v8/test/cctest/test-sync-primitives-arm64.cc
Jakob Gruber c51041f454 [nci] Replace CompilationTarget with a new Code::Kind value
With the new Turbofan variants (NCI and Turboprop), we need a way to
distinguish between them both during and after compilation. We
initially introduced CompilationTarget to track the variant during
compilation, but decided to reuse the code kind as the canonical spot to
store this information instead.

Why? Because it is an established mechanism, already available in most
of the necessary spots (inside the pipeline, on Code objects, in
profiling traces).

This CL removes CompilationTarget and adds a new
NATIVE_CONTEXT_INDEPENDENT kind, plus helper functions to determine
various things about a given code kind (e.g.: does this code kind
deopt?).

As a (very large) drive-by, refactor both Code::Kind and
AbstractCode::Kind into a new CodeKind enum class.

Bug: v8:8888
Change-Id: Ie858b9a53311b0731630be35cf5cd108dee95b39
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2336793
Commit-Queue: Jakob Gruber <jgruber@chromium.org>
Reviewed-by: Clemens Backes <clemensb@chromium.org>
Reviewed-by: Ross McIlroy <rmcilroy@chromium.org>
Reviewed-by: Dominik Inführ <dinfuehr@chromium.org>
Reviewed-by: Georg Neis <neis@chromium.org>
Cr-Commit-Position: refs/heads/master@{#69244}
2020-08-05 12:27:22 +00:00

408 lines
13 KiB
C++

// Copyright 2017 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "src/init/v8.h"
#include "test/cctest/cctest.h"
#include "src/codegen/macro-assembler-inl.h"
#include "src/execution/arm64/simulator-arm64.h"
#include "src/heap/factory.h"
#include "src/objects/objects-inl.h"
namespace v8 {
namespace internal {
// These tests rely on the behaviour specific to the simulator so we cannot
// expect the same results on real hardware. The reason for this is that our
// simulation of synchronisation primitives is more conservative than the
// reality.
// For example:
// ldxr x1, [x2] ; Load acquire at address x2; x2 is now marked as exclusive.
// ldr x0, [x4] ; This is a normal load, and at a different address.
// ; However, any memory accesses can potentially clear the
// ; exclusivity (See ARM DDI 0487B.a B2.9.5). This is unlikely
// ; on real hardware but to be conservative, the simulator
// ; always does it.
// stxr w3, x1, [x2] ; As a result, this will always fail in the simulator but
// ; will likely succeed on hardware.
#if defined(USE_SIMULATOR)
#ifndef V8_TARGET_LITTLE_ENDIAN
#error Expected ARM to be little-endian
#endif
#define __ masm.
struct MemoryAccess {
enum class Kind {
None,
Load,
LoadExcl,
Store,
StoreExcl,
};
enum class Size {
Byte,
HalfWord,
Word,
};
MemoryAccess() : kind(Kind::None) {}
MemoryAccess(Kind kind, Size size, size_t offset, int value = 0)
: kind(kind), size(size), offset(offset), value(value) {}
Kind kind = Kind::None;
Size size = Size::Byte;
size_t offset = 0;
int value = 0;
};
struct TestData {
explicit TestData(int w) : w(w) {}
union {
int32_t w;
int16_t h;
int8_t b;
};
int dummy;
};
namespace {
void AssembleMemoryAccess(MacroAssembler* assembler, MemoryAccess access,
Register dest_reg, Register value_reg,
Register addr_reg) {
MacroAssembler& masm = *assembler;
__ Add(addr_reg, x0, Operand(access.offset));
switch (access.kind) {
case MemoryAccess::Kind::None:
break;
case MemoryAccess::Kind::Load:
switch (access.size) {
case MemoryAccess::Size::Byte:
__ ldrb(value_reg, MemOperand(addr_reg));
break;
case MemoryAccess::Size::HalfWord:
__ ldrh(value_reg, MemOperand(addr_reg));
break;
case MemoryAccess::Size::Word:
__ ldr(value_reg, MemOperand(addr_reg));
break;
}
break;
case MemoryAccess::Kind::LoadExcl:
switch (access.size) {
case MemoryAccess::Size::Byte:
__ ldaxrb(value_reg, addr_reg);
break;
case MemoryAccess::Size::HalfWord:
__ ldaxrh(value_reg, addr_reg);
break;
case MemoryAccess::Size::Word:
__ ldaxr(value_reg, addr_reg);
break;
}
break;
case MemoryAccess::Kind::Store:
switch (access.size) {
case MemoryAccess::Size::Byte:
__ Mov(value_reg, Operand(access.value));
__ strb(value_reg, MemOperand(addr_reg));
break;
case MemoryAccess::Size::HalfWord:
__ Mov(value_reg, Operand(access.value));
__ strh(value_reg, MemOperand(addr_reg));
break;
case MemoryAccess::Size::Word:
__ Mov(value_reg, Operand(access.value));
__ str(value_reg, MemOperand(addr_reg));
break;
}
break;
case MemoryAccess::Kind::StoreExcl:
switch (access.size) {
case MemoryAccess::Size::Byte:
__ Mov(value_reg, Operand(access.value));
__ stlxrb(dest_reg, value_reg, addr_reg);
break;
case MemoryAccess::Size::HalfWord:
__ Mov(value_reg, Operand(access.value));
__ stlxrh(dest_reg, value_reg, addr_reg);
break;
case MemoryAccess::Size::Word:
__ Mov(value_reg, Operand(access.value));
__ stlxr(dest_reg, value_reg, addr_reg);
break;
}
break;
}
}
void AssembleLoadExcl(MacroAssembler* assembler, MemoryAccess access,
Register value_reg, Register addr_reg) {
DCHECK(access.kind == MemoryAccess::Kind::LoadExcl);
AssembleMemoryAccess(assembler, access, no_reg, value_reg, addr_reg);
}
void AssembleStoreExcl(MacroAssembler* assembler, MemoryAccess access,
Register dest_reg, Register value_reg,
Register addr_reg) {
DCHECK(access.kind == MemoryAccess::Kind::StoreExcl);
AssembleMemoryAccess(assembler, access, dest_reg, value_reg, addr_reg);
}
void TestInvalidateExclusiveAccess(TestData initial_data, MemoryAccess access1,
MemoryAccess access2, MemoryAccess access3,
int expected_res, TestData expected_data) {
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes);
AssembleLoadExcl(&masm, access1, w1, x1);
AssembleMemoryAccess(&masm, access2, w3, w2, x1);
AssembleStoreExcl(&masm, access3, w0, w3, x1);
__ Ret();
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::STUB).Build();
TestData t = initial_data;
Simulator::current(isolate)->Call<void>(code->entry(), &t);
int res = Simulator::current(isolate)->wreg(0);
CHECK_EQ(expected_res, res);
switch (access3.size) {
case MemoryAccess::Size::Byte:
CHECK_EQ(expected_data.b, t.b);
break;
case MemoryAccess::Size::HalfWord:
CHECK_EQ(expected_data.h, t.h);
break;
case MemoryAccess::Size::Word:
CHECK_EQ(expected_data.w, t.w);
break;
}
}
} // namespace
TEST(simulator_invalidate_exclusive_access) {
using Kind = MemoryAccess::Kind;
using Size = MemoryAccess::Size;
MemoryAccess ldaxr_w(Kind::LoadExcl, Size::Word, offsetof(TestData, w));
MemoryAccess stlxr_w(Kind::StoreExcl, Size::Word, offsetof(TestData, w), 7);
// Address mismatch.
TestInvalidateExclusiveAccess(
TestData(1), ldaxr_w,
MemoryAccess(Kind::LoadExcl, Size::Word, offsetof(TestData, dummy)),
stlxr_w, 1, TestData(1));
// Size mismatch.
TestInvalidateExclusiveAccess(
TestData(1), ldaxr_w, MemoryAccess(),
MemoryAccess(Kind::StoreExcl, Size::HalfWord, offsetof(TestData, w), 7),
1, TestData(1));
// Load between ldaxr/stlxr.
TestInvalidateExclusiveAccess(
TestData(1), ldaxr_w,
MemoryAccess(Kind::Load, Size::Word, offsetof(TestData, dummy)), stlxr_w,
1, TestData(1));
// Store between ldaxr/stlxr.
TestInvalidateExclusiveAccess(
TestData(1), ldaxr_w,
MemoryAccess(Kind::Store, Size::Word, offsetof(TestData, dummy)), stlxr_w,
1, TestData(1));
// Match
TestInvalidateExclusiveAccess(TestData(1), ldaxr_w, MemoryAccess(), stlxr_w,
0, TestData(7));
}
namespace {
int ExecuteMemoryAccess(Isolate* isolate, TestData* test_data,
MemoryAccess access) {
HandleScope scope(isolate);
MacroAssembler masm(isolate, v8::internal::CodeObjectRequired::kYes);
AssembleMemoryAccess(&masm, access, w0, w2, x1);
__ Ret();
CodeDesc desc;
masm.GetCode(isolate, &desc);
Handle<Code> code =
Factory::CodeBuilder(isolate, desc, CodeKind::STUB).Build();
Simulator::current(isolate)->Call<void>(code->entry(), test_data);
return Simulator::current(isolate)->wreg(0);
}
} // namespace
class MemoryAccessThread : public v8::base::Thread {
public:
MemoryAccessThread()
: Thread(Options("MemoryAccessThread")),
test_data_(nullptr),
is_finished_(false),
has_request_(false),
did_request_(false),
isolate_(nullptr) {}
virtual void Run() {
v8::Isolate::CreateParams create_params;
create_params.array_buffer_allocator = CcTest::array_buffer_allocator();
isolate_ = v8::Isolate::New(create_params);
Isolate* i_isolate = reinterpret_cast<Isolate*>(isolate_);
{
v8::Isolate::Scope scope(isolate_);
v8::base::MutexGuard lock_guard(&mutex_);
while (!is_finished_) {
while (!(has_request_ || is_finished_)) {
has_request_cv_.Wait(&mutex_);
}
if (is_finished_) {
break;
}
ExecuteMemoryAccess(i_isolate, test_data_, access_);
has_request_ = false;
did_request_ = true;
did_request_cv_.NotifyOne();
}
}
isolate_->Dispose();
}
void NextAndWait(TestData* test_data, MemoryAccess access) {
DCHECK(!has_request_);
v8::base::MutexGuard lock_guard(&mutex_);
test_data_ = test_data;
access_ = access;
has_request_ = true;
has_request_cv_.NotifyOne();
while (!did_request_) {
did_request_cv_.Wait(&mutex_);
}
did_request_ = false;
}
void Finish() {
v8::base::MutexGuard lock_guard(&mutex_);
is_finished_ = true;
has_request_cv_.NotifyOne();
}
private:
TestData* test_data_;
MemoryAccess access_;
bool is_finished_;
bool has_request_;
bool did_request_;
v8::base::Mutex mutex_;
v8::base::ConditionVariable has_request_cv_;
v8::base::ConditionVariable did_request_cv_;
v8::Isolate* isolate_;
};
TEST(simulator_invalidate_exclusive_access_threaded) {
using Kind = MemoryAccess::Kind;
using Size = MemoryAccess::Size;
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
TestData test_data(1);
MemoryAccessThread thread;
CHECK(thread.Start());
MemoryAccess ldaxr_w(Kind::LoadExcl, Size::Word, offsetof(TestData, w));
MemoryAccess stlxr_w(Kind::StoreExcl, Size::Word, offsetof(TestData, w), 7);
// Exclusive store completed by another thread first.
test_data = TestData(1);
thread.NextAndWait(&test_data, MemoryAccess(Kind::LoadExcl, Size::Word,
offsetof(TestData, w)));
ExecuteMemoryAccess(isolate, &test_data, ldaxr_w);
thread.NextAndWait(&test_data, MemoryAccess(Kind::StoreExcl, Size::Word,
offsetof(TestData, w), 5));
CHECK_EQ(1, ExecuteMemoryAccess(isolate, &test_data, stlxr_w));
CHECK_EQ(5, test_data.w);
// Exclusive store completed by another thread; different address, but masked
// to same
test_data = TestData(1);
ExecuteMemoryAccess(isolate, &test_data, ldaxr_w);
thread.NextAndWait(&test_data, MemoryAccess(Kind::LoadExcl, Size::Word,
offsetof(TestData, dummy)));
thread.NextAndWait(&test_data, MemoryAccess(Kind::StoreExcl, Size::Word,
offsetof(TestData, dummy), 5));
CHECK_EQ(1, ExecuteMemoryAccess(isolate, &test_data, stlxr_w));
CHECK_EQ(1, test_data.w);
// Test failure when store between ldaxr/stlxr.
test_data = TestData(1);
ExecuteMemoryAccess(isolate, &test_data, ldaxr_w);
thread.NextAndWait(&test_data, MemoryAccess(Kind::Store, Size::Word,
offsetof(TestData, dummy)));
CHECK_EQ(1, ExecuteMemoryAccess(isolate, &test_data, stlxr_w));
CHECK_EQ(1, test_data.w);
thread.Finish();
thread.Join();
}
#undef __
#endif // USE_SIMULATOR
} // namespace internal
} // namespace v8