1b9c319da2
BUG= Review URL: https://chromiumcodereview.appspot.com/10944011 git-svn-id: http://v8.googlecode.com/svn/branches/bleeding_edge@12542 ce2b1a6d-e550-0410-aec6-3dcde31c8c00
1068 lines
38 KiB
C++
1068 lines
38 KiB
C++
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "v8.h"
|
|
|
|
#include "accessors.h"
|
|
#include "api.h"
|
|
#include "arguments.h"
|
|
#include "bootstrapper.h"
|
|
#include "compiler.h"
|
|
#include "debug.h"
|
|
#include "execution.h"
|
|
#include "global-handles.h"
|
|
#include "natives.h"
|
|
#include "runtime.h"
|
|
#include "string-search.h"
|
|
#include "stub-cache.h"
|
|
#include "vm-state-inl.h"
|
|
|
|
namespace v8 {
|
|
namespace internal {
|
|
|
|
|
|
int HandleScope::NumberOfHandles() {
|
|
Isolate* isolate = Isolate::Current();
|
|
HandleScopeImplementer* impl = isolate->handle_scope_implementer();
|
|
int n = impl->blocks()->length();
|
|
if (n == 0) return 0;
|
|
return ((n - 1) * kHandleBlockSize) + static_cast<int>(
|
|
(isolate->handle_scope_data()->next - impl->blocks()->last()));
|
|
}
|
|
|
|
|
|
Object** HandleScope::Extend() {
|
|
Isolate* isolate = Isolate::Current();
|
|
v8::ImplementationUtilities::HandleScopeData* current =
|
|
isolate->handle_scope_data();
|
|
|
|
Object** result = current->next;
|
|
|
|
ASSERT(result == current->limit);
|
|
// Make sure there's at least one scope on the stack and that the
|
|
// top of the scope stack isn't a barrier.
|
|
if (current->level == 0) {
|
|
Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
|
|
"Cannot create a handle without a HandleScope");
|
|
return NULL;
|
|
}
|
|
HandleScopeImplementer* impl = isolate->handle_scope_implementer();
|
|
// If there's more room in the last block, we use that. This is used
|
|
// for fast creation of scopes after scope barriers.
|
|
if (!impl->blocks()->is_empty()) {
|
|
Object** limit = &impl->blocks()->last()[kHandleBlockSize];
|
|
if (current->limit != limit) {
|
|
current->limit = limit;
|
|
ASSERT(limit - current->next < kHandleBlockSize);
|
|
}
|
|
}
|
|
|
|
// If we still haven't found a slot for the handle, we extend the
|
|
// current handle scope by allocating a new handle block.
|
|
if (result == current->limit) {
|
|
// If there's a spare block, use it for growing the current scope.
|
|
result = impl->GetSpareOrNewBlock();
|
|
// Add the extension to the global list of blocks, but count the
|
|
// extension as part of the current scope.
|
|
impl->blocks()->Add(result);
|
|
current->limit = &result[kHandleBlockSize];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void HandleScope::DeleteExtensions(Isolate* isolate) {
|
|
ASSERT(isolate == Isolate::Current());
|
|
v8::ImplementationUtilities::HandleScopeData* current =
|
|
isolate->handle_scope_data();
|
|
isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
|
|
}
|
|
|
|
|
|
void HandleScope::ZapRange(Object** start, Object** end) {
|
|
ASSERT(end - start <= kHandleBlockSize);
|
|
for (Object** p = start; p != end; p++) {
|
|
*reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
|
|
}
|
|
}
|
|
|
|
|
|
Address HandleScope::current_level_address() {
|
|
return reinterpret_cast<Address>(
|
|
&Isolate::Current()->handle_scope_data()->level);
|
|
}
|
|
|
|
|
|
Address HandleScope::current_next_address() {
|
|
return reinterpret_cast<Address>(
|
|
&Isolate::Current()->handle_scope_data()->next);
|
|
}
|
|
|
|
|
|
Address HandleScope::current_limit_address() {
|
|
return reinterpret_cast<Address>(
|
|
&Isolate::Current()->handle_scope_data()->limit);
|
|
}
|
|
|
|
|
|
Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
|
|
Handle<JSArray> array) {
|
|
CALL_HEAP_FUNCTION(content->GetIsolate(),
|
|
content->AddKeysFromJSArray(*array), FixedArray);
|
|
}
|
|
|
|
|
|
Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
|
|
Handle<FixedArray> second) {
|
|
CALL_HEAP_FUNCTION(first->GetIsolate(),
|
|
first->UnionOfKeys(*second), FixedArray);
|
|
}
|
|
|
|
|
|
Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
|
|
Handle<JSFunction> constructor,
|
|
Handle<JSGlobalProxy> global) {
|
|
CALL_HEAP_FUNCTION(
|
|
constructor->GetIsolate(),
|
|
constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global),
|
|
JSGlobalProxy);
|
|
}
|
|
|
|
|
|
void SetExpectedNofProperties(Handle<JSFunction> func, int nof) {
|
|
// If objects constructed from this function exist then changing
|
|
// 'estimated_nof_properties' is dangerous since the previous value might
|
|
// have been compiled into the fast construct stub. More over, the inobject
|
|
// slack tracking logic might have adjusted the previous value, so even
|
|
// passing the same value is risky.
|
|
if (func->shared()->live_objects_may_exist()) return;
|
|
|
|
func->shared()->set_expected_nof_properties(nof);
|
|
if (func->has_initial_map()) {
|
|
Handle<Map> new_initial_map =
|
|
func->GetIsolate()->factory()->CopyMap(
|
|
Handle<Map>(func->initial_map()));
|
|
new_initial_map->set_unused_property_fields(nof);
|
|
func->set_initial_map(*new_initial_map);
|
|
}
|
|
}
|
|
|
|
|
|
void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) {
|
|
CALL_HEAP_FUNCTION_VOID(func->GetIsolate(),
|
|
func->SetPrototype(*value));
|
|
}
|
|
|
|
|
|
static int ExpectedNofPropertiesFromEstimate(int estimate) {
|
|
// If no properties are added in the constructor, they are more likely
|
|
// to be added later.
|
|
if (estimate == 0) estimate = 2;
|
|
|
|
// We do not shrink objects that go into a snapshot (yet), so we adjust
|
|
// the estimate conservatively.
|
|
if (Serializer::enabled()) return estimate + 2;
|
|
|
|
// Inobject slack tracking will reclaim redundant inobject space later,
|
|
// so we can afford to adjust the estimate generously.
|
|
if (FLAG_clever_optimizations) {
|
|
return estimate + 8;
|
|
} else {
|
|
return estimate + 3;
|
|
}
|
|
}
|
|
|
|
|
|
void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
|
|
int estimate) {
|
|
// See the comment in SetExpectedNofProperties.
|
|
if (shared->live_objects_may_exist()) return;
|
|
|
|
shared->set_expected_nof_properties(
|
|
ExpectedNofPropertiesFromEstimate(estimate));
|
|
}
|
|
|
|
|
|
void FlattenString(Handle<String> string) {
|
|
CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten());
|
|
}
|
|
|
|
|
|
Handle<String> FlattenGetString(Handle<String> string) {
|
|
CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String);
|
|
}
|
|
|
|
|
|
Handle<Object> SetPrototype(Handle<JSFunction> function,
|
|
Handle<Object> prototype) {
|
|
ASSERT(function->should_have_prototype());
|
|
CALL_HEAP_FUNCTION(function->GetIsolate(),
|
|
Accessors::FunctionSetPrototype(*function,
|
|
*prototype,
|
|
NULL),
|
|
Object);
|
|
}
|
|
|
|
|
|
Handle<Object> SetProperty(Handle<Object> object,
|
|
Handle<Object> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode) {
|
|
Isolate* isolate = Isolate::Current();
|
|
CALL_HEAP_FUNCTION(
|
|
isolate,
|
|
Runtime::SetObjectProperty(
|
|
isolate, object, key, value, attributes, strict_mode),
|
|
Object);
|
|
}
|
|
|
|
|
|
Handle<Object> ForceSetProperty(Handle<JSObject> object,
|
|
Handle<Object> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
CALL_HEAP_FUNCTION(
|
|
isolate,
|
|
Runtime::ForceSetObjectProperty(
|
|
isolate, object, key, value, attributes),
|
|
Object);
|
|
}
|
|
|
|
|
|
Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
|
|
Handle<Object> key) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
CALL_HEAP_FUNCTION(isolate,
|
|
Runtime::ForceDeleteObjectProperty(isolate, object, key),
|
|
Object);
|
|
}
|
|
|
|
|
|
Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object,
|
|
Handle<String> key,
|
|
Handle<Object> value,
|
|
PropertyAttributes attributes,
|
|
StrictModeFlag strict_mode) {
|
|
CALL_HEAP_FUNCTION(object->GetIsolate(),
|
|
object->SetPropertyWithInterceptor(*key,
|
|
*value,
|
|
attributes,
|
|
strict_mode),
|
|
Object);
|
|
}
|
|
|
|
|
|
Handle<Object> GetProperty(Handle<JSReceiver> obj,
|
|
const char* name) {
|
|
Isolate* isolate = obj->GetIsolate();
|
|
Handle<String> str = isolate->factory()->LookupAsciiSymbol(name);
|
|
CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object);
|
|
}
|
|
|
|
|
|
Handle<Object> GetProperty(Handle<Object> obj,
|
|
Handle<Object> key) {
|
|
Isolate* isolate = Isolate::Current();
|
|
CALL_HEAP_FUNCTION(isolate,
|
|
Runtime::GetObjectProperty(isolate, obj, key), Object);
|
|
}
|
|
|
|
|
|
Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver,
|
|
Handle<JSObject> holder,
|
|
Handle<String> name,
|
|
PropertyAttributes* attributes) {
|
|
Isolate* isolate = receiver->GetIsolate();
|
|
CALL_HEAP_FUNCTION(isolate,
|
|
holder->GetPropertyWithInterceptor(*receiver,
|
|
*name,
|
|
attributes),
|
|
Object);
|
|
}
|
|
|
|
|
|
Handle<Object> SetPrototype(Handle<JSObject> obj, Handle<Object> value) {
|
|
const bool skip_hidden_prototypes = false;
|
|
CALL_HEAP_FUNCTION(obj->GetIsolate(),
|
|
obj->SetPrototype(*value, skip_hidden_prototypes), Object);
|
|
}
|
|
|
|
|
|
Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) {
|
|
Isolate* isolate = Isolate::Current();
|
|
CALL_HEAP_FUNCTION(
|
|
isolate,
|
|
isolate->heap()->LookupSingleCharacterStringFromCode(index), Object);
|
|
}
|
|
|
|
|
|
Handle<String> SubString(Handle<String> str,
|
|
int start,
|
|
int end,
|
|
PretenureFlag pretenure) {
|
|
CALL_HEAP_FUNCTION(str->GetIsolate(),
|
|
str->SubString(start, end, pretenure), String);
|
|
}
|
|
|
|
|
|
Handle<JSObject> Copy(Handle<JSObject> obj) {
|
|
Isolate* isolate = obj->GetIsolate();
|
|
CALL_HEAP_FUNCTION(isolate,
|
|
isolate->heap()->CopyJSObject(*obj), JSObject);
|
|
}
|
|
|
|
|
|
Handle<Object> SetAccessor(Handle<JSObject> obj, Handle<AccessorInfo> info) {
|
|
CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DefineAccessor(*info), Object);
|
|
}
|
|
|
|
|
|
// Wrappers for scripts are kept alive and cached in weak global
|
|
// handles referred from foreign objects held by the scripts as long as
|
|
// they are used. When they are not used anymore, the garbage
|
|
// collector will call the weak callback on the global handle
|
|
// associated with the wrapper and get rid of both the wrapper and the
|
|
// handle.
|
|
static void ClearWrapperCache(Persistent<v8::Value> handle, void*) {
|
|
Handle<Object> cache = Utils::OpenHandle(*handle);
|
|
JSValue* wrapper = JSValue::cast(*cache);
|
|
Foreign* foreign = Script::cast(wrapper->value())->wrapper();
|
|
ASSERT(foreign->foreign_address() ==
|
|
reinterpret_cast<Address>(cache.location()));
|
|
foreign->set_foreign_address(0);
|
|
Isolate* isolate = Isolate::Current();
|
|
isolate->global_handles()->Destroy(cache.location());
|
|
isolate->counters()->script_wrappers()->Decrement();
|
|
}
|
|
|
|
|
|
Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
|
|
if (script->wrapper()->foreign_address() != NULL) {
|
|
// Return the script wrapper directly from the cache.
|
|
return Handle<JSValue>(
|
|
reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
|
|
}
|
|
Isolate* isolate = Isolate::Current();
|
|
// Construct a new script wrapper.
|
|
isolate->counters()->script_wrappers()->Increment();
|
|
Handle<JSFunction> constructor = isolate->script_function();
|
|
Handle<JSValue> result =
|
|
Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
|
|
result->set_value(*script);
|
|
|
|
// Create a new weak global handle and use it to cache the wrapper
|
|
// for future use. The cache will automatically be cleared by the
|
|
// garbage collector when it is not used anymore.
|
|
Handle<Object> handle = isolate->global_handles()->Create(*result);
|
|
isolate->global_handles()->MakeWeak(handle.location(), NULL,
|
|
&ClearWrapperCache);
|
|
script->wrapper()->set_foreign_address(
|
|
reinterpret_cast<Address>(handle.location()));
|
|
return result;
|
|
}
|
|
|
|
|
|
// Init line_ends array with code positions of line ends inside script
|
|
// source.
|
|
void InitScriptLineEnds(Handle<Script> script) {
|
|
if (!script->line_ends()->IsUndefined()) return;
|
|
|
|
Isolate* isolate = script->GetIsolate();
|
|
|
|
if (!script->source()->IsString()) {
|
|
ASSERT(script->source()->IsUndefined());
|
|
Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
|
|
script->set_line_ends(*empty);
|
|
ASSERT(script->line_ends()->IsFixedArray());
|
|
return;
|
|
}
|
|
|
|
Handle<String> src(String::cast(script->source()), isolate);
|
|
|
|
Handle<FixedArray> array = CalculateLineEnds(src, true);
|
|
|
|
if (*array != isolate->heap()->empty_fixed_array()) {
|
|
array->set_map(isolate->heap()->fixed_cow_array_map());
|
|
}
|
|
|
|
script->set_line_ends(*array);
|
|
ASSERT(script->line_ends()->IsFixedArray());
|
|
}
|
|
|
|
|
|
template <typename SourceChar>
|
|
static void CalculateLineEnds(Isolate* isolate,
|
|
List<int>* line_ends,
|
|
Vector<const SourceChar> src,
|
|
bool with_last_line) {
|
|
const int src_len = src.length();
|
|
StringSearch<char, SourceChar> search(isolate, CStrVector("\n"));
|
|
|
|
// Find and record line ends.
|
|
int position = 0;
|
|
while (position != -1 && position < src_len) {
|
|
position = search.Search(src, position);
|
|
if (position != -1) {
|
|
line_ends->Add(position);
|
|
position++;
|
|
} else if (with_last_line) {
|
|
// Even if the last line misses a line end, it is counted.
|
|
line_ends->Add(src_len);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Handle<FixedArray> CalculateLineEnds(Handle<String> src,
|
|
bool with_last_line) {
|
|
src = FlattenGetString(src);
|
|
// Rough estimate of line count based on a roughly estimated average
|
|
// length of (unpacked) code.
|
|
int line_count_estimate = src->length() >> 4;
|
|
List<int> line_ends(line_count_estimate);
|
|
Isolate* isolate = src->GetIsolate();
|
|
{
|
|
AssertNoAllocation no_heap_allocation; // ensure vectors stay valid.
|
|
// Dispatch on type of strings.
|
|
String::FlatContent content = src->GetFlatContent();
|
|
ASSERT(content.IsFlat());
|
|
if (content.IsAscii()) {
|
|
CalculateLineEnds(isolate,
|
|
&line_ends,
|
|
content.ToAsciiVector(),
|
|
with_last_line);
|
|
} else {
|
|
CalculateLineEnds(isolate,
|
|
&line_ends,
|
|
content.ToUC16Vector(),
|
|
with_last_line);
|
|
}
|
|
}
|
|
int line_count = line_ends.length();
|
|
Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
|
|
for (int i = 0; i < line_count; i++) {
|
|
array->set(i, Smi::FromInt(line_ends[i]));
|
|
}
|
|
return array;
|
|
}
|
|
|
|
|
|
// Convert code position into line number.
|
|
int GetScriptLineNumber(Handle<Script> script, int code_pos) {
|
|
InitScriptLineEnds(script);
|
|
AssertNoAllocation no_allocation;
|
|
FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
|
|
const int line_ends_len = line_ends_array->length();
|
|
|
|
if (!line_ends_len) return -1;
|
|
|
|
if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
|
|
return script->line_offset()->value();
|
|
}
|
|
|
|
int left = 0;
|
|
int right = line_ends_len;
|
|
while (int half = (right - left) / 2) {
|
|
if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
|
|
right -= half;
|
|
} else {
|
|
left += half;
|
|
}
|
|
}
|
|
return right + script->line_offset()->value();
|
|
}
|
|
|
|
// Convert code position into column number.
|
|
int GetScriptColumnNumber(Handle<Script> script, int code_pos) {
|
|
int line_number = GetScriptLineNumber(script, code_pos);
|
|
if (line_number == -1) return -1;
|
|
|
|
AssertNoAllocation no_allocation;
|
|
FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
|
|
line_number = line_number - script->line_offset()->value();
|
|
if (line_number == 0) return code_pos + script->column_offset()->value();
|
|
int prev_line_end_pos =
|
|
Smi::cast(line_ends_array->get(line_number - 1))->value();
|
|
return code_pos - (prev_line_end_pos + 1);
|
|
}
|
|
|
|
int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
|
|
AssertNoAllocation no_allocation;
|
|
if (!script->line_ends()->IsUndefined()) {
|
|
return GetScriptLineNumber(script, code_pos);
|
|
}
|
|
// Slow mode: we do not have line_ends. We have to iterate through source.
|
|
if (!script->source()->IsString()) {
|
|
return -1;
|
|
}
|
|
String* source = String::cast(script->source());
|
|
int line = 0;
|
|
int len = source->length();
|
|
for (int pos = 0; pos < len; pos++) {
|
|
if (pos == code_pos) {
|
|
break;
|
|
}
|
|
if (source->Get(pos) == '\n') {
|
|
line++;
|
|
}
|
|
}
|
|
return line;
|
|
}
|
|
|
|
|
|
void CustomArguments::IterateInstance(ObjectVisitor* v) {
|
|
v->VisitPointers(values_, values_ + ARRAY_SIZE(values_));
|
|
}
|
|
|
|
|
|
// Compute the property keys from the interceptor.
|
|
v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
|
|
Handle<JSObject> object) {
|
|
Isolate* isolate = receiver->GetIsolate();
|
|
Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
|
|
CustomArguments args(isolate, interceptor->data(), *receiver, *object);
|
|
v8::AccessorInfo info(args.end());
|
|
v8::Handle<v8::Array> result;
|
|
if (!interceptor->enumerator()->IsUndefined()) {
|
|
v8::NamedPropertyEnumerator enum_fun =
|
|
v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator());
|
|
LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object));
|
|
{
|
|
// Leaving JavaScript.
|
|
VMState state(isolate, EXTERNAL);
|
|
result = enum_fun(info);
|
|
}
|
|
}
|
|
#if ENABLE_EXTRA_CHECKS
|
|
CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
|
|
#endif
|
|
return result;
|
|
}
|
|
|
|
|
|
// Compute the element keys from the interceptor.
|
|
v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
|
|
Handle<JSObject> object) {
|
|
Isolate* isolate = receiver->GetIsolate();
|
|
Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
|
|
CustomArguments args(isolate, interceptor->data(), *receiver, *object);
|
|
v8::AccessorInfo info(args.end());
|
|
v8::Handle<v8::Array> result;
|
|
if (!interceptor->enumerator()->IsUndefined()) {
|
|
v8::IndexedPropertyEnumerator enum_fun =
|
|
v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator());
|
|
LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object));
|
|
{
|
|
// Leaving JavaScript.
|
|
VMState state(isolate, EXTERNAL);
|
|
result = enum_fun(info);
|
|
#if ENABLE_EXTRA_CHECKS
|
|
CHECK(result.IsEmpty() || v8::Utils::OpenHandle(*result)->IsJSObject());
|
|
#endif
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
|
|
int len = array->length();
|
|
for (int i = 0; i < len; i++) {
|
|
Object* e = array->get(i);
|
|
if (!(e->IsString() || e->IsNumber())) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
|
|
KeyCollectionType type,
|
|
bool* threw) {
|
|
USE(ContainsOnlyValidKeys);
|
|
Isolate* isolate = object->GetIsolate();
|
|
Handle<FixedArray> content = isolate->factory()->empty_fixed_array();
|
|
Handle<JSObject> arguments_boilerplate = Handle<JSObject>(
|
|
isolate->context()->native_context()->arguments_boilerplate(),
|
|
isolate);
|
|
Handle<JSFunction> arguments_function = Handle<JSFunction>(
|
|
JSFunction::cast(arguments_boilerplate->map()->constructor()),
|
|
isolate);
|
|
|
|
// Only collect keys if access is permitted.
|
|
for (Handle<Object> p = object;
|
|
*p != isolate->heap()->null_value();
|
|
p = Handle<Object>(p->GetPrototype(), isolate)) {
|
|
if (p->IsJSProxy()) {
|
|
Handle<JSProxy> proxy(JSProxy::cast(*p), isolate);
|
|
Handle<Object> args[] = { proxy };
|
|
Handle<Object> names = Execution::Call(
|
|
isolate->proxy_enumerate(), object, ARRAY_SIZE(args), args, threw);
|
|
if (*threw) return content;
|
|
content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names));
|
|
break;
|
|
}
|
|
|
|
Handle<JSObject> current(JSObject::cast(*p), isolate);
|
|
|
|
// Check access rights if required.
|
|
if (current->IsAccessCheckNeeded() &&
|
|
!isolate->MayNamedAccess(*current,
|
|
isolate->heap()->undefined_value(),
|
|
v8::ACCESS_KEYS)) {
|
|
isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
|
|
break;
|
|
}
|
|
|
|
// Compute the element keys.
|
|
Handle<FixedArray> element_keys =
|
|
isolate->factory()->NewFixedArray(current->NumberOfEnumElements());
|
|
current->GetEnumElementKeys(*element_keys);
|
|
content = UnionOfKeys(content, element_keys);
|
|
ASSERT(ContainsOnlyValidKeys(content));
|
|
|
|
// Add the element keys from the interceptor.
|
|
if (current->HasIndexedInterceptor()) {
|
|
v8::Handle<v8::Array> result =
|
|
GetKeysForIndexedInterceptor(object, current);
|
|
if (!result.IsEmpty())
|
|
content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
|
|
ASSERT(ContainsOnlyValidKeys(content));
|
|
}
|
|
|
|
// We can cache the computed property keys if access checks are
|
|
// not needed and no interceptors are involved.
|
|
//
|
|
// We do not use the cache if the object has elements and
|
|
// therefore it does not make sense to cache the property names
|
|
// for arguments objects. Arguments objects will always have
|
|
// elements.
|
|
// Wrapped strings have elements, but don't have an elements
|
|
// array or dictionary. So the fast inline test for whether to
|
|
// use the cache says yes, so we should not create a cache.
|
|
bool cache_enum_keys =
|
|
((current->map()->constructor() != *arguments_function) &&
|
|
!current->IsJSValue() &&
|
|
!current->IsAccessCheckNeeded() &&
|
|
!current->HasNamedInterceptor() &&
|
|
!current->HasIndexedInterceptor());
|
|
// Compute the property keys and cache them if possible.
|
|
content =
|
|
UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
|
|
ASSERT(ContainsOnlyValidKeys(content));
|
|
|
|
// Add the property keys from the interceptor.
|
|
if (current->HasNamedInterceptor()) {
|
|
v8::Handle<v8::Array> result =
|
|
GetKeysForNamedInterceptor(object, current);
|
|
if (!result.IsEmpty())
|
|
content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
|
|
ASSERT(ContainsOnlyValidKeys(content));
|
|
}
|
|
|
|
// If we only want local properties we bail out after the first
|
|
// iteration.
|
|
if (type == LOCAL_ONLY)
|
|
break;
|
|
}
|
|
return content;
|
|
}
|
|
|
|
|
|
Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
isolate->counters()->for_in()->Increment();
|
|
Handle<FixedArray> elements =
|
|
GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw);
|
|
return isolate->factory()->NewJSArrayWithElements(elements);
|
|
}
|
|
|
|
|
|
Handle<FixedArray> ReduceFixedArrayTo(Handle<FixedArray> array, int length) {
|
|
ASSERT(array->length() >= length);
|
|
if (array->length() == length) return array;
|
|
|
|
Handle<FixedArray> new_array =
|
|
array->GetIsolate()->factory()->NewFixedArray(length);
|
|
for (int i = 0; i < length; ++i) new_array->set(i, array->get(i));
|
|
return new_array;
|
|
}
|
|
|
|
|
|
Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
|
|
bool cache_result) {
|
|
Isolate* isolate = object->GetIsolate();
|
|
if (object->HasFastProperties()) {
|
|
if (object->map()->instance_descriptors()->HasEnumCache()) {
|
|
int own_property_count = object->map()->EnumLength();
|
|
// If we have an enum cache, but the enum length of the given map is set
|
|
// to kInvalidEnumCache, this means that the map itself has never used the
|
|
// present enum cache. The first step to using the cache is to set the
|
|
// enum length of the map by counting the number of own descriptors that
|
|
// are not DONT_ENUM.
|
|
if (own_property_count == Map::kInvalidEnumCache) {
|
|
own_property_count = object->map()->NumberOfDescribedProperties(
|
|
OWN_DESCRIPTORS, DONT_ENUM);
|
|
|
|
if (cache_result) object->map()->SetEnumLength(own_property_count);
|
|
}
|
|
|
|
DescriptorArray* desc = object->map()->instance_descriptors();
|
|
Handle<FixedArray> keys(desc->GetEnumCache(), isolate);
|
|
|
|
// In case the number of properties required in the enum are actually
|
|
// present, we can reuse the enum cache. Otherwise, this means that the
|
|
// enum cache was generated for a previous (smaller) version of the
|
|
// Descriptor Array. In that case we regenerate the enum cache.
|
|
if (own_property_count <= keys->length()) {
|
|
isolate->counters()->enum_cache_hits()->Increment();
|
|
return ReduceFixedArrayTo(keys, own_property_count);
|
|
}
|
|
}
|
|
|
|
Handle<Map> map(object->map());
|
|
|
|
if (map->instance_descriptors()->IsEmpty()) {
|
|
isolate->counters()->enum_cache_hits()->Increment();
|
|
if (cache_result) map->SetEnumLength(0);
|
|
return isolate->factory()->empty_fixed_array();
|
|
}
|
|
|
|
isolate->counters()->enum_cache_misses()->Increment();
|
|
int num_enum = map->NumberOfDescribedProperties(ALL_DESCRIPTORS, DONT_ENUM);
|
|
|
|
Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
|
|
Handle<FixedArray> indices = isolate->factory()->NewFixedArray(num_enum);
|
|
|
|
Handle<DescriptorArray> descs =
|
|
Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate);
|
|
|
|
int real_size = map->NumberOfOwnDescriptors();
|
|
int enum_size = 0;
|
|
int index = 0;
|
|
|
|
for (int i = 0; i < descs->number_of_descriptors(); i++) {
|
|
PropertyDetails details = descs->GetDetails(i);
|
|
if (!details.IsDontEnum()) {
|
|
if (i < real_size) ++enum_size;
|
|
storage->set(index, descs->GetKey(i));
|
|
if (!indices.is_null()) {
|
|
if (details.type() != FIELD) {
|
|
indices = Handle<FixedArray>();
|
|
} else {
|
|
int field_index = Descriptor::IndexFromValue(descs->GetValue(i));
|
|
if (field_index >= map->inobject_properties()) {
|
|
field_index = -(field_index - map->inobject_properties() + 1);
|
|
}
|
|
indices->set(index, Smi::FromInt(field_index));
|
|
}
|
|
}
|
|
index++;
|
|
}
|
|
}
|
|
ASSERT(index == storage->length());
|
|
|
|
Handle<FixedArray> bridge_storage =
|
|
isolate->factory()->NewFixedArray(
|
|
DescriptorArray::kEnumCacheBridgeLength);
|
|
DescriptorArray* desc = object->map()->instance_descriptors();
|
|
desc->SetEnumCache(*bridge_storage,
|
|
*storage,
|
|
indices.is_null() ? Object::cast(Smi::FromInt(0))
|
|
: Object::cast(*indices));
|
|
if (cache_result) {
|
|
object->map()->SetEnumLength(enum_size);
|
|
}
|
|
|
|
return ReduceFixedArrayTo(storage, enum_size);
|
|
} else {
|
|
Handle<StringDictionary> dictionary(object->property_dictionary());
|
|
|
|
int length = dictionary->NumberOfElements();
|
|
if (length == 0) {
|
|
return Handle<FixedArray>(isolate->heap()->empty_fixed_array());
|
|
}
|
|
|
|
// The enumeration array is generated by allocating an array big enough to
|
|
// hold all properties that have been seen, whether they are are deleted or
|
|
// not. Subsequently all visible properties are added to the array. If some
|
|
// properties were not visible, the array is trimmed so it only contains
|
|
// visible properties. This improves over adding elements and sorting by
|
|
// index by having linear complexity rather than n*log(n).
|
|
|
|
// By comparing the monotonous NextEnumerationIndex to the NumberOfElements,
|
|
// we can predict the number of holes in the final array. If there will be
|
|
// more than 50% holes, regenerate the enumeration indices to reduce the
|
|
// number of holes to a minimum. This avoids allocating a large array if
|
|
// many properties were added but subsequently deleted.
|
|
int next_enumeration = dictionary->NextEnumerationIndex();
|
|
if (!object->IsGlobalObject() && next_enumeration > (length * 3) / 2) {
|
|
StringDictionary::DoGenerateNewEnumerationIndices(dictionary);
|
|
next_enumeration = dictionary->NextEnumerationIndex();
|
|
}
|
|
|
|
Handle<FixedArray> storage =
|
|
isolate->factory()->NewFixedArray(next_enumeration);
|
|
|
|
storage = Handle<FixedArray>(dictionary->CopyEnumKeysTo(*storage));
|
|
ASSERT(storage->length() == object->NumberOfLocalProperties(DONT_ENUM));
|
|
return storage;
|
|
}
|
|
}
|
|
|
|
|
|
Handle<ObjectHashSet> ObjectHashSetAdd(Handle<ObjectHashSet> table,
|
|
Handle<Object> key) {
|
|
CALL_HEAP_FUNCTION(table->GetIsolate(),
|
|
table->Add(*key),
|
|
ObjectHashSet);
|
|
}
|
|
|
|
|
|
Handle<ObjectHashSet> ObjectHashSetRemove(Handle<ObjectHashSet> table,
|
|
Handle<Object> key) {
|
|
CALL_HEAP_FUNCTION(table->GetIsolate(),
|
|
table->Remove(*key),
|
|
ObjectHashSet);
|
|
}
|
|
|
|
|
|
Handle<ObjectHashTable> PutIntoObjectHashTable(Handle<ObjectHashTable> table,
|
|
Handle<Object> key,
|
|
Handle<Object> value) {
|
|
CALL_HEAP_FUNCTION(table->GetIsolate(),
|
|
table->Put(*key, *value),
|
|
ObjectHashTable);
|
|
}
|
|
|
|
|
|
// This method determines the type of string involved and then gets the UTF8
|
|
// length of the string. It doesn't flatten the string and has log(n) recursion
|
|
// for a string of length n. If the failure flag gets set, then we have to
|
|
// flatten the string and retry. Failures are caused by surrogate pairs in deep
|
|
// cons strings.
|
|
|
|
// Single surrogate characters that are encountered in the UTF-16 character
|
|
// sequence of the input string get counted as 3 UTF-8 bytes, because that
|
|
// is the way that WriteUtf8 will encode them. Surrogate pairs are counted and
|
|
// encoded as one 4-byte UTF-8 sequence.
|
|
|
|
// This function conceptually uses recursion on the two halves of cons strings.
|
|
// However, in order to avoid the recursion going too deep it recurses on the
|
|
// second string of the cons, but iterates on the first substring (by manually
|
|
// eliminating it as a tail recursion). This means it counts the UTF-8 length
|
|
// from the end to the start, which makes no difference to the total.
|
|
|
|
// Surrogate pairs are recognized even if they are split across two sides of a
|
|
// cons, which complicates the implementation somewhat. Therefore, too deep
|
|
// recursion cannot always be avoided. This case is detected, and the failure
|
|
// flag is set, a signal to the caller that the string should be flattened and
|
|
// the operation retried.
|
|
int Utf8LengthHelper(String* input,
|
|
int from,
|
|
int to,
|
|
bool followed_by_surrogate,
|
|
int max_recursion,
|
|
bool* failure,
|
|
bool* starts_with_surrogate) {
|
|
if (from == to) return 0;
|
|
int total = 0;
|
|
bool dummy;
|
|
while (true) {
|
|
if (input->IsAsciiRepresentation()) {
|
|
*starts_with_surrogate = false;
|
|
return total + to - from;
|
|
}
|
|
switch (StringShape(input).representation_tag()) {
|
|
case kConsStringTag: {
|
|
ConsString* str = ConsString::cast(input);
|
|
String* first = str->first();
|
|
String* second = str->second();
|
|
int first_length = first->length();
|
|
if (first_length - from > to - first_length) {
|
|
if (first_length < to) {
|
|
// Right hand side is shorter. No need to check the recursion depth
|
|
// since this can only happen log(n) times.
|
|
bool right_starts_with_surrogate = false;
|
|
total += Utf8LengthHelper(second,
|
|
0,
|
|
to - first_length,
|
|
followed_by_surrogate,
|
|
max_recursion - 1,
|
|
failure,
|
|
&right_starts_with_surrogate);
|
|
if (*failure) return 0;
|
|
followed_by_surrogate = right_starts_with_surrogate;
|
|
input = first;
|
|
to = first_length;
|
|
} else {
|
|
// We only need the left hand side.
|
|
input = first;
|
|
}
|
|
} else {
|
|
if (first_length > from) {
|
|
// Left hand side is shorter.
|
|
if (first->IsAsciiRepresentation()) {
|
|
total += first_length - from;
|
|
*starts_with_surrogate = false;
|
|
starts_with_surrogate = &dummy;
|
|
input = second;
|
|
from = 0;
|
|
to -= first_length;
|
|
} else if (second->IsAsciiRepresentation()) {
|
|
followed_by_surrogate = false;
|
|
total += to - first_length;
|
|
input = first;
|
|
to = first_length;
|
|
} else if (max_recursion > 0) {
|
|
bool right_starts_with_surrogate = false;
|
|
// Recursing on the long one. This may fail.
|
|
total += Utf8LengthHelper(second,
|
|
0,
|
|
to - first_length,
|
|
followed_by_surrogate,
|
|
max_recursion - 1,
|
|
failure,
|
|
&right_starts_with_surrogate);
|
|
if (*failure) return 0;
|
|
input = first;
|
|
to = first_length;
|
|
followed_by_surrogate = right_starts_with_surrogate;
|
|
} else {
|
|
*failure = true;
|
|
return 0;
|
|
}
|
|
} else {
|
|
// We only need the right hand side.
|
|
input = second;
|
|
from = 0;
|
|
to -= first_length;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
case kExternalStringTag:
|
|
case kSeqStringTag: {
|
|
Vector<const uc16> vector = input->GetFlatContent().ToUC16Vector();
|
|
const uc16* p = vector.start();
|
|
int previous = unibrow::Utf16::kNoPreviousCharacter;
|
|
for (int i = from; i < to; i++) {
|
|
uc16 c = p[i];
|
|
total += unibrow::Utf8::Length(c, previous);
|
|
previous = c;
|
|
}
|
|
if (to - from > 0) {
|
|
if (unibrow::Utf16::IsLeadSurrogate(previous) &&
|
|
followed_by_surrogate) {
|
|
total -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
|
|
}
|
|
if (unibrow::Utf16::IsTrailSurrogate(p[from])) {
|
|
*starts_with_surrogate = true;
|
|
}
|
|
}
|
|
return total;
|
|
}
|
|
case kSlicedStringTag: {
|
|
SlicedString* str = SlicedString::cast(input);
|
|
int offset = str->offset();
|
|
input = str->parent();
|
|
from += offset;
|
|
to += offset;
|
|
continue;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int Utf8Length(Handle<String> str) {
|
|
bool dummy;
|
|
bool failure;
|
|
int len;
|
|
const int kRecursionBudget = 100;
|
|
do {
|
|
failure = false;
|
|
len = Utf8LengthHelper(
|
|
*str, 0, str->length(), false, kRecursionBudget, &failure, &dummy);
|
|
if (failure) FlattenString(str);
|
|
} while (failure);
|
|
return len;
|
|
}
|
|
|
|
|
|
DeferredHandleScope::DeferredHandleScope(Isolate* isolate)
|
|
: impl_(isolate->handle_scope_implementer()) {
|
|
ASSERT(impl_->isolate() == Isolate::Current());
|
|
impl_->BeginDeferredScope();
|
|
v8::ImplementationUtilities::HandleScopeData* data =
|
|
impl_->isolate()->handle_scope_data();
|
|
Object** new_next = impl_->GetSpareOrNewBlock();
|
|
Object** new_limit = &new_next[kHandleBlockSize];
|
|
ASSERT(data->limit == &impl_->blocks()->last()[kHandleBlockSize]);
|
|
impl_->blocks()->Add(new_next);
|
|
|
|
#ifdef DEBUG
|
|
prev_level_ = data->level;
|
|
#endif
|
|
data->level++;
|
|
prev_limit_ = data->limit;
|
|
prev_next_ = data->next;
|
|
data->next = new_next;
|
|
data->limit = new_limit;
|
|
}
|
|
|
|
|
|
DeferredHandleScope::~DeferredHandleScope() {
|
|
impl_->isolate()->handle_scope_data()->level--;
|
|
ASSERT(handles_detached_);
|
|
ASSERT(impl_->isolate()->handle_scope_data()->level == prev_level_);
|
|
}
|
|
|
|
|
|
DeferredHandles* DeferredHandleScope::Detach() {
|
|
DeferredHandles* deferred = impl_->Detach(prev_limit_);
|
|
v8::ImplementationUtilities::HandleScopeData* data =
|
|
impl_->isolate()->handle_scope_data();
|
|
data->next = prev_next_;
|
|
data->limit = prev_limit_;
|
|
#ifdef DEBUG
|
|
handles_detached_ = true;
|
|
#endif
|
|
return deferred;
|
|
}
|
|
|
|
|
|
} } // namespace v8::internal
|