v8/test/cctest/compiler/test-run-wasm-machops.cc
Ben L. Titzer c02f5e3ab3 [wasm] Store the globals_start in WasmContext.
This CL removes the code specialization for WASM functions that access
globals. Previously, we were embedding the start address of the globals
memory (globals_start) as a constant in the code, which required
patching for every instance. We now put this base in to the WasmContext,
which is available as a parameter to every WasmFunction.

R=ahaas@chromium.org,
CC=mtrofin@chromium.org

Bug: 
Change-Id: I04bb739e898cc5a3b7dd081cc166483022d113fd
Reviewed-on: https://chromium-review.googlesource.com/712595
Commit-Queue: Ben Titzer <titzer@chromium.org>
Reviewed-by: Mircea Trofin <mtrofin@chromium.org>
Reviewed-by: Andreas Haas <ahaas@chromium.org>
Reviewed-by: Bill Budge <bbudge@chromium.org>
Cr-Commit-Position: refs/heads/master@{#48581}
2017-10-16 09:35:47 +00:00

200 lines
7.7 KiB
C++

// Copyright 2016 the V8 project authors. All rights reserved. Use of this
// source code is governed by a BSD-style license that can be found in the
// LICENSE file.
#include <cmath>
#include <functional>
#include <limits>
#include "src/base/bits.h"
#include "src/base/utils/random-number-generator.h"
#include "src/codegen.h"
#include "src/objects-inl.h"
#include "src/wasm/wasm-objects.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/codegen-tester.h"
#include "test/cctest/compiler/graph-builder-tester.h"
#include "test/cctest/compiler/value-helper.h"
namespace v8 {
namespace internal {
namespace compiler {
static void UpdateFunctionTableSizeReferences(Handle<Code> code,
uint32_t old_size,
uint32_t new_size) {
Isolate* isolate = CcTest::i_isolate();
bool modified = false;
int mode_mask =
RelocInfo::ModeMask(RelocInfo::WASM_FUNCTION_TABLE_SIZE_REFERENCE);
for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) {
RelocInfo::Mode mode = it.rinfo()->rmode();
if (RelocInfo::IsWasmFunctionTableSizeReference(mode)) {
it.rinfo()->update_wasm_function_table_size_reference(isolate, old_size,
new_size);
modified = true;
}
}
if (modified) {
Assembler::FlushICache(isolate, code->instruction_start(),
code->instruction_size());
}
}
template <typename CType>
static void RunLoadStoreRelocation(MachineType rep) {
const int kNumElems = 2;
CType buffer[kNumElems];
CType new_buffer[kNumElems];
byte* raw = reinterpret_cast<byte*>(buffer);
byte* new_raw = reinterpret_cast<byte*>(new_buffer);
WasmContext wasm_context = {raw, sizeof(buffer), nullptr};
for (size_t i = 0; i < sizeof(buffer); i++) {
raw[i] = static_cast<byte>((i + sizeof(CType)) ^ 0xAA);
new_raw[i] = static_cast<byte>((i + sizeof(CType)) ^ 0xAA);
}
uint32_t OK = 0x29000;
RawMachineAssemblerTester<uint32_t> m;
Node* wasm_context_node =
m.RelocatableIntPtrConstant(reinterpret_cast<uintptr_t>(&wasm_context),
RelocInfo::WASM_CONTEXT_REFERENCE);
Node* offset = m.Int32Constant(offsetof(WasmContext, mem_start));
Node* base = m.Load(MachineType::UintPtr(), wasm_context_node, offset);
Node* base1 = m.IntPtrAdd(base, m.Int32Constant(sizeof(CType)));
Node* index = m.Int32Constant(0);
Node* load = m.Load(rep, base, index);
m.Store(rep.representation(), base1, index, load, kNoWriteBarrier);
m.Return(m.Int32Constant(OK));
CHECK(buffer[0] != buffer[1]);
CHECK_EQ(OK, m.Call());
CHECK(buffer[0] == buffer[1]);
wasm_context.mem_size = sizeof(new_buffer);
wasm_context.mem_start = new_raw;
CHECK(new_buffer[0] != new_buffer[1]);
CHECK_EQ(OK, m.Call());
CHECK(new_buffer[0] == new_buffer[1]);
}
TEST(RunLoadStoreRelocation) {
RunLoadStoreRelocation<int8_t>(MachineType::Int8());
RunLoadStoreRelocation<uint8_t>(MachineType::Uint8());
RunLoadStoreRelocation<int16_t>(MachineType::Int16());
RunLoadStoreRelocation<uint16_t>(MachineType::Uint16());
RunLoadStoreRelocation<int32_t>(MachineType::Int32());
RunLoadStoreRelocation<uint32_t>(MachineType::Uint32());
RunLoadStoreRelocation<void*>(MachineType::AnyTagged());
RunLoadStoreRelocation<float>(MachineType::Float32());
RunLoadStoreRelocation<double>(MachineType::Float64());
}
template <typename CType>
static void RunLoadStoreRelocationOffset(MachineType rep) {
RawMachineAssemblerTester<int32_t> r(MachineType::Int32());
const int kNumElems = 4;
CType buffer[kNumElems];
CType new_buffer[kNumElems + 1];
WasmContext wasm_context;
for (int32_t x = 0; x < kNumElems; x++) {
int32_t y = kNumElems - x - 1;
// initialize the buffer with raw data.
byte* raw = reinterpret_cast<byte*>(buffer);
wasm_context = {raw, sizeof(buffer), nullptr};
for (size_t i = 0; i < sizeof(buffer); i++) {
raw[i] = static_cast<byte>((i + sizeof(buffer)) ^ 0xAA);
}
RawMachineAssemblerTester<int32_t> m;
int32_t OK = 0x29000 + x;
Node* wasm_context_node =
m.RelocatableIntPtrConstant(reinterpret_cast<uintptr_t>(&wasm_context),
RelocInfo::WASM_CONTEXT_REFERENCE);
Node* offset = m.Int32Constant(offsetof(WasmContext, mem_start));
Node* base = m.Load(MachineType::UintPtr(), wasm_context_node, offset);
Node* index0 = m.IntPtrConstant(x * sizeof(buffer[0]));
Node* load = m.Load(rep, base, index0);
Node* index1 = m.IntPtrConstant(y * sizeof(buffer[0]));
m.Store(rep.representation(), base, index1, load, kNoWriteBarrier);
m.Return(m.Int32Constant(OK));
CHECK(buffer[x] != buffer[y]);
CHECK_EQ(OK, m.Call());
CHECK(buffer[x] == buffer[y]);
// Initialize new buffer and set old_buffer to 0
byte* new_raw = reinterpret_cast<byte*>(new_buffer);
for (size_t i = 0; i < sizeof(buffer); i++) {
raw[i] = 0;
new_raw[i] = static_cast<byte>((i + sizeof(buffer)) ^ 0xAA);
}
wasm_context.mem_size = sizeof(new_buffer);
wasm_context.mem_start = new_raw;
CHECK(new_buffer[x] != new_buffer[y]);
CHECK_EQ(OK, m.Call());
CHECK(new_buffer[x] == new_buffer[y]);
}
}
TEST(RunLoadStoreRelocationOffset) {
RunLoadStoreRelocationOffset<int8_t>(MachineType::Int8());
RunLoadStoreRelocationOffset<uint8_t>(MachineType::Uint8());
RunLoadStoreRelocationOffset<int16_t>(MachineType::Int16());
RunLoadStoreRelocationOffset<uint16_t>(MachineType::Uint16());
RunLoadStoreRelocationOffset<int32_t>(MachineType::Int32());
RunLoadStoreRelocationOffset<uint32_t>(MachineType::Uint32());
RunLoadStoreRelocationOffset<void*>(MachineType::AnyTagged());
RunLoadStoreRelocationOffset<float>(MachineType::Float32());
RunLoadStoreRelocationOffset<double>(MachineType::Float64());
}
TEST(Uint32LessThanMemoryRelocation) {
RawMachineAssemblerTester<uint32_t> m;
RawMachineLabel within_bounds, out_of_bounds;
WasmContext wasm_context = {reinterpret_cast<Address>(1234), 0x200, nullptr};
Node* index = m.Int32Constant(0x200);
Node* wasm_context_node =
m.RelocatableIntPtrConstant(reinterpret_cast<uintptr_t>(&wasm_context),
RelocInfo::WASM_CONTEXT_REFERENCE);
Node* offset = m.Int32Constant(offsetof(WasmContext, mem_size));
Node* limit = m.Load(MachineType::Uint32(), wasm_context_node, offset);
Node* cond = m.AddNode(m.machine()->Uint32LessThan(), index, limit);
m.Branch(cond, &within_bounds, &out_of_bounds);
m.Bind(&within_bounds);
m.Return(m.Int32Constant(0xaced));
m.Bind(&out_of_bounds);
m.Return(m.Int32Constant(0xdeadbeef));
// Check that index is out of bounds with current size
CHECK_EQ(0xdeadbeef, m.Call());
wasm_context.mem_size = 0x400;
// Check that after limit is increased, index is within bounds.
CHECK_EQ(0xacedu, m.Call());
}
TEST(Uint32LessThanFunctionTableRelocation) {
RawMachineAssemblerTester<uint32_t> m;
RawMachineLabel within_bounds, out_of_bounds;
Node* index = m.Int32Constant(0x200);
Node* limit = m.RelocatableInt32Constant(
0x200, RelocInfo::WASM_FUNCTION_TABLE_SIZE_REFERENCE);
Node* cond = m.AddNode(m.machine()->Uint32LessThan(), index, limit);
m.Branch(cond, &within_bounds, &out_of_bounds);
m.Bind(&within_bounds);
m.Return(m.Int32Constant(0xaced));
m.Bind(&out_of_bounds);
m.Return(m.Int32Constant(0xdeadbeef));
// Check that index is out of bounds with current size
CHECK_EQ(0xdeadbeef, m.Call());
m.GenerateCode();
Handle<Code> code = m.GetCode();
UpdateFunctionTableSizeReferences(code, 0x200, 0x400);
// Check that after limit is increased, index is within bounds.
CHECK_EQ(0xaced, m.Call());
}
} // namespace compiler
} // namespace internal
} // namespace v8