v8/test/mjsunit/wasm/atomics64-stress.js
Clemens Backes 421fd3929d [wasm] Rename {Get,Set,Tee}Local to Local{Get,Set,Tee}
This brings our constants back in line with the changed spec text. We
already use kExprTableGet and kExprTableSet, but for locals and globals
we still use the old wording.

This renaming is mostly mechanical.

PS1 was created using:
ag -l 'kExpr(Get|Set|Tee)Local' src test | \
  xargs -L1 sed -E 's/kExpr(Get|Set|Tee)Local\b/kExprLocal\1/g' -i

PS2 contains manual fixes.

R=mstarzinger@chromium.org

Bug: v8:9810
Change-Id: I1617f1b2a100685a3bf56218e76845a9481959c5
Reviewed-on: https://chromium-review.googlesource.com/c/v8/v8/+/1847354
Reviewed-by: Michael Starzinger <mstarzinger@chromium.org>
Commit-Queue: Clemens Backes <clemensb@chromium.org>
Cr-Commit-Position: refs/heads/master@{#64161}
2019-10-08 14:14:40 +00:00

550 lines
16 KiB
JavaScript

// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Flags: --experimental-wasm-threads
// This test might time out if the search space for a sequential
// interleaving becomes to large. However, it should never fail.
// Note that results of this test are flaky by design. While the test is
// deterministic with a fixed seed, bugs may introduce non-determinism.
load('test/mjsunit/wasm/wasm-module-builder.js');
const kDebug = false;
const kSequenceLength = 256;
const kNumberOfWorker = 4;
const kNumberOfSteps = 10000000;
const kFirstOpcodeWithInput = 4;
const kFirstOpcodeWithoutOutput = 4;
const kLastOpcodeWithoutOutput = 7;
const opCodes = [
kExprI64AtomicLoad, kExprI64AtomicLoad8U, kExprI64AtomicLoad16U,
kExprI64AtomicLoad32U, kExprI64AtomicStore, kExprI64AtomicStore8U,
kExprI64AtomicStore16U, kExprI64AtomicStore32U, kExprI64AtomicAdd,
kExprI64AtomicAdd8U, kExprI64AtomicAdd16U, kExprI64AtomicAdd32U,
kExprI64AtomicSub, kExprI64AtomicSub8U, kExprI64AtomicSub16U,
kExprI64AtomicSub32U, kExprI64AtomicAnd, kExprI64AtomicAnd8U,
kExprI64AtomicAnd16U, kExprI64AtomicAnd32U, kExprI64AtomicOr,
kExprI64AtomicOr8U, kExprI64AtomicOr16U, kExprI64AtomicOr32U,
kExprI64AtomicXor, kExprI64AtomicXor8U, kExprI64AtomicXor16U,
kExprI64AtomicXor32U, kExprI64AtomicExchange, kExprI64AtomicExchange8U,
kExprI64AtomicExchange16U, kExprI64AtomicExchange32U
];
const opCodeNames = [
'kExprI64AtomicLoad', 'kExprI64AtomicLoad8U',
'kExprI64AtomicLoad16U', 'kExprI64AtomicLoad32U',
'kExprI64AtomicStore', 'kExprI64AtomicStore8U',
'kExprI64AtomicStore16U', 'kExprI64AtomicStore32U',
'kExprI64AtomicAdd', 'kExprI64AtomicAdd8U',
'kExprI64AtomicAdd16U', 'kExprI64AtomicAdd32U',
'kExprI64AtomicSub', 'kExprI64AtomicSub8U',
'kExprI64AtomicSub16U', 'kExprI64AtomicSub32U',
'kExprI64AtomicAnd', 'kExprI64AtomicAnd8U',
'kExprI64AtomicAnd16U', 'kExprI64AtomicAnd32U',
'kExprI64AtomicOr', 'kExprI64AtomicOr8U',
'kExprI64AtomicOr16U', 'kExprI64AtomicOr32U',
'kExprI64AtomicXor', 'kExprI64AtomicXor8U',
'kExprI64AtomicXor16U', 'kExprI64AtomicXor32U',
'kExprI64AtomicExchange', 'kExprI64AtomicExchange8U',
'kExprI64AtomicExchange16U', 'kExprI64AtomicExchange32U'
];
let kMaxMemPages = 10;
let gSharedMemory =
new WebAssembly.Memory({initial: 1, maximum: kMaxMemPages, shared: true});
let gSharedMemoryView = new Int32Array(gSharedMemory.buffer);
let gPrivateMemory =
new WebAssembly.Memory({initial: 1, maximum: kMaxMemPages, shared: true});
let gPrivateMemoryView = new Int32Array(gPrivateMemory.buffer);
const kMaxInt32 = (1 << 31) * 2;
class Operation {
constructor(opcode, low_input, high_input, offset) {
this.opcode = opcode != undefined ? opcode : Operation.nextOpcode();
this.size = Operation.opcodeToSize(this.opcode);
if (low_input == undefined) {
[low_input, high_input] = Operation.inputForSize(this.size);
}
this.low_input = low_input;
this.high_input = high_input;
this.offset =
offset != undefined ? offset : Operation.offsetForSize(this.size);
}
static nextOpcode() {
let random = Math.random();
return Math.floor(random * opCodes.length);
}
static opcodeToSize(opcode) {
// Instructions are ordered in 64, 8, 16, 32 bits size
return [64, 8, 16, 32][opcode % 4];
}
static opcodeToAlignment(opcode) {
// Instructions are ordered in 64, 8, 16, 32 bits size
return [3, 0, 1, 2][opcode % 4];
}
static inputForSize(size) {
if (size <= 32) {
let random = Math.random();
// Avoid 32 bit overflow for integer here :(
return [Math.floor(random * (1 << (size - 1)) * 2), 0];
}
return [
Math.floor(Math.random() * kMaxInt32),
Math.floor(Math.random() * kMaxInt32)
];
}
static offsetForSize(size) {
// Pick an offset in bytes between 0 and 8.
let offset = Math.floor(Math.random() * 8);
// Make sure the offset matches the required alignment by masking out the
// lower bits.
let size_in_bytes = size / 8;
let mask = ~(size_in_bytes - 1);
return offset & mask;
}
get wasmOpcode() {
// [opcode, alignment, offset]
return [
opCodes[this.opcode], Operation.opcodeToAlignment(this.opcode),
this.offset
];
}
get hasInput() {
return this.opcode >= kFirstOpcodeWithInput;
}
get hasOutput() {
return this.opcode < kFirstOpcodeWithoutOutput ||
this.opcode > kLastOpcodeWithoutOutput;
}
truncateResultBits(low, high) {
if (this.size == 64)
return [low, high]
// Shift the lower part. For offsets greater four it drops out of the
// visible window.
let shiftedL = this.offset >= 4 ? 0 : low >>> (this.offset * 8);
// The higher part is zero for offset 0, left shifted for [1..3] and right
// shifted for [4..7].
let shiftedH = this.offset == 0 ?
0 :
this.offset >= 4 ? high >>> (this.offset - 4) * 8 :
high << ((4 - this.offset) * 8);
let value = shiftedL | shiftedH;
switch (this.size) {
case 8:
return [value & 0xFF, 0];
case 16:
return [value & 0xFFFF, 0];
case 32:
return [value, 0];
default:
throw 'Unexpected size: ' + this.size;
}
}
static get builder() {
if (!Operation.__builder) {
let builder = new WasmModuleBuilder();
builder.addImportedMemory('m', 'imported_mem', 0, kMaxMemPages, 'shared');
Operation.__builder = builder;
}
return Operation.__builder;
}
static get exports() {
if (!Operation.__instance) {
return {};
}
return Operation.__instance.exports;
}
static get memory() {
return Operation.exports.mem;
}
static set instance(instance) {
Operation.__instance = instance;
}
compute(state) {
let evalFun = Operation.exports[this.key];
if (!evalFun) {
let builder = Operation.builder;
let body = [
// Load address of low 32 bits.
kExprI32Const, 0,
// Load expected value.
kExprLocalGet, 0, kExprI32StoreMem, 2, 0,
// Load address of high 32 bits.
kExprI32Const, 4,
// Load expected value.
kExprLocalGet, 1, kExprI32StoreMem, 2, 0,
// Load address of where our window starts.
kExprI32Const, 0,
// Load input if there is one.
...(this.hasInput ?
[
kExprLocalGet, 3, kExprI64UConvertI32, kExprI64Const, 32,
kExprI64Shl, kExprLocalGet, 2, kExprI64UConvertI32,
kExprI64Ior
] :
[]),
// Perform operation.
kAtomicPrefix, ...this.wasmOpcode,
// Drop output if it had any.
...(this.hasOutput ? [kExprDrop] : []),
// Return.
kExprReturn
]
builder.addFunction(this.key, kSig_v_iiii)
.addBody(body)
.exportAs(this.key);
// Instantiate module, get function exports.
let module = new WebAssembly.Module(builder.toBuffer());
Operation.instance =
new WebAssembly.Instance(module, {m: {imported_mem: gPrivateMemory}});
evalFun = Operation.exports[this.key];
}
evalFun(state.low, state.high, this.low_input, this.high_input);
let ta = gPrivateMemoryView;
if (kDebug) {
print(
state.high + ':' + state.low + ' ' + this.toString() + ' -> ' +
ta[1] + ':' + ta[0]);
}
return {low: ta[0], high: ta[1]};
}
toString() {
return opCodeNames[this.opcode] + '[+' + this.offset + '] ' +
this.high_input + ':' + this.low_input;
}
get key() {
return this.opcode + '-' + this.offset;
}
}
class State {
constructor(low, high, indices, count) {
this.low = low;
this.high = high;
this.indices = indices;
this.count = count;
}
isFinal() {
return (this.count == kNumberOfWorker * kSequenceLength);
}
toString() {
return this.high + ':' + this.low + ' @ ' + this.indices;
}
}
function makeSequenceOfOperations(size) {
let result = new Array(size);
for (let i = 0; i < size; i++) {
result[i] = new Operation();
}
return result;
}
function toSLeb128(low, high) {
let result = [];
while (true) {
let v = low & 0x7f;
// For low, fill up with zeros, high will add extra bits.
low = low >>> 7;
if (high != 0) {
let shiftIn = high << (32 - 7);
low = low | shiftIn;
// For high, fill up with ones, so that we keep trailing one.
high = high >> 7;
}
let msbIsSet = (v & 0x40) || false;
if (((low == 0) && (high == 0) && !msbIsSet) ||
((low == -1) && (high == -1) && msbIsSet)) {
result.push(v);
break;
}
result.push(v | 0x80);
}
return result;
}
function generateFunctionBodyForSequence(sequence) {
// We expect the int64* to perform ops on as arg 0 and
// the int64* for our value log as arg1. Argument 2 gives
// an int32* we use to count down spinning workers.
let body = [];
// Initially, we spin until all workers start running.
if (!kDebug) {
body.push(
// Decrement the wait count.
kExprLocalGet, 2, kExprI32Const, 1, kAtomicPrefix, kExprI32AtomicSub, 2,
0,
// Spin until zero.
kExprLoop, kWasmStmt, kExprLocalGet, 2, kAtomicPrefix,
kExprI32AtomicLoad, 2, 0, kExprI32Const, 0, kExprI32GtU, kExprBrIf, 0,
kExprEnd);
}
for (let operation of sequence) {
body.push(
// Pre-load address of results sequence pointer for later.
kExprLocalGet, 1,
// Load address where atomic pointers are stored.
kExprLocalGet, 0,
// Load the second argument if it had any.
...(operation.hasInput ?
[
kExprI64Const,
...toSLeb128(operation.low_input, operation.high_input)
] :
[]),
// Perform operation
kAtomicPrefix, ...operation.wasmOpcode,
// Generate fake output in needed.
...(operation.hasOutput ? [] : [kExprI64Const, 0]),
// Store read intermediate to sequence.
kExprI64StoreMem, 3, 0,
// Increment result sequence pointer.
kExprLocalGet, 1, kExprI32Const, 8, kExprI32Add, kExprLocalSet, 1);
}
// Return end of sequence index.
body.push(kExprLocalGet, 1, kExprReturn);
return body;
}
function getSequence(start, end) {
return new Int32Array(
gSharedMemory.buffer, start,
(end - start) / Int32Array.BYTES_PER_ELEMENT);
}
function spawnWorkers() {
let workers = [];
for (let i = 0; i < kNumberOfWorker; i++) {
let worker = new Worker(
`onmessage = function(msg) {
if (msg.module) {
let module = msg.module;
let mem = msg.mem;
this.instance = new WebAssembly.Instance(module, {m: {imported_mem: mem}});
postMessage({instantiated: true});
} else {
let address = msg.address;
let sequence = msg.sequence;
let index = msg.index;
let spin = msg.spin;
let result = instance.exports["worker" + index](address, sequence, spin);
postMessage({index: index, sequence: sequence, result: result});
}
}`,
{type: 'string'});
workers.push(worker);
}
return workers;
}
function instantiateModuleInWorkers(workers) {
for (let worker of workers) {
worker.postMessage({module: module, mem: gSharedMemory});
let msg = worker.getMessage();
if (!msg.instantiated) throw 'Worker failed to instantiate';
}
}
function executeSequenceInWorkers(workers) {
for (i = 0; i < workers.length; i++) {
let worker = workers[i];
worker.postMessage({
index: i,
address: 0,
spin: 16,
sequence: 32 + ((kSequenceLength * 8) + 32) * i
});
// In debug mode, keep execution sequential.
if (kDebug) {
let msg = worker.getMessage();
results[msg.index] = getSequence(msg.sequence, msg.result);
}
}
}
function selectMatchingWorkers(state) {
let matching = [];
let indices = state.indices;
for (let i = 0; i < indices.length; i++) {
let index = indices[i];
if (index >= kSequenceLength) continue;
// We need to project the expected value to the number of bits this
// operation will read at runtime.
let [expected_low, expected_high] =
sequences[i][index].truncateResultBits(state.low, state.high);
let hasOutput = sequences[i][index].hasOutput;
if (!hasOutput ||
((results[i][index * 2] == expected_low) &&
(results[i][index * 2 + 1] == expected_high))) {
matching.push(i);
}
}
return matching;
}
function computeNextState(state, advanceIdx) {
let newIndices = state.indices.slice();
let sequence = sequences[advanceIdx];
let operation = sequence[state.indices[advanceIdx]];
newIndices[advanceIdx]++;
let {low, high} = operation.compute(state);
return new State(low, high, newIndices, state.count + 1);
}
function findSequentialOrdering() {
let startIndices = new Array(results.length);
let steps = 0;
startIndices.fill(0);
let matchingStates = [new State(0, 0, startIndices, 0)];
while (matchingStates.length > 0) {
let current = matchingStates.pop();
if (kDebug) {
print(current);
}
let matchingResults = selectMatchingWorkers(current);
if (matchingResults.length == 0) {
continue;
}
for (let match of matchingResults) {
let newState = computeNextState(current, match);
if (newState.isFinal()) {
return true;
}
matchingStates.push(newState);
}
if (steps++ > kNumberOfSteps) {
print('Search timed out, aborting...');
return true;
}
}
// We have no options left.
return false;
}
// Helpful for debugging failed tests.
function loadSequencesFromStrings(inputs) {
let reverseOpcodes = {};
for (let i = 0; i < opCodeNames.length; i++) {
reverseOpcodes[opCodeNames[i]] = i;
}
let sequences = [];
let parseRE = /([a-zA-Z0-9]*)\[\+([0-9])\] ([\-0-9]*)/;
for (let input of inputs) {
let parts = input.split(',');
let sequence = [];
for (let part of parts) {
let parsed = parseRE.exec(part);
sequence.push(
new Operation(reverseOpcodes[parsed[1]], parsed[3], parsed[2] | 0));
}
sequences.push(sequence);
}
return sequences;
}
// Helpful for debugging failed tests.
function loadResultsFromStrings(inputs) {
let results = [];
for (let input of inputs) {
let parts = input.split(',');
let result = [];
for (let number of parts) {
result.push(number | 0);
}
results.push(result);
}
return results;
}
let sequences = [];
let results = [];
let builder = new WasmModuleBuilder();
builder.addImportedMemory('m', 'imported_mem', 0, kMaxMemPages, 'shared');
for (let i = 0; i < kNumberOfWorker; i++) {
sequences[i] = makeSequenceOfOperations(kSequenceLength);
builder.addFunction('worker' + i, kSig_i_iii)
.addBody(generateFunctionBodyForSequence(sequences[i]))
.exportAs('worker' + i);
}
// Instantiate module, get function exports.
let module = new WebAssembly.Module(builder.toBuffer());
let instance =
new WebAssembly.Instance(module, {m: {imported_mem: gSharedMemory}});
// Spawn off the workers and run the sequences.
let workers = spawnWorkers();
// Set spin count.
gSharedMemoryView[4] = kNumberOfWorker;
instantiateModuleInWorkers(workers);
executeSequenceInWorkers(workers);
if (!kDebug) {
// Collect results, d8 style.
for (let worker of workers) {
let msg = worker.getMessage();
results[msg.index] = getSequence(msg.sequence, msg.result);
}
}
// Terminate all workers.
for (let worker of workers) {
worker.terminate();
}
// In debug mode, print sequences and results.
if (kDebug) {
for (let result of results) {
print(result);
}
for (let sequence of sequences) {
print(sequence);
}
}
// Try to reconstruct a sequential ordering.
let passed = findSequentialOrdering();
if (passed) {
print('PASS');
} else {
for (let i = 0; i < kNumberOfWorker; i++) {
print('Worker ' + i);
print(sequences[i]);
print(results[i]);
}
print('FAIL');
quit(-1);
}