v8/src/safepoint-table.cc
Michael Starzinger 6091e27027 [wasm] Simplify safepoint-table encoding.
This removes the unused "argument count" field from the safepoint table
as the field was unused by now and always contained the value zero.

Also note that associating a callee's argument count with the call-site
is not compatible with tail-call support. When tail-calling a function
with a different number of arguments, the information associated with
the call-site becomes stale. The number of arguments is a property of
the callee, not of the call-site in the caller. For this reason the
field in question is not usable to support reference types in function
arguments (at least when tail-calls are also supported).

R=ahaas@chromium.org

Change-Id: If667d729267f2dd2642b755c54235cc08ca9b141
Reviewed-on: https://chromium-review.googlesource.com/c/1402548
Reviewed-by: Andreas Haas <ahaas@chromium.org>
Commit-Queue: Michael Starzinger <mstarzinger@chromium.org>
Cr-Commit-Position: refs/heads/master@{#58969}
2019-01-21 15:58:22 +00:00

297 lines
10 KiB
C++

// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/safepoint-table.h"
#include "src/assembler-inl.h"
#include "src/deoptimizer.h"
#include "src/disasm.h"
#include "src/frames-inl.h"
#include "src/macro-assembler.h"
#include "src/ostreams.h"
namespace v8 {
namespace internal {
bool SafepointEntry::HasRegisters() const {
DCHECK(is_valid());
DCHECK(IsAligned(kNumSafepointRegisters, kBitsPerByte));
const int num_reg_bytes = kNumSafepointRegisters >> kBitsPerByteLog2;
for (int i = 0; i < num_reg_bytes; i++) {
if (bits_[i] != SafepointTable::kNoRegisters) return true;
}
return false;
}
bool SafepointEntry::HasRegisterAt(int reg_index) const {
DCHECK(is_valid());
DCHECK(reg_index >= 0 && reg_index < kNumSafepointRegisters);
int byte_index = reg_index >> kBitsPerByteLog2;
int bit_index = reg_index & (kBitsPerByte - 1);
return (bits_[byte_index] & (1 << bit_index)) != 0;
}
SafepointTable::SafepointTable(Address instruction_start,
size_t safepoint_table_offset,
uint32_t stack_slots, bool has_deopt)
: instruction_start_(instruction_start),
stack_slots_(stack_slots),
has_deopt_(has_deopt) {
Address header = instruction_start_ + safepoint_table_offset;
length_ = Memory<uint32_t>(header + kLengthOffset);
entry_size_ = Memory<uint32_t>(header + kEntrySizeOffset);
pc_and_deoptimization_indexes_ = header + kHeaderSize;
entries_ = pc_and_deoptimization_indexes_ + (length_ * kFixedEntrySize);
DCHECK_GT(entry_size_, 0);
STATIC_ASSERT(SafepointEntry::DeoptimizationIndexField::kMax ==
Safepoint::kNoDeoptimizationIndex);
}
SafepointTable::SafepointTable(Code code)
: SafepointTable(code->InstructionStart(), code->safepoint_table_offset(),
code->stack_slots(), true) {}
unsigned SafepointTable::find_return_pc(unsigned pc_offset) {
for (unsigned i = 0; i < length(); i++) {
if (GetTrampolinePcOffset(i) == static_cast<int>(pc_offset)) {
return GetPcOffset(i);
} else if (GetPcOffset(i) == pc_offset) {
return pc_offset;
}
}
UNREACHABLE();
return 0;
}
SafepointEntry SafepointTable::FindEntry(Address pc) const {
unsigned pc_offset = static_cast<unsigned>(pc - instruction_start_);
// We use kMaxUInt32 as sentinel value, so check that we don't hit that.
DCHECK_NE(kMaxUInt32, pc_offset);
unsigned len = length();
CHECK_GT(len, 0);
// If pc == kMaxUInt32, then this entry covers all call sites in the function.
if (len == 1 && GetPcOffset(0) == kMaxUInt32) return GetEntry(0);
for (unsigned i = 0; i < len; i++) {
// TODO(kasperl): Replace the linear search with binary search.
if (GetPcOffset(i) == pc_offset ||
(has_deopt_ &&
GetTrampolinePcOffset(i) == static_cast<int>(pc_offset))) {
return GetEntry(i);
}
}
UNREACHABLE();
return SafepointEntry();
}
void SafepointTable::PrintEntry(unsigned index,
std::ostream& os) const { // NOLINT
disasm::NameConverter converter;
SafepointEntry entry = GetEntry(index);
uint8_t* bits = entry.bits();
// Print the stack slot bits.
if (entry_size_ > 0) {
DCHECK(IsAligned(kNumSafepointRegisters, kBitsPerByte));
const int first = kNumSafepointRegisters >> kBitsPerByteLog2;
int last = entry_size_ - 1;
for (int i = first; i < last; i++) PrintBits(os, bits[i], kBitsPerByte);
int last_bits = stack_slots_ - ((last - first) * kBitsPerByte);
PrintBits(os, bits[last], last_bits);
// Print the registers (if any).
if (!entry.HasRegisters()) return;
for (int j = 0; j < kNumSafepointRegisters; j++) {
if (entry.HasRegisterAt(j)) {
os << " | " << converter.NameOfCPURegister(j);
}
}
}
}
void SafepointTable::PrintBits(std::ostream& os, // NOLINT
uint8_t byte, int digits) {
DCHECK(digits >= 0 && digits <= kBitsPerByte);
for (int i = 0; i < digits; i++) {
os << (((byte & (1 << i)) == 0) ? "0" : "1");
}
}
void Safepoint::DefinePointerRegister(Register reg) {
registers_->push_back(reg.code());
}
Safepoint SafepointTableBuilder::DefineSafepoint(
Assembler* assembler,
Safepoint::Kind kind,
Safepoint::DeoptMode deopt_mode) {
deoptimization_info_.push_back(
DeoptimizationInfo(zone_, assembler->pc_offset(), kind));
if (deopt_mode == Safepoint::kNoLazyDeopt) {
last_lazy_safepoint_ = deoptimization_info_.size();
}
DeoptimizationInfo& new_info = deoptimization_info_.back();
return Safepoint(new_info.indexes, new_info.registers);
}
void SafepointTableBuilder::RecordLazyDeoptimizationIndex(int index) {
for (auto it = deoptimization_info_.Find(last_lazy_safepoint_);
it != deoptimization_info_.end(); it++, last_lazy_safepoint_++) {
it->deopt_index = index;
}
}
unsigned SafepointTableBuilder::GetCodeOffset() const {
DCHECK(emitted_);
return offset_;
}
int SafepointTableBuilder::UpdateDeoptimizationInfo(int pc, int trampoline,
int start) {
int index = start;
for (auto it = deoptimization_info_.Find(start);
it != deoptimization_info_.end(); it++, index++) {
if (static_cast<int>(it->pc) == pc) {
it->trampoline = trampoline;
return index;
}
}
UNREACHABLE();
}
void SafepointTableBuilder::Emit(Assembler* assembler, int bits_per_entry) {
RemoveDuplicates();
// Make sure the safepoint table is properly aligned. Pad with nops.
assembler->Align(kIntSize);
assembler->RecordComment(";;; Safepoint table.");
offset_ = assembler->pc_offset();
// Take the register bits into account.
bits_per_entry += kNumSafepointRegisters;
// Compute the number of bytes per safepoint entry.
int bytes_per_entry =
RoundUp(bits_per_entry, kBitsPerByte) >> kBitsPerByteLog2;
// Emit the table header.
STATIC_ASSERT(SafepointTable::kLengthOffset == 0 * kIntSize);
STATIC_ASSERT(SafepointTable::kEntrySizeOffset == 1 * kIntSize);
STATIC_ASSERT(SafepointTable::kHeaderSize == 2 * kIntSize);
int length = static_cast<int>(deoptimization_info_.size());
assembler->dd(length);
assembler->dd(bytes_per_entry);
// Emit sorted table of pc offsets together with additional info (i.e. the
// deoptimization index or arguments count) and trampoline offsets.
STATIC_ASSERT(SafepointTable::kPcOffset == 0 * kIntSize);
STATIC_ASSERT(SafepointTable::kEncodedInfoOffset == 1 * kIntSize);
STATIC_ASSERT(SafepointTable::kTrampolinePcOffset == 2 * kIntSize);
STATIC_ASSERT(SafepointTable::kFixedEntrySize == 3 * kIntSize);
for (const DeoptimizationInfo& info : deoptimization_info_) {
assembler->dd(info.pc);
assembler->dd(EncodeExceptPC(info));
assembler->dd(info.trampoline);
}
// Emit table of bitmaps.
ZoneVector<uint8_t> bits(bytes_per_entry, 0, zone_);
for (const DeoptimizationInfo& info : deoptimization_info_) {
ZoneChunkList<int>* indexes = info.indexes;
ZoneChunkList<int>* registers = info.registers;
std::fill(bits.begin(), bits.end(), 0);
// Run through the registers (if any).
DCHECK(IsAligned(kNumSafepointRegisters, kBitsPerByte));
if (registers == nullptr) {
const int num_reg_bytes = kNumSafepointRegisters >> kBitsPerByteLog2;
for (int j = 0; j < num_reg_bytes; j++) {
bits[j] = SafepointTable::kNoRegisters;
}
} else {
for (int index : *registers) {
DCHECK(index >= 0 && index < kNumSafepointRegisters);
int byte_index = index >> kBitsPerByteLog2;
int bit_index = index & (kBitsPerByte - 1);
bits[byte_index] |= (1 << bit_index);
}
}
// Run through the indexes and build a bitmap.
for (int idx : *indexes) {
int index = bits_per_entry - 1 - idx;
int byte_index = index >> kBitsPerByteLog2;
int bit_index = index & (kBitsPerByte - 1);
bits[byte_index] |= (1U << bit_index);
}
// Emit the bitmap for the current entry.
for (int k = 0; k < bytes_per_entry; k++) {
assembler->db(bits[k]);
}
}
emitted_ = true;
}
uint32_t SafepointTableBuilder::EncodeExceptPC(const DeoptimizationInfo& info) {
return SafepointEntry::DeoptimizationIndexField::encode(info.deopt_index) |
SafepointEntry::SaveDoublesField::encode(info.has_doubles);
}
void SafepointTableBuilder::RemoveDuplicates() {
// If the table contains more than one entry, and all entries are identical
// (except for the pc), replace the whole table by a single entry with pc =
// kMaxUInt32. This especially compacts the table for wasm code without tagged
// pointers and without deoptimization info.
if (deoptimization_info_.size() < 2) return;
// Check that all entries (1, size] are identical to entry 0.
const DeoptimizationInfo& first_info = deoptimization_info_.front();
for (auto it = deoptimization_info_.Find(1); it != deoptimization_info_.end();
it++) {
if (!IsIdenticalExceptForPc(first_info, *it)) return;
}
// If we get here, all entries were identical. Rewind the list to just one
// entry, and set the pc to kMaxUInt32.
deoptimization_info_.Rewind(1);
deoptimization_info_.front().pc = kMaxUInt32;
}
bool SafepointTableBuilder::IsIdenticalExceptForPc(
const DeoptimizationInfo& info1, const DeoptimizationInfo& info2) const {
if (info1.has_doubles != info2.has_doubles) return false;
if (info1.deopt_index != info2.deopt_index) return false;
ZoneChunkList<int>* indexes1 = info1.indexes;
ZoneChunkList<int>* indexes2 = info2.indexes;
if (indexes1->size() != indexes2->size()) return false;
if (!std::equal(indexes1->begin(), indexes1->end(), indexes2->begin())) {
return false;
}
ZoneChunkList<int>* registers1 = info1.registers;
ZoneChunkList<int>* registers2 = info2.registers;
if (registers1) {
if (!registers2) return false;
if (registers1->size() != registers2->size()) return false;
if (!std::equal(registers1->begin(), registers1->end(),
registers2->begin())) {
return false;
}
} else if (registers2) {
return false;
}
return true;
}
} // namespace internal
} // namespace v8