflowForIntAdd(mem_val, i2, int32_t);
|
|
int32_t alu_out = mem_val + i2;
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
WriteW(addr, alu_out, instr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALSI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AGSI) {
|
|
DCHECK_OPCODE(AGSI);
|
|
// TODO(bcleung): Change all fooInstr->I2Value() to template functions.
|
|
// The below static cast to 8 bit and then to 32 bit is necessary
|
|
// because siyInstr->I2Value() returns a uint8_t, which a direct
|
|
// cast to int32_t could incorrectly interpret.
|
|
DECODE_SIY_INSTRUCTION(b1, d1, i2_unsigned);
|
|
int8_t i2_8bit = static_cast<int8_t>(i2_unsigned);
|
|
int64_t i2 = static_cast<int64_t>(i2_8bit);
|
|
intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
|
|
|
int d1_val = d1;
|
|
intptr_t addr = b1_val + d1_val;
|
|
|
|
int64_t mem_val = ReadDW(addr);
|
|
int isOF = CheckOverflowForIntAdd(mem_val, i2, int64_t);
|
|
int64_t alu_out = mem_val + i2;
|
|
SetS390ConditionCode<uint64_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
WriteDW(addr, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ALGSI) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ICMH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ICMY) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MVCLU) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLCLU) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STMY) {
|
|
DCHECK_OPCODE(STMY);
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// Load/Store Multiple (32)
|
|
int offset = d2;
|
|
|
|
// Regs roll around if r3 is less than r1.
|
|
// Artifically increase r3 by 16 so we can calculate
|
|
// the number of regs stored properly.
|
|
if (r3 < r1) r3 += 16;
|
|
|
|
int32_t b2_val = (b2 == 0) ? 0 : get_low_register<int32_t>(b2);
|
|
|
|
// Store each register in ascending order.
|
|
for (int i = 0; i <= r3 - r1; i++) {
|
|
int32_t value = get_low_register<int32_t>((r1 + i) % 16);
|
|
WriteW(b2_val + offset + 4 * i, value, instr);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LMH) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LMY) {
|
|
DCHECK_OPCODE(LMY);
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// Load/Store Multiple (32)
|
|
int offset = d2;
|
|
|
|
// Regs roll around if r3 is less than r1.
|
|
// Artifically increase r3 by 16 so we can calculate
|
|
// the number of regs stored properly.
|
|
if (r3 < r1) r3 += 16;
|
|
|
|
int32_t b2_val = (b2 == 0) ? 0 : get_low_register<int32_t>(b2);
|
|
|
|
// Store each register in ascending order.
|
|
for (int i = 0; i <= r3 - r1; i++) {
|
|
int32_t value = ReadW(b2_val + offset + 4 * i, instr);
|
|
set_low_register((r1 + i) % 16, value);
|
|
}
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(TP) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SRAK) {
|
|
DCHECK_OPCODE(SRAK);
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// 32-bit non-clobbering shift-left/right arithmetic
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int32_t r3_val = get_low_register<int32_t>(r3);
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
alu_out = r3_val >> shiftBits;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLAK) {
|
|
DCHECK_OPCODE(SLAK);
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// 32-bit non-clobbering shift-left/right arithmetic
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
int32_t r3_val = get_low_register<int32_t>(r3);
|
|
int32_t alu_out = 0;
|
|
bool isOF = false;
|
|
isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
|
|
alu_out = r3_val << shiftBits;
|
|
set_low_register(r1, alu_out);
|
|
SetS390ConditionCode<int32_t>(alu_out, 0);
|
|
SetS390OverflowCode(isOF);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SRLK) {
|
|
DCHECK_OPCODE(SRLK);
|
|
// For SLLK/SRLL, the 32-bit third operand is shifted the number
|
|
// of bits specified by the second-operand address, and the result is
|
|
// placed at the first-operand location. Except for when the R1 and R3
|
|
// fields designate the same register, the third operand remains
|
|
// unchanged in general register R3.
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
// unsigned
|
|
uint32_t r3_val = get_low_register<uint32_t>(r3);
|
|
uint32_t alu_out = 0;
|
|
alu_out = r3_val >> shiftBits;
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SLLK) {
|
|
DCHECK_OPCODE(SLLK);
|
|
// For SLLK/SRLL, the 32-bit third operand is shifted the number
|
|
// of bits specified by the second-operand address, and the result is
|
|
// placed at the first-operand location. Except for when the R1 and R3
|
|
// fields designate the same register, the third operand remains
|
|
// unchanged in general register R3.
|
|
DECODE_RSY_A_INSTRUCTION(r1, r3, b2, d2);
|
|
// only takes rightmost 6 bits
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int shiftBits = (b2_val + d2) & 0x3F;
|
|
// unsigned
|
|
uint32_t r3_val = get_low_register<uint32_t>(r3);
|
|
uint32_t alu_out = 0;
|
|
alu_out = r3_val << shiftBits;
|
|
set_low_register(r1, alu_out);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LOCG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STOCG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LANG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAOG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAXG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAAG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAALG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LOC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(STOC) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAN) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAO) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAX) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAA) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LAAL) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BRXHG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(BRXLG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(RISBLG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(RNSBG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ROSBG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(RXSBG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(RISBGN) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(RISBHG) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGRJ) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGIT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CIT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CLFIT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGIJ) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CIJ) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ALHSIK) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(ALGHSIK) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGRB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CGIB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CIB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LDEB) {
|
|
DCHECK_OPCODE(LDEB);
|
|
// Load Float
|
|
DECODE_RXE_INSTRUCTION(r1, b2, x2, d2);
|
|
int rb = b2;
|
|
int rx = x2;
|
|
int offset = d2;
|
|
int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
|
|
int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
|
|
double ret =
|
|
static_cast<double>(*reinterpret_cast<float*>(rx_val + rb_val + offset));
|
|
set_d_register_from_double(r1, ret);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LXDB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LXEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MXDB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(AEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MDEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(DEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MAEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MSEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TCEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TCDB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TCXB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SQEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SQDB) {
|
|
DCHECK_OPCODE(SQDB);
|
|
DECODE_RXE_INSTRUCTION(r1, b2, x2, d2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
|
|
r1_val = std::sqrt(dbl_val);
|
|
set_d_register_from_double(r1, r1_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MEEB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(KDB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDB) {
|
|
DCHECK_OPCODE(CDB);
|
|
|
|
DECODE_RXE_INSTRUCTION(r1, b2, x2, d2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
|
|
SetS390ConditionCode<double>(r1_val, dbl_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(ADB) {
|
|
DCHECK_OPCODE(ADB);
|
|
|
|
DECODE_RXE_INSTRUCTION(r1, b2, x2, d2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
|
|
r1_val += dbl_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(SDB) {
|
|
DCHECK_OPCODE(SDB);
|
|
DECODE_RXE_INSTRUCTION(r1, b2, x2, d2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
|
|
r1_val -= dbl_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MDB) {
|
|
DCHECK_OPCODE(MDB);
|
|
DECODE_RXE_INSTRUCTION(r1, b2, x2, d2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
|
|
r1_val *= dbl_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(DDB) {
|
|
DCHECK_OPCODE(DDB);
|
|
DECODE_RXE_INSTRUCTION(r1, b2, x2, d2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
intptr_t d2_val = d2;
|
|
double r1_val = get_double_from_d_register(r1);
|
|
double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
|
|
r1_val /= dbl_val;
|
|
set_d_register_from_double(r1, r1_val);
|
|
SetS390ConditionCode<double>(r1_val, 0);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(MADB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(MSDB) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SLDT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SRDT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SLXT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(SRXT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TDCET) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TDGET) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TDCDT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TDGDT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TDCXT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(TDGXT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(LEY) {
|
|
DCHECK_OPCODE(LEY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Miscellaneous Loads and Stores
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
float float_val = *reinterpret_cast<float*>(addr);
|
|
set_d_register_from_float32(r1, float_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(LDY) {
|
|
DCHECK_OPCODE(LDY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Miscellaneous Loads and Stores
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
uint64_t dbl_val = *reinterpret_cast<uint64_t*>(addr);
|
|
set_d_register(r1, dbl_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STEY) {
|
|
DCHECK_OPCODE(STEY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Miscellaneous Loads and Stores
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
int64_t frs_val = get_d_register(r1) >> 32;
|
|
WriteW(addr, static_cast<int32_t>(frs_val), instr);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(STDY) {
|
|
DCHECK_OPCODE(STDY);
|
|
DECODE_RXY_A_INSTRUCTION(r1, x2, b2, d2);
|
|
// Miscellaneous Loads and Stores
|
|
int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
|
int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
|
intptr_t addr = x2_val + b2_val + d2;
|
|
int64_t frs_val = get_d_register(r1);
|
|
WriteDW(addr, frs_val);
|
|
return length;
|
|
}
|
|
|
|
EVALUATE(CZDT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CZXT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CDZT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
EVALUATE(CXZT) {
|
|
UNIMPLEMENTED();
|
|
USE(instr);
|
|
return 0;
|
|
}
|
|
|
|
#undef EVALUATE
|
|
|
|
} // namespace internal
|
|
} // namespace v8
|
|
|
|
#endif // USE_SIMULATOR
|
|
#endif // V8_TARGET_ARCH_S390
|