v8/src/handles.cc
svenpanne@chromium.org b25bb230cd Removed apiutils.h and related cleanup.
ExtensionConfiguration is just a simple container for extension names
(in a perfect world we would use vector<string> and range-based for
loops), and HandleScopeData was in the totally wrong place. Some
additional cleanup on the way, e.g. using the null pattern behind our
external API.

R=dcarney@chromium.org

Review URL: https://codereview.chromium.org/139393002

git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@18632 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
2014-01-16 08:17:40 +00:00

800 lines
29 KiB
C++

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "arguments.h"
#include "bootstrapper.h"
#include "compiler.h"
#include "debug.h"
#include "execution.h"
#include "global-handles.h"
#include "natives.h"
#include "runtime.h"
#include "string-search.h"
#include "stub-cache.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
int HandleScope::NumberOfHandles(Isolate* isolate) {
HandleScopeImplementer* impl = isolate->handle_scope_implementer();
int n = impl->blocks()->length();
if (n == 0) return 0;
return ((n - 1) * kHandleBlockSize) + static_cast<int>(
(isolate->handle_scope_data()->next - impl->blocks()->last()));
}
Object** HandleScope::Extend(Isolate* isolate) {
HandleScopeData* current = isolate->handle_scope_data();
Object** result = current->next;
ASSERT(result == current->limit);
// Make sure there's at least one scope on the stack and that the
// top of the scope stack isn't a barrier.
if (!Utils::ApiCheck(current->level != 0,
"v8::HandleScope::CreateHandle()",
"Cannot create a handle without a HandleScope")) {
return NULL;
}
HandleScopeImplementer* impl = isolate->handle_scope_implementer();
// If there's more room in the last block, we use that. This is used
// for fast creation of scopes after scope barriers.
if (!impl->blocks()->is_empty()) {
Object** limit = &impl->blocks()->last()[kHandleBlockSize];
if (current->limit != limit) {
current->limit = limit;
ASSERT(limit - current->next < kHandleBlockSize);
}
}
// If we still haven't found a slot for the handle, we extend the
// current handle scope by allocating a new handle block.
if (result == current->limit) {
// If there's a spare block, use it for growing the current scope.
result = impl->GetSpareOrNewBlock();
// Add the extension to the global list of blocks, but count the
// extension as part of the current scope.
impl->blocks()->Add(result);
current->limit = &result[kHandleBlockSize];
}
return result;
}
void HandleScope::DeleteExtensions(Isolate* isolate) {
HandleScopeData* current = isolate->handle_scope_data();
isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
}
#ifdef ENABLE_HANDLE_ZAPPING
void HandleScope::ZapRange(Object** start, Object** end) {
ASSERT(end - start <= kHandleBlockSize);
for (Object** p = start; p != end; p++) {
*reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
}
}
#endif
Address HandleScope::current_level_address(Isolate* isolate) {
return reinterpret_cast<Address>(&isolate->handle_scope_data()->level);
}
Address HandleScope::current_next_address(Isolate* isolate) {
return reinterpret_cast<Address>(&isolate->handle_scope_data()->next);
}
Address HandleScope::current_limit_address(Isolate* isolate) {
return reinterpret_cast<Address>(&isolate->handle_scope_data()->limit);
}
Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
Handle<JSArray> array) {
CALL_HEAP_FUNCTION(content->GetIsolate(),
content->AddKeysFromJSArray(*array), FixedArray);
}
Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
Handle<FixedArray> second) {
CALL_HEAP_FUNCTION(first->GetIsolate(),
first->UnionOfKeys(*second), FixedArray);
}
Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
Handle<JSFunction> constructor,
Handle<JSGlobalProxy> global) {
CALL_HEAP_FUNCTION(
constructor->GetIsolate(),
constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global),
JSGlobalProxy);
}
void FlattenString(Handle<String> string) {
CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten());
}
Handle<String> FlattenGetString(Handle<String> string) {
CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String);
}
Handle<Object> ForceSetProperty(Handle<JSObject> object,
Handle<Object> key,
Handle<Object> value,
PropertyAttributes attributes) {
return Runtime::ForceSetObjectProperty(object->GetIsolate(), object, key,
value, attributes);
}
Handle<Object> DeleteProperty(Handle<JSObject> object, Handle<Object> key) {
Isolate* isolate = object->GetIsolate();
CALL_HEAP_FUNCTION(isolate,
Runtime::DeleteObjectProperty(
isolate, object, key, JSReceiver::NORMAL_DELETION),
Object);
}
Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
Handle<Object> key) {
Isolate* isolate = object->GetIsolate();
CALL_HEAP_FUNCTION(isolate,
Runtime::DeleteObjectProperty(
isolate, object, key, JSReceiver::FORCE_DELETION),
Object);
}
Handle<Object> HasProperty(Handle<JSReceiver> obj, Handle<Object> key) {
Isolate* isolate = obj->GetIsolate();
CALL_HEAP_FUNCTION(isolate,
Runtime::HasObjectProperty(isolate, obj, key), Object);
}
Handle<Object> GetProperty(Handle<JSReceiver> obj,
const char* name) {
Isolate* isolate = obj->GetIsolate();
Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object);
}
Handle<Object> GetProperty(Isolate* isolate,
Handle<Object> obj,
Handle<Object> key) {
CALL_HEAP_FUNCTION(isolate,
Runtime::GetObjectProperty(isolate, obj, key), Object);
}
Handle<String> LookupSingleCharacterStringFromCode(Isolate* isolate,
uint32_t index) {
CALL_HEAP_FUNCTION(
isolate,
isolate->heap()->LookupSingleCharacterStringFromCode(index),
String);
}
// Wrappers for scripts are kept alive and cached in weak global
// handles referred from foreign objects held by the scripts as long as
// they are used. When they are not used anymore, the garbage
// collector will call the weak callback on the global handle
// associated with the wrapper and get rid of both the wrapper and the
// handle.
static void ClearWrapperCache(
const v8::WeakCallbackData<v8::Value, void>& data) {
Object** location = reinterpret_cast<Object**>(data.GetParameter());
JSValue* wrapper = JSValue::cast(*location);
Foreign* foreign = Script::cast(wrapper->value())->wrapper();
ASSERT_EQ(foreign->foreign_address(), reinterpret_cast<Address>(location));
foreign->set_foreign_address(0);
GlobalHandles::Destroy(location);
Isolate* isolate = reinterpret_cast<Isolate*>(data.GetIsolate());
isolate->counters()->script_wrappers()->Decrement();
}
Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
if (script->wrapper()->foreign_address() != NULL) {
// Return a handle for the existing script wrapper from the cache.
return Handle<JSValue>(
*reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
}
Isolate* isolate = script->GetIsolate();
// Construct a new script wrapper.
isolate->counters()->script_wrappers()->Increment();
Handle<JSFunction> constructor = isolate->script_function();
Handle<JSValue> result =
Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
// The allocation might have triggered a GC, which could have called this
// function recursively, and a wrapper has already been created and cached.
// In that case, simply return a handle for the cached wrapper.
if (script->wrapper()->foreign_address() != NULL) {
return Handle<JSValue>(
*reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
}
result->set_value(*script);
// Create a new weak global handle and use it to cache the wrapper
// for future use. The cache will automatically be cleared by the
// garbage collector when it is not used anymore.
Handle<Object> handle = isolate->global_handles()->Create(*result);
GlobalHandles::MakeWeak(handle.location(),
reinterpret_cast<void*>(handle.location()),
&ClearWrapperCache);
script->wrapper()->set_foreign_address(
reinterpret_cast<Address>(handle.location()));
return result;
}
// Init line_ends array with code positions of line ends inside script
// source.
void InitScriptLineEnds(Handle<Script> script) {
if (!script->line_ends()->IsUndefined()) return;
Isolate* isolate = script->GetIsolate();
if (!script->source()->IsString()) {
ASSERT(script->source()->IsUndefined());
Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
script->set_line_ends(*empty);
ASSERT(script->line_ends()->IsFixedArray());
return;
}
Handle<String> src(String::cast(script->source()), isolate);
Handle<FixedArray> array = CalculateLineEnds(src, true);
if (*array != isolate->heap()->empty_fixed_array()) {
array->set_map(isolate->heap()->fixed_cow_array_map());
}
script->set_line_ends(*array);
ASSERT(script->line_ends()->IsFixedArray());
}
template <typename SourceChar>
static void CalculateLineEnds(Isolate* isolate,
List<int>* line_ends,
Vector<const SourceChar> src,
bool with_last_line) {
const int src_len = src.length();
StringSearch<uint8_t, SourceChar> search(isolate, STATIC_ASCII_VECTOR("\n"));
// Find and record line ends.
int position = 0;
while (position != -1 && position < src_len) {
position = search.Search(src, position);
if (position != -1) {
line_ends->Add(position);
position++;
} else if (with_last_line) {
// Even if the last line misses a line end, it is counted.
line_ends->Add(src_len);
return;
}
}
}
Handle<FixedArray> CalculateLineEnds(Handle<String> src,
bool with_last_line) {
src = FlattenGetString(src);
// Rough estimate of line count based on a roughly estimated average
// length of (unpacked) code.
int line_count_estimate = src->length() >> 4;
List<int> line_ends(line_count_estimate);
Isolate* isolate = src->GetIsolate();
{
DisallowHeapAllocation no_allocation; // ensure vectors stay valid.
// Dispatch on type of strings.
String::FlatContent content = src->GetFlatContent();
ASSERT(content.IsFlat());
if (content.IsAscii()) {
CalculateLineEnds(isolate,
&line_ends,
content.ToOneByteVector(),
with_last_line);
} else {
CalculateLineEnds(isolate,
&line_ends,
content.ToUC16Vector(),
with_last_line);
}
}
int line_count = line_ends.length();
Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
for (int i = 0; i < line_count; i++) {
array->set(i, Smi::FromInt(line_ends[i]));
}
return array;
}
// Convert code position into line number.
int GetScriptLineNumber(Handle<Script> script, int code_pos) {
InitScriptLineEnds(script);
DisallowHeapAllocation no_allocation;
FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
const int line_ends_len = line_ends_array->length();
if (!line_ends_len) return -1;
if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
return script->line_offset()->value();
}
int left = 0;
int right = line_ends_len;
while (int half = (right - left) / 2) {
if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
right -= half;
} else {
left += half;
}
}
return right + script->line_offset()->value();
}
// Convert code position into column number.
int GetScriptColumnNumber(Handle<Script> script, int code_pos) {
int line_number = GetScriptLineNumber(script, code_pos);
if (line_number == -1) return -1;
DisallowHeapAllocation no_allocation;
FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
line_number = line_number - script->line_offset()->value();
if (line_number == 0) return code_pos + script->column_offset()->value();
int prev_line_end_pos =
Smi::cast(line_ends_array->get(line_number - 1))->value();
return code_pos - (prev_line_end_pos + 1);
}
int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
DisallowHeapAllocation no_allocation;
if (!script->line_ends()->IsUndefined()) {
return GetScriptLineNumber(script, code_pos);
}
// Slow mode: we do not have line_ends. We have to iterate through source.
if (!script->source()->IsString()) {
return -1;
}
String* source = String::cast(script->source());
int line = 0;
int len = source->length();
for (int pos = 0; pos < len; pos++) {
if (pos == code_pos) {
break;
}
if (source->Get(pos) == '\n') {
line++;
}
}
return line;
}
// Compute the property keys from the interceptor.
// TODO(rossberg): support symbols in API, and filter here if needed.
v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
Handle<JSObject> object) {
Isolate* isolate = receiver->GetIsolate();
Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
PropertyCallbackArguments
args(isolate, interceptor->data(), *receiver, *object);
v8::Handle<v8::Array> result;
if (!interceptor->enumerator()->IsUndefined()) {
v8::NamedPropertyEnumeratorCallback enum_fun =
v8::ToCData<v8::NamedPropertyEnumeratorCallback>(
interceptor->enumerator());
LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object));
result = args.Call(enum_fun);
}
#if ENABLE_EXTRA_CHECKS
CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
#endif
return v8::Local<v8::Array>::New(reinterpret_cast<v8::Isolate*>(isolate),
result);
}
// Compute the element keys from the interceptor.
v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
Handle<JSObject> object) {
Isolate* isolate = receiver->GetIsolate();
Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
PropertyCallbackArguments
args(isolate, interceptor->data(), *receiver, *object);
v8::Handle<v8::Array> result;
if (!interceptor->enumerator()->IsUndefined()) {
v8::IndexedPropertyEnumeratorCallback enum_fun =
v8::ToCData<v8::IndexedPropertyEnumeratorCallback>(
interceptor->enumerator());
LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object));
result = args.Call(enum_fun);
#if ENABLE_EXTRA_CHECKS
CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
#endif
}
return v8::Local<v8::Array>::New(reinterpret_cast<v8::Isolate*>(isolate),
result);
}
Handle<Object> GetScriptNameOrSourceURL(Handle<Script> script) {
Isolate* isolate = script->GetIsolate();
Handle<String> name_or_source_url_key =
isolate->factory()->InternalizeOneByteString(
STATIC_ASCII_VECTOR("nameOrSourceURL"));
Handle<JSValue> script_wrapper = GetScriptWrapper(script);
Handle<Object> property = GetProperty(isolate,
script_wrapper,
name_or_source_url_key);
ASSERT(property->IsJSFunction());
Handle<JSFunction> method = Handle<JSFunction>::cast(property);
bool caught_exception;
Handle<Object> result = Execution::TryCall(method, script_wrapper, 0,
NULL, &caught_exception);
if (caught_exception) {
result = isolate->factory()->undefined_value();
}
return result;
}
static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
int len = array->length();
for (int i = 0; i < len; i++) {
Object* e = array->get(i);
if (!(e->IsString() || e->IsNumber())) return false;
}
return true;
}
Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
KeyCollectionType type,
bool* threw) {
USE(ContainsOnlyValidKeys);
Isolate* isolate = object->GetIsolate();
Handle<FixedArray> content = isolate->factory()->empty_fixed_array();
Handle<JSObject> arguments_boilerplate = Handle<JSObject>(
isolate->context()->native_context()->arguments_boilerplate(),
isolate);
Handle<JSFunction> arguments_function = Handle<JSFunction>(
JSFunction::cast(arguments_boilerplate->map()->constructor()),
isolate);
// Only collect keys if access is permitted.
for (Handle<Object> p = object;
*p != isolate->heap()->null_value();
p = Handle<Object>(p->GetPrototype(isolate), isolate)) {
if (p->IsJSProxy()) {
Handle<JSProxy> proxy(JSProxy::cast(*p), isolate);
Handle<Object> args[] = { proxy };
Handle<Object> names = Execution::Call(isolate,
isolate->proxy_enumerate(),
object,
ARRAY_SIZE(args),
args,
threw);
if (*threw) return content;
content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names));
break;
}
Handle<JSObject> current(JSObject::cast(*p), isolate);
// Check access rights if required.
if (current->IsAccessCheckNeeded() &&
!isolate->MayNamedAccess(*current,
isolate->heap()->undefined_value(),
v8::ACCESS_KEYS)) {
isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
if (isolate->has_scheduled_exception()) {
isolate->PromoteScheduledException();
*threw = true;
}
break;
}
// Compute the element keys.
Handle<FixedArray> element_keys =
isolate->factory()->NewFixedArray(current->NumberOfEnumElements());
current->GetEnumElementKeys(*element_keys);
content = UnionOfKeys(content, element_keys);
ASSERT(ContainsOnlyValidKeys(content));
// Add the element keys from the interceptor.
if (current->HasIndexedInterceptor()) {
v8::Handle<v8::Array> result =
GetKeysForIndexedInterceptor(object, current);
if (!result.IsEmpty())
content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
ASSERT(ContainsOnlyValidKeys(content));
}
// We can cache the computed property keys if access checks are
// not needed and no interceptors are involved.
//
// We do not use the cache if the object has elements and
// therefore it does not make sense to cache the property names
// for arguments objects. Arguments objects will always have
// elements.
// Wrapped strings have elements, but don't have an elements
// array or dictionary. So the fast inline test for whether to
// use the cache says yes, so we should not create a cache.
bool cache_enum_keys =
((current->map()->constructor() != *arguments_function) &&
!current->IsJSValue() &&
!current->IsAccessCheckNeeded() &&
!current->HasNamedInterceptor() &&
!current->HasIndexedInterceptor());
// Compute the property keys and cache them if possible.
content =
UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
ASSERT(ContainsOnlyValidKeys(content));
// Add the property keys from the interceptor.
if (current->HasNamedInterceptor()) {
v8::Handle<v8::Array> result =
GetKeysForNamedInterceptor(object, current);
if (!result.IsEmpty())
content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
ASSERT(ContainsOnlyValidKeys(content));
}
// If we only want local properties we bail out after the first
// iteration.
if (type == LOCAL_ONLY)
break;
}
return content;
}
Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) {
Isolate* isolate = object->GetIsolate();
isolate->counters()->for_in()->Increment();
Handle<FixedArray> elements =
GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw);
return isolate->factory()->NewJSArrayWithElements(elements);
}
Handle<FixedArray> ReduceFixedArrayTo(Handle<FixedArray> array, int length) {
ASSERT(array->length() >= length);
if (array->length() == length) return array;
Handle<FixedArray> new_array =
array->GetIsolate()->factory()->NewFixedArray(length);
for (int i = 0; i < length; ++i) new_array->set(i, array->get(i));
return new_array;
}
Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
bool cache_result) {
Isolate* isolate = object->GetIsolate();
if (object->HasFastProperties()) {
if (object->map()->instance_descriptors()->HasEnumCache()) {
int own_property_count = object->map()->EnumLength();
// If we have an enum cache, but the enum length of the given map is set
// to kInvalidEnumCache, this means that the map itself has never used the
// present enum cache. The first step to using the cache is to set the
// enum length of the map by counting the number of own descriptors that
// are not DONT_ENUM or SYMBOLIC.
if (own_property_count == kInvalidEnumCacheSentinel) {
own_property_count = object->map()->NumberOfDescribedProperties(
OWN_DESCRIPTORS, DONT_SHOW);
if (cache_result) object->map()->SetEnumLength(own_property_count);
}
DescriptorArray* desc = object->map()->instance_descriptors();
Handle<FixedArray> keys(desc->GetEnumCache(), isolate);
// In case the number of properties required in the enum are actually
// present, we can reuse the enum cache. Otherwise, this means that the
// enum cache was generated for a previous (smaller) version of the
// Descriptor Array. In that case we regenerate the enum cache.
if (own_property_count <= keys->length()) {
isolate->counters()->enum_cache_hits()->Increment();
return ReduceFixedArrayTo(keys, own_property_count);
}
}
Handle<Map> map(object->map());
if (map->instance_descriptors()->IsEmpty()) {
isolate->counters()->enum_cache_hits()->Increment();
if (cache_result) map->SetEnumLength(0);
return isolate->factory()->empty_fixed_array();
}
isolate->counters()->enum_cache_misses()->Increment();
int num_enum = map->NumberOfDescribedProperties(ALL_DESCRIPTORS, DONT_SHOW);
Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
Handle<FixedArray> indices = isolate->factory()->NewFixedArray(num_enum);
Handle<DescriptorArray> descs =
Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate);
int real_size = map->NumberOfOwnDescriptors();
int enum_size = 0;
int index = 0;
for (int i = 0; i < descs->number_of_descriptors(); i++) {
PropertyDetails details = descs->GetDetails(i);
Object* key = descs->GetKey(i);
if (!(details.IsDontEnum() || key->IsSymbol())) {
if (i < real_size) ++enum_size;
storage->set(index, key);
if (!indices.is_null()) {
if (details.type() != FIELD) {
indices = Handle<FixedArray>();
} else {
int field_index = descs->GetFieldIndex(i);
if (field_index >= map->inobject_properties()) {
field_index = -(field_index - map->inobject_properties() + 1);
}
indices->set(index, Smi::FromInt(field_index));
}
}
index++;
}
}
ASSERT(index == storage->length());
Handle<FixedArray> bridge_storage =
isolate->factory()->NewFixedArray(
DescriptorArray::kEnumCacheBridgeLength);
DescriptorArray* desc = object->map()->instance_descriptors();
desc->SetEnumCache(*bridge_storage,
*storage,
indices.is_null() ? Object::cast(Smi::FromInt(0))
: Object::cast(*indices));
if (cache_result) {
object->map()->SetEnumLength(enum_size);
}
return ReduceFixedArrayTo(storage, enum_size);
} else {
Handle<NameDictionary> dictionary(object->property_dictionary());
int length = dictionary->NumberOfElements();
if (length == 0) {
return Handle<FixedArray>(isolate->heap()->empty_fixed_array());
}
// The enumeration array is generated by allocating an array big enough to
// hold all properties that have been seen, whether they are are deleted or
// not. Subsequently all visible properties are added to the array. If some
// properties were not visible, the array is trimmed so it only contains
// visible properties. This improves over adding elements and sorting by
// index by having linear complexity rather than n*log(n).
// By comparing the monotonous NextEnumerationIndex to the NumberOfElements,
// we can predict the number of holes in the final array. If there will be
// more than 50% holes, regenerate the enumeration indices to reduce the
// number of holes to a minimum. This avoids allocating a large array if
// many properties were added but subsequently deleted.
int next_enumeration = dictionary->NextEnumerationIndex();
if (!object->IsGlobalObject() && next_enumeration > (length * 3) / 2) {
NameDictionary::DoGenerateNewEnumerationIndices(dictionary);
next_enumeration = dictionary->NextEnumerationIndex();
}
Handle<FixedArray> storage =
isolate->factory()->NewFixedArray(next_enumeration);
storage = Handle<FixedArray>(dictionary->CopyEnumKeysTo(*storage));
ASSERT(storage->length() == object->NumberOfLocalProperties(DONT_SHOW));
return storage;
}
}
DeferredHandleScope::DeferredHandleScope(Isolate* isolate)
: impl_(isolate->handle_scope_implementer()) {
impl_->BeginDeferredScope();
HandleScopeData* data = impl_->isolate()->handle_scope_data();
Object** new_next = impl_->GetSpareOrNewBlock();
Object** new_limit = &new_next[kHandleBlockSize];
ASSERT(data->limit == &impl_->blocks()->last()[kHandleBlockSize]);
impl_->blocks()->Add(new_next);
#ifdef DEBUG
prev_level_ = data->level;
#endif
data->level++;
prev_limit_ = data->limit;
prev_next_ = data->next;
data->next = new_next;
data->limit = new_limit;
}
DeferredHandleScope::~DeferredHandleScope() {
impl_->isolate()->handle_scope_data()->level--;
ASSERT(handles_detached_);
ASSERT(impl_->isolate()->handle_scope_data()->level == prev_level_);
}
DeferredHandles* DeferredHandleScope::Detach() {
DeferredHandles* deferred = impl_->Detach(prev_limit_);
HandleScopeData* data = impl_->isolate()->handle_scope_data();
data->next = prev_next_;
data->limit = prev_limit_;
#ifdef DEBUG
handles_detached_ = true;
#endif
return deferred;
}
void AddWeakObjectToCodeDependency(Heap* heap,
Handle<Object> object,
Handle<Code> code) {
heap->EnsureWeakObjectToCodeTable();
Handle<DependentCode> dep(heap->LookupWeakObjectToCodeDependency(*object));
dep = DependentCode::Insert(dep, DependentCode::kWeaklyEmbeddedGroup, code);
CALL_HEAP_FUNCTION_VOID(heap->isolate(),
heap->AddWeakObjectToCodeDependency(*object, *dep));
}
} } // namespace v8::internal