6df1aec62c
The flags are enabled by default and have stable coverage. This also removes the corresponding bots. Bug: v8:10315 Change-Id: Icce01383050dff758b6554db8e0c3589d6e5459c Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/2658324 Commit-Queue: Ulan Degenbaev <ulan@chromium.org> Reviewed-by: Dominik Inführ <dinfuehr@chromium.org> Reviewed-by: Michael Achenbach <machenbach@chromium.org> Cr-Commit-Position: refs/heads/master@{#72457}
263 lines
9.8 KiB
C++
263 lines
9.8 KiB
C++
// Copyright 2016 the V8 project authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "test/cctest/heap/heap-utils.h"
|
|
|
|
#include "src/base/platform/mutex.h"
|
|
#include "src/execution/isolate.h"
|
|
#include "src/heap/factory.h"
|
|
#include "src/heap/heap-inl.h"
|
|
#include "src/heap/incremental-marking.h"
|
|
#include "src/heap/mark-compact.h"
|
|
#include "src/heap/memory-chunk.h"
|
|
#include "src/heap/safepoint.h"
|
|
#include "test/cctest/cctest.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
namespace heap {
|
|
|
|
void InvokeScavenge(Isolate* isolate) {
|
|
CcTest::CollectGarbage(i::NEW_SPACE, isolate);
|
|
}
|
|
|
|
void InvokeMarkSweep(Isolate* isolate) { CcTest::CollectAllGarbage(isolate); }
|
|
|
|
void SealCurrentObjects(Heap* heap) {
|
|
// If you see this check failing, disable the flag at the start of your test:
|
|
// FLAG_stress_concurrent_allocation = false;
|
|
// Background thread allocating concurrently interferes with this function.
|
|
CHECK(!FLAG_stress_concurrent_allocation);
|
|
CcTest::CollectAllGarbage();
|
|
CcTest::CollectAllGarbage();
|
|
heap->mark_compact_collector()->EnsureSweepingCompleted();
|
|
heap->old_space()->FreeLinearAllocationArea();
|
|
for (Page* page : *heap->old_space()) {
|
|
page->MarkNeverAllocateForTesting();
|
|
}
|
|
}
|
|
|
|
int FixedArrayLenFromSize(int size) {
|
|
return std::min({(size - FixedArray::kHeaderSize) / kTaggedSize,
|
|
FixedArray::kMaxRegularLength});
|
|
}
|
|
|
|
std::vector<Handle<FixedArray>> FillOldSpacePageWithFixedArrays(Heap* heap,
|
|
int remainder) {
|
|
PauseAllocationObserversScope pause_observers(heap);
|
|
std::vector<Handle<FixedArray>> handles;
|
|
Isolate* isolate = heap->isolate();
|
|
const int kArraySize = 128;
|
|
const int kArrayLen = heap::FixedArrayLenFromSize(kArraySize);
|
|
Handle<FixedArray> array;
|
|
int allocated = 0;
|
|
do {
|
|
if (allocated + kArraySize * 2 >
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) {
|
|
int size =
|
|
kArraySize * 2 -
|
|
((allocated + kArraySize * 2) -
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage())) -
|
|
remainder;
|
|
int last_array_len = heap::FixedArrayLenFromSize(size);
|
|
array = isolate->factory()->NewFixedArray(last_array_len,
|
|
AllocationType::kOld);
|
|
CHECK_EQ(size, array->Size());
|
|
allocated += array->Size() + remainder;
|
|
} else {
|
|
array =
|
|
isolate->factory()->NewFixedArray(kArrayLen, AllocationType::kOld);
|
|
allocated += array->Size();
|
|
CHECK_EQ(kArraySize, array->Size());
|
|
}
|
|
if (handles.empty()) {
|
|
// Check that allocations started on a new page.
|
|
CHECK_EQ(array->address(), Page::FromHeapObject(*array)->area_start());
|
|
}
|
|
handles.push_back(array);
|
|
} while (allocated <
|
|
static_cast<int>(MemoryChunkLayout::AllocatableMemoryInDataPage()));
|
|
return handles;
|
|
}
|
|
|
|
std::vector<Handle<FixedArray>> CreatePadding(Heap* heap, int padding_size,
|
|
AllocationType allocation,
|
|
int object_size) {
|
|
std::vector<Handle<FixedArray>> handles;
|
|
Isolate* isolate = heap->isolate();
|
|
int allocate_memory;
|
|
int length;
|
|
int free_memory = padding_size;
|
|
if (allocation == i::AllocationType::kOld) {
|
|
heap->old_space()->FreeLinearAllocationArea();
|
|
int overall_free_memory = static_cast<int>(heap->old_space()->Available());
|
|
CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
|
|
} else {
|
|
int overall_free_memory = static_cast<int>(heap->new_space()->Available());
|
|
CHECK(padding_size <= overall_free_memory || overall_free_memory == 0);
|
|
}
|
|
while (free_memory > 0) {
|
|
if (free_memory > object_size) {
|
|
allocate_memory = object_size;
|
|
length = FixedArrayLenFromSize(allocate_memory);
|
|
} else {
|
|
allocate_memory = free_memory;
|
|
length = FixedArrayLenFromSize(allocate_memory);
|
|
if (length <= 0) {
|
|
// Not enough room to create another FixedArray, so create a filler.
|
|
if (allocation == i::AllocationType::kOld) {
|
|
heap->CreateFillerObjectAt(
|
|
*heap->old_space()->allocation_top_address(), free_memory,
|
|
ClearRecordedSlots::kNo);
|
|
} else {
|
|
heap->CreateFillerObjectAt(
|
|
*heap->new_space()->allocation_top_address(), free_memory,
|
|
ClearRecordedSlots::kNo);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
handles.push_back(isolate->factory()->NewFixedArray(length, allocation));
|
|
CHECK((allocation == AllocationType::kYoung &&
|
|
heap->new_space()->Contains(*handles.back())) ||
|
|
(allocation == AllocationType::kOld &&
|
|
heap->InOldSpace(*handles.back())));
|
|
free_memory -= handles.back()->Size();
|
|
}
|
|
return handles;
|
|
}
|
|
|
|
bool FillCurrentPage(v8::internal::NewSpace* space,
|
|
std::vector<Handle<FixedArray>>* out_handles) {
|
|
return heap::FillCurrentPageButNBytes(space, 0, out_handles);
|
|
}
|
|
|
|
bool FillCurrentPageButNBytes(v8::internal::NewSpace* space, int extra_bytes,
|
|
std::vector<Handle<FixedArray>>* out_handles) {
|
|
PauseAllocationObserversScope pause_observers(space->heap());
|
|
// We cannot rely on `space->limit()` to point to the end of the current page
|
|
// in the case where inline allocations are disabled, it actually points to
|
|
// the current allocation pointer.
|
|
DCHECK_IMPLIES(space->heap()->inline_allocation_disabled(),
|
|
space->limit() == space->top());
|
|
int space_remaining =
|
|
static_cast<int>(space->to_space().page_high() - space->top());
|
|
CHECK(space_remaining >= extra_bytes);
|
|
int new_linear_size = space_remaining - extra_bytes;
|
|
if (new_linear_size == 0) return false;
|
|
std::vector<Handle<FixedArray>> handles = heap::CreatePadding(
|
|
space->heap(), space_remaining, i::AllocationType::kYoung);
|
|
if (out_handles != nullptr) {
|
|
out_handles->insert(out_handles->end(), handles.begin(), handles.end());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void SimulateFullSpace(v8::internal::NewSpace* space,
|
|
std::vector<Handle<FixedArray>>* out_handles) {
|
|
// If you see this check failing, disable the flag at the start of your test:
|
|
// FLAG_stress_concurrent_allocation = false;
|
|
// Background thread allocating concurrently interferes with this function.
|
|
CHECK(!FLAG_stress_concurrent_allocation);
|
|
while (heap::FillCurrentPage(space, out_handles) || space->AddFreshPage()) {
|
|
}
|
|
}
|
|
|
|
void SimulateIncrementalMarking(i::Heap* heap, bool force_completion) {
|
|
const double kStepSizeInMs = 100;
|
|
CHECK(FLAG_incremental_marking);
|
|
i::IncrementalMarking* marking = heap->incremental_marking();
|
|
i::MarkCompactCollector* collector = heap->mark_compact_collector();
|
|
if (collector->sweeping_in_progress()) {
|
|
SafepointScope scope(heap);
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
CHECK(marking->IsMarking() || marking->IsStopped() || marking->IsComplete());
|
|
if (marking->IsStopped()) {
|
|
heap->StartIncrementalMarking(i::Heap::kNoGCFlags,
|
|
i::GarbageCollectionReason::kTesting);
|
|
}
|
|
CHECK(marking->IsMarking() || marking->IsComplete());
|
|
if (!force_completion) return;
|
|
|
|
while (!marking->IsComplete()) {
|
|
marking->Step(kStepSizeInMs, i::IncrementalMarking::NO_GC_VIA_STACK_GUARD,
|
|
i::StepOrigin::kV8);
|
|
if (marking->IsReadyToOverApproximateWeakClosure()) {
|
|
SafepointScope scope(heap);
|
|
marking->FinalizeIncrementally();
|
|
}
|
|
}
|
|
CHECK(marking->IsComplete());
|
|
}
|
|
|
|
void SimulateFullSpace(v8::internal::PagedSpace* space) {
|
|
// If you see this check failing, disable the flag at the start of your test:
|
|
// FLAG_stress_concurrent_allocation = false;
|
|
// Background thread allocating concurrently interferes with this function.
|
|
CHECK(!FLAG_stress_concurrent_allocation);
|
|
CodeSpaceMemoryModificationScope modification_scope(space->heap());
|
|
i::MarkCompactCollector* collector = space->heap()->mark_compact_collector();
|
|
if (collector->sweeping_in_progress()) {
|
|
collector->EnsureSweepingCompleted();
|
|
}
|
|
space->FreeLinearAllocationArea();
|
|
space->ResetFreeList();
|
|
}
|
|
|
|
void AbandonCurrentlyFreeMemory(PagedSpace* space) {
|
|
space->FreeLinearAllocationArea();
|
|
for (Page* page : *space) {
|
|
page->MarkNeverAllocateForTesting();
|
|
}
|
|
}
|
|
|
|
void GcAndSweep(Heap* heap, AllocationSpace space) {
|
|
heap->CollectGarbage(space, GarbageCollectionReason::kTesting);
|
|
if (heap->mark_compact_collector()->sweeping_in_progress()) {
|
|
SafepointScope scope(heap);
|
|
heap->mark_compact_collector()->EnsureSweepingCompleted();
|
|
}
|
|
}
|
|
|
|
void ForceEvacuationCandidate(Page* page) {
|
|
CHECK(FLAG_manual_evacuation_candidates_selection);
|
|
page->SetFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING);
|
|
PagedSpace* space = static_cast<PagedSpace*>(page->owner());
|
|
DCHECK_NOT_NULL(space);
|
|
Address top = space->top();
|
|
Address limit = space->limit();
|
|
if (top < limit && Page::FromAllocationAreaAddress(top) == page) {
|
|
// Create filler object to keep page iterable if it was iterable.
|
|
int remaining = static_cast<int>(limit - top);
|
|
space->heap()->CreateFillerObjectAt(top, remaining,
|
|
ClearRecordedSlots::kNo);
|
|
base::MutexGuard guard(space->mutex());
|
|
space->FreeLinearAllocationArea();
|
|
}
|
|
}
|
|
|
|
bool InCorrectGeneration(HeapObject object) {
|
|
return FLAG_single_generation ? !i::Heap::InYoungGeneration(object)
|
|
: i::Heap::InYoungGeneration(object);
|
|
}
|
|
|
|
void GrowNewSpace(Heap* heap) {
|
|
SafepointScope scope(heap);
|
|
if (!heap->new_space()->IsAtMaximumCapacity()) {
|
|
heap->new_space()->Grow();
|
|
}
|
|
}
|
|
|
|
void GrowNewSpaceToMaximumCapacity(Heap* heap) {
|
|
SafepointScope scope(heap);
|
|
while (!heap->new_space()->IsAtMaximumCapacity()) {
|
|
heap->new_space()->Grow();
|
|
}
|
|
}
|
|
|
|
} // namespace heap
|
|
} // namespace internal
|
|
} // namespace v8
|